JPS594888A - Fluid dispersion device of fluidized layer type heat exchanger - Google Patents
Fluid dispersion device of fluidized layer type heat exchangerInfo
- Publication number
- JPS594888A JPS594888A JP11079882A JP11079882A JPS594888A JP S594888 A JPS594888 A JP S594888A JP 11079882 A JP11079882 A JP 11079882A JP 11079882 A JP11079882 A JP 11079882A JP S594888 A JPS594888 A JP S594888A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- dispersion plate
- fluid
- distance
- temperature fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D13/00—Heat-exchange apparatus using a fluidised bed
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は流動層熱交換器の流動層へ高温流体を均一に導
入させるだめの流体分散装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fluid dispersion device for uniformly introducing high temperature fluid into a fluidized bed of a fluidized bed heat exchanger.
[発明の技術的背駄ち・よびその問題点]流動層熱交換
器においては、その流動する粒子層へ導入される高温流
体は、均一に導入されることが好ましい。その理由とし
て1粒子は粒子層を上昇する流体流速により運動エネル
ギを与えられ流動を始め、流動を始めさせる高温流体の
流速は粒子径により定まり、流動層熱交換器にも・いて
使用される粒子の粒径はほぼ等しく、その為導入高温流
体の流速の差が粒子運動の強さを支配し、粒子層のある
特定部分の流速が他より常に速いと、その部分の粒子運
動がさかんとなり、粒子を飛散され粒子層に高温流体が
常に流れるふきぬけ(チャネリング)状態が生じ、流動
が一様に行なわれず、伝熱に関与する伝熱管の実質if
74ftが減少1−で伝熱量が少なくなるからである。[Technical disadvantages and problems of the invention] In a fluidized bed heat exchanger, it is preferable that the high temperature fluid introduced into the flowing particle bed is uniformly introduced. The reason for this is that each particle is given kinetic energy by the fluid flow rate rising in the particle bed and begins to flow, and the flow rate of the high-temperature fluid that starts the flow is determined by the particle size. The particle sizes of the particles are almost the same, so the difference in the flow velocity of the introduced high-temperature fluid governs the strength of the particle motion.If the flow velocity in a certain part of the particle layer is always faster than in the other part, the particle motion in that part will be accelerated. A channeling state occurs in which particles are scattered and high-temperature fluid constantly flows in the particle layer, and the flow is not uniform, causing the actual if of the heat transfer tube involved in heat transfer.
This is because 74ft decreases by 1- and the amount of heat transfer decreases.
このチャネリング状態を防止する為、高温流体導入口か
ら分散板までの距離を大きくとり、つまりウィンドボッ
クスを大きくし、滑らかにウィンドボックスの断面積力
1拡大して一様な流−れとなるようにしたり、整流室(
整流板)をウィンドボックス内に設置して均−な流れを
作り、分散板でも圧力損失を作りより均一な流速分布に
して高渦流体を粒子層に流入するようにしてきた。しか
し、これらの手段では装置の高さが(寸法が)大きくな
ること、整流室が付加され重量が重くなる等の不都合が
生じてきた。また、装置の大型化をふせぐ為、分散板自
体に工夫を施こし、一枚の板に多数のネジを配設しネジ
さネジ穴のすきまより高温流体を粒子層に導ひき、高温
流体の運動方向を分散板と平行とし、粒子層を上昇する
高温流体の流速を一様きする提案もあるが、ネジを配設
する手数、ネジとネジ穴の寸法精度、保守、コスト等が
かなり必要となり特定の用途にしか使用できなかった。In order to prevent this channeling state, the distance from the high-temperature fluid inlet to the dispersion plate is increased, in other words, the wind box is made larger, and the cross-sectional area force of the wind box is smoothly increased by 1 to create a uniform flow. or a rectifier room (
A rectifying plate (straightening plate) was installed in the wind box to create a uniform flow, and a dispersion plate also created pressure loss to create a more uniform flow velocity distribution and allow the highly eddy fluid to flow into the particle layer. However, these methods have caused disadvantages such as an increase in the height (dimensions) of the device and the addition of a rectifying chamber, which increases the weight. In addition, in order to prevent the device from increasing in size, the dispersion plate itself was devised, and a large number of screws were arranged on one plate to guide the high-temperature fluid to the particle layer through the gaps in the threaded screw holes. There is a proposal to make the direction of motion parallel to the dispersion plate so that the flow velocity of the high-temperature fluid rising through the particle layer is uniform, but this requires a considerable amount of time to arrange the screws, dimensional accuracy of the screws and screw holes, maintenance, cost, etc. Therefore, it could only be used for specific purposes.
[発明の目的]
本発明は、このような点に鑑み、ウィンドボックスの高
さを短かくし、装置の小型化をはかり、粒子層へ導入さ
れる高温流体をより均一に導ひく流体分数装置を提供す
ることを目的とする。[Object of the Invention] In view of these points, the present invention aims to shorten the height of the wind box, reduce the size of the device, and provide a fluid fractionator that more uniformly guides the high-temperature fluid introduced into the particle layer. The purpose is to provide.
[発明の概要]
粒子層のなかに伝熱管を配設した流動層熱交換器におい
て高温流体が導入されるウィンドボックス内に、高温流
体の導入口上方に、その導入口にほぼ等しい面積をもち
、中央に導入口面積の1/4〜1/1oの大きさの穴を
もっジャマ板と、高温流体入口に近い側に金網の分散板
、その金網の素線と素線が作る空間距離の10倍以上離
れた所に第2の分散板を配設したことを特徴とする。[Summary of the Invention] In a fluidized bed heat exchanger in which heat exchanger tubes are disposed in a particle bed, a wind box into which high temperature fluid is introduced has an area approximately equal to the inlet above the high temperature fluid inlet. , a jammer plate with a hole in the center having a size of 1/4 to 1/1 o of the inlet area, a distribution plate of wire mesh on the side near the high temperature fluid inlet, and a space distance created by the wires of the wire mesh. It is characterized in that the second dispersion plate is disposed at a location 10 times or more away.
[発明の実施例]
以下、第1図から第3図を参照して本発明の一実施例に
ついて説明する。[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
第1図において、符号1は熱交換器のケーシングであっ
て、ケーシング1の下端には高温流体人が導入される導
入口2が設けられ、上端には高温流体Aが排出される排
出口3が設けられている。In FIG. 1, reference numeral 1 denotes a casing of a heat exchanger, and the lower end of the casing 1 is provided with an inlet 2 through which high-temperature fluid A is introduced, and the upper end is provided with an outlet 3 through which high-temperature fluid A is discharged. is provided.
ケーシングIの排出口3の外側端部に被加熱流体Bを導
入する伝熱管人口4があシ、伝熱管5は粒子層6に蛇行
状に配設され、ケーシング1の導入口2の外側端部に設
けられた伝熱管量ロアにつながっている。高温流体Aの
導入口2とケーシング1および上記粒子層6をささえる
分散板8にょって、ウィンドボックス9が形成され、導
入口2の上方に導入口2と同面積でその面積の’/4〜
1/1゜の穴をもつジャマ板10が配設される。このジ
ャマ板10の上方には、金網でできた第1分散板8aが
あシ、その素線と素線の空間距離の10倍以上離れたと
ころに第2分散板8b(金網パンチングメタル、多孔板
)が配置されている。There is a heat exchanger tube 4 that introduces the heated fluid B into the outer end of the outlet 3 of the casing I, and the heat exchanger tube 5 is arranged in a meandering manner in the particle layer 6, and the outer end of the inlet 2 of the casing 1 It is connected to the lower heat transfer tube installed in the section. A wind box 9 is formed by the introduction port 2 of the high temperature fluid A, the casing 1, and the dispersion plate 8 that supports the particle layer 6, and has the same area as the introduction port 2 above the introduction port 2, and is 1/4 of the area. ~
A jammer plate 10 having a 1/1° hole is provided. Above this jammer plate 10, there is a first dispersion plate 8a made of wire mesh, and a second dispersion plate 8b (wire mesh punching metal, porous board) are arranged.
さて導入口2からウィンドボックス9aに流入した高温
流体Aはジャマ板10に進み、高温流2+’lAの一部
はジャマ板10の小穴をすりぬけ、他の高温流体Aはジ
ャマ板10によシ進行方向を変えられて、ウィンドボッ
クス全域に広がる。ジャマ板10は第2図に第1図の2
−2方向からみた断面を示すように、小穴がおいている
ので、そこをすシぬけて高温流体人の一部が進行するの
で、ジャマ板1oの後方に流れのまったくない部分(死
水領域)が形成されないので、ジャマ板10の後方から
第1分散板8aまでのウィンドボックス9b内ではその
全域にわたって一様に乱れた流れが形成される。またこ
のジャマ板10の小穴によって高温流体Aの一部がすり
ぬけるのでジャマ板910に衝突した高温流体Aの衝撃
を緩和でき、衝突により生じる振動・騒音を防止でき、
かつジャマ板の強度はそれほど必要ではなくなる。小穴
の径を導入口面積の1/4より大きくすると、ウィンド
ボックス内の流れの均一化が十分でなく、IAoより小
さくすると、衝撃による撮動が増t0こうして一様な乱
れとなった高温流体Aは、第1分散板8aにむかい、そ
こを通過する。Now, the high-temperature fluid A that has flowed into the wind box 9a from the inlet 2 advances to the baffle plate 10, a part of the high-temperature flow 2+'lA passes through the small hole in the baffle plate 10, and the other high-temperature fluid A flows through the baffle plate 10. The direction of movement can be changed and it spreads across the entire wind box. The jammer plate 10 is shown in Fig. 2 as shown in Fig. 1.
- As shown in the cross section seen from two directions, there is a small hole, and a part of the high temperature fluid passes through it, so there is no flow at all behind the baffle board 1o (dead water area) Therefore, a uniformly turbulent flow is formed over the entire area within the wind box 9b from the rear of the baffle plate 10 to the first dispersion plate 8a. In addition, since a portion of the high temperature fluid A slips through the small holes in the baffle plate 10, the impact of the high temperature fluid A that collides with the baffle plate 910 can be alleviated, and vibration and noise caused by the collision can be prevented.
Moreover, the strength of the jammer plate is not required so much. If the diameter of the small hole is made larger than 1/4 of the inlet area, the flow inside the wind box will not be made uniform enough, and if it is made smaller than IAo, the imaging due to impact will increase. A goes toward the first dispersion plate 8a and passes there.
I43図に高温流体Aが分散装置8によって分散均一流
速になっていく様子を示す。流れにおかれた円柱から剥
離が生じることは、流体力学で良く知られているところ
であるが、高温流体Aが金網でできた第1分散板8aを
通過するときにも、この剥離現象が生じる。剥離現象は
周囲流体の乱れを作り、この剥離が金網のすべての素線
から生じる為、高温流体Aの乱れはより一様となり、高
温流体Aの上方向への流速は通路全体を通じて、つまり
ウィンドボックス9cにお・いて一様となる。第2分散
板8bを第1分散板8aよシ、第1分散板8aの素線と
素線が作る空間距離の10倍としている。これは、第1
分散板8aの開口部よりの高温流体の流速が千の距離を
保持できる距離がその流れを自由噴流と仮定した場合で
、開口部径の5〜7倍であるこ古、つ牛り、その距離(
開口部径の5〜7倍)までに周囲流体をひっばり、拡散
層を作り、それより長い距離では流れの一様化が進む為
でちる。Figure I43 shows how the high-temperature fluid A is dispersed at a uniform flow rate by the dispersion device 8. It is well known in fluid mechanics that separation occurs from a cylinder placed in a flow, but this separation phenomenon also occurs when high-temperature fluid A passes through the first distribution plate 8a made of wire mesh. . The separation phenomenon creates turbulence in the surrounding fluid, and since this separation occurs from all the strands of the wire mesh, the turbulence of the hot fluid A becomes more uniform, and the upward flow velocity of the hot fluid A increases throughout the passage, i.e., through the wind. It becomes uniform in box 9c. The distance between the second dispersion plate 8b and the first dispersion plate 8a is ten times the spatial distance formed by the strands of the first dispersion plate 8a. This is the first
The distance at which the flow velocity of the high-temperature fluid can be maintained from the opening of the dispersion plate 8a is 5 to 7 times the diameter of the opening, assuming that the flow is a free jet. (
This is because the surrounding fluid is diffused up to 5 to 7 times the opening diameter, creating a diffusion layer, and the flow becomes more uniform over longer distances.
本発明では、第1分散板8aと第2分散板8bの距離を
10倍としである為、高温流体8bに進行する高温流体
Aはウィンドボックス9Cにおいてより一様なF方流れ
となり、第2分散板8bに進行する。第2分散板8bは
、金網、パンチングメタル、焼結金属で作られ、流動粒
子の保持および高温流体人のより均一な分散を助ける。In the present invention, since the distance between the first dispersion plate 8a and the second dispersion plate 8b is set to 10 times, the high-temperature fluid A flowing toward the high-temperature fluid 8b becomes a more uniform flow in the F direction in the wind box 9C, and It advances to the dispersion plate 8b. The second dispersion plate 8b is made of wire mesh, punched metal, or sintered metal to help retain fluid particles and more uniformly disperse hot fluid particles.
このようにして流体分散装置を通過した高温流体人は、
粒子層6を一様な流動状態にし、そこに配設されている
伝熱管5を通じて被加熱流体Bに熱量を与え、排出口3
より排出される。The high-temperature fluid that passed through the fluid dispersion device in this way
The particle layer 6 is made into a uniform fluid state, heat is given to the heated fluid B through the heat transfer tube 5 disposed there, and the discharge port 3
more excreted.
なお上記実施例にお・いてジャマ板10の穴を、中央に
一個あけたものを示したが、穴の面積が等しければ複数
個あけても同一の効果を示す。In the above embodiment, one hole is provided in the center of the jammer plate 10, but the same effect can be obtained even if a plurality of holes are provided with the same area.
[発明の効果]
高渦流体が導入されるウィンドボックスに高温流体の導
入口F方に、その導入口にほぼ等しい面積をもち、はぼ
中央に導入面積の1/4〜IAOの穴をもつジャマ板と
、分散板を二重にして高温流体に近い分散板を金網とし
、その金網の素線と素線が作る空間距離の10倍以北し
れだ所に、第2分教板を配置したことにより、導入口よ
り流入した高温流体はすみやかにウィンドボックス内に
広がり一様な流速の上昇流となって粒子層に進入I〜、
一様な流動状態を作り、伝熱効率を上昇させる、ジャマ
板に穴を設けたことにより高温流体がジャマ板に衝突す
ると角の衝突力を弱め、振動・騒音の発生を防き゛かつ
ジャマ板の強度もそれほど必要でなく軽量となる。[Effect of the invention] The wind box into which the high-vortex fluid is introduced has a hole in the direction of the high-temperature fluid inlet F that has an area approximately equal to the inlet and has a hole in the center of the hole that is 1/4 to IAO of the inlet area. The jammer plate and the dispersion plate are doubled, and the dispersion plate close to the high-temperature fluid is used as a wire mesh, and the second branching plate is placed at a location more than 10 times north of the spatial distance created by the wires of the wire mesh. As a result, the high-temperature fluid flowing in from the inlet quickly spreads inside the wind box and enters the particle layer as an upward flow with a uniform velocity.
Creates a uniform flow state and increases heat transfer efficiency.By providing holes in the baffle plate, when high-temperature fluid collides with the baffle plate, the collision force at the corners is weakened, preventing the generation of vibration and noise, and increasing the strength of the baffle plate. is not so necessary and is lightweight.
整流室等の装置が必要でないので流動層熱交換器の小型
化がはかれる。Since devices such as a rectification chamber are not required, the size of the fluidized bed heat exchanger can be reduced.
第1図は、本発明の一実施例による流体分散装置纜のあ
る流動1−熱交換器の縦断面図、第2Vは第1図のZ−
4線における平面に清って切断した矢視方向に見た断面
図、第3図は流体分散装置の拡大図である。
1 ケーシング、2・・導入口、ト排出口、5・伝熱管
、 6 粒子層、 8 分散板、9・・・ウィンド
ボックス、10・・ジャマ板0代理人 弁理士 則
近 憲 佑
(ほか1名)FIG. 1 is a longitudinal sectional view of a flow 1 heat exchanger with a fluid dispersion device according to an embodiment of the present invention, and 2V is a Z-
3 is an enlarged view of the fluid dispersion device. 1 casing, 2...inlet, outlet, 5 heat exchanger tube, 6 particle layer, 8 dispersion plate, 9...wind box, 10...obstruction plate 0 agent patent attorney rules
Kensuke Chika (and 1 other person)
Claims (1)
動層熱交換器において、流体が導入されるウィンドボッ
クスに、流体の導入口上方に、その導入口にほぼ等しい
面積をもち、はぼ中央に導入口断面積のl/4〜1/1
0の穴を持つジャマ板と、流入流体に近い側に金網の分
散板、その金網の素■前記ジャマ板に設ける穴を複数と
し、それらの穴の合計面積を、流体導入口面積の1/4
〜’AOとした特許請求の範囲第1項記載の流動層熱交
換器用の流体分散装置。■In a fluidized bed heat exchanger in which a heat transfer tube is placed in a particle layer consisting of a large number of particles, the wind box into which the fluid is introduced has an area approximately equal to the inlet above the fluid inlet, 1/4 to 1/1 of the cross-sectional area of the inlet in the center
A barrier plate with 0 holes, a wire mesh dispersion plate on the side closer to the inflow fluid, and the element of the wire mesh.Multiple holes are provided in the barrier plate, and the total area of these holes is 1/1 of the fluid inlet area. 4
~'AO A fluid dispersion device for a fluidized bed heat exchanger according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079882A JPS594888A (en) | 1982-06-29 | 1982-06-29 | Fluid dispersion device of fluidized layer type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11079882A JPS594888A (en) | 1982-06-29 | 1982-06-29 | Fluid dispersion device of fluidized layer type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS594888A true JPS594888A (en) | 1984-01-11 |
Family
ID=14544907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11079882A Pending JPS594888A (en) | 1982-06-29 | 1982-06-29 | Fluid dispersion device of fluidized layer type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS594888A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0195436A2 (en) * | 1985-03-22 | 1986-09-24 | Kabushiki Kaisha Maekawa Seisakusho | Jet stream injection system |
-
1982
- 1982-06-29 JP JP11079882A patent/JPS594888A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0195436A2 (en) * | 1985-03-22 | 1986-09-24 | Kabushiki Kaisha Maekawa Seisakusho | Jet stream injection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tusar et al. | CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert | |
CA1320260C (en) | End fed liquid heat exchanger for an electronic component | |
Webb et al. | Conjugate heat transfer in a channel with staggered ribs | |
Kumar et al. | Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube | |
JP2813369B2 (en) | Apparatus for separating liquid droplets from gas streams | |
Wang et al. | Study on heat transfer performance of fin-and-tube heat exchanger with elliptical fins | |
Kim et al. | Performance evaluation of a converging-diverging film-cooling hole | |
Nemati et al. | Numerical study of flow over annular elliptical finned tube heat exchangers | |
Batule et al. | Heat transfer and pressure drop performance improvement using curved circular spines for flow through circular pipe | |
JPS594888A (en) | Fluid dispersion device of fluidized layer type heat exchanger | |
Jedsadaratanachai et al. | Thermal performance assessment in a circular tube fitted with various sizes of modified v-baffle: a numerical investigation | |
TR199902756A2 (en) | Internal structure of the nuclear reactor with ease of stabilizing the coolant flow | |
Nazari et al. | Comparative study on the influence of depth, number and arrangement of dimples on the flow and heat transfer characteristics at turbulent flow regimes | |
Dey et al. | Analysis of fluid flow and heat transfer characteristics over a square cylinder: Effect of corner radius and nanofluid volume fraction | |
Jung et al. | Pin-fin heat sink modeling and characterization | |
RU2675733C1 (en) | Heat exchanging surface | |
CN112788918A (en) | Turbulent flow jet cooling device for porous medium | |
Jedsadaratanachai et al. | Influences of the wavy surface inserted in the middle of a circular tube heat exchanger on thermal performance | |
JP2930451B2 (en) | Steam-water separator | |
Dhole et al. | Thermal and hydraulic performance analysis of cylindrical pin fin heat sink with conical perforations | |
JPS6057148A (en) | Duct | |
JPH0239000A (en) | Attenuation tank | |
JPS6350483Y2 (en) | ||
JPS6199097A (en) | Finned heat exchanger | |
Corvera et al. | Thermal-Fluid Study of Jet-in-Crossflow Cooling in Comparison with Pure Jet Impingement and Pure Crossflow Cooling Methods Applicable in Hotspot Treatment |