JPS594884A - Method and device for controlling operating number of condenser vacuum pump - Google Patents

Method and device for controlling operating number of condenser vacuum pump

Info

Publication number
JPS594884A
JPS594884A JP11075882A JP11075882A JPS594884A JP S594884 A JPS594884 A JP S594884A JP 11075882 A JP11075882 A JP 11075882A JP 11075882 A JP11075882 A JP 11075882A JP S594884 A JPS594884 A JP S594884A
Authority
JP
Japan
Prior art keywords
condenser
vacuum
vacuum degree
vacuum pumps
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11075882A
Other languages
Japanese (ja)
Other versions
JPH0155400B2 (en
Inventor
Noriyoshi Teranishi
寺西 詔奉
Tsutomu Kono
河野 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP11075882A priority Critical patent/JPS594884A/en
Publication of JPS594884A publication Critical patent/JPS594884A/en
Publication of JPH0155400B2 publication Critical patent/JPH0155400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To manage and control most economically the number of vacuum pumps by a method wherein the load coefficient of a steam turbine, the cooling water temperature of a condenser and the vacuum degree of the condenser are detected, and at least two data among said detected data are inputted into an automatic calculator, then the optimum vacuum pump operating number is calculated. CONSTITUTION:A operating number change-over limit vacuum degree calculating part 23.3 storing the curve of a vacuum pump operating number change-over limit vacuum degree VL=f(L), and a reference vacuum degree calculating part 23.4 storing the curve of a reference vacuum degree VB=f(L, T), are formed in a calculator 23. A load coefficient L from a load transmitter 21 is inputted into said calculating part 23.3, and the change-over limit vacuum degree VL is calculated. Then the reference vacuum degree VB is calculated after said load coefficient L and cooling water temperature T are inputted into the calculating part 23.4. An optimum operating number deciding part 23.5 compares the VL with the VB, when VL>=VB is held, the decision is the single operation, while when VL<VB is held, the decision is the dual operation. The result of said decision is displayed on a display 24 and a control signal is trasmitted to control automatically vacuum pump driving motors 12a, 12b.

Description

【発明の詳細な説明】 本発明は、火力発電プラント又は原子力発電プラントの
蒸気タービン用復水器に設けられた複数台の真空ポンプ
の適正運転台数を判断して真空ポンプの運転・停止制御
を行なう方法、及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention determines the appropriate number of operating vacuum pumps installed in a steam turbine condenser of a thermal power plant or a nuclear power plant, and performs operation/stop control of the vacuum pumps. The present invention relates to a method and an apparatus for performing the same.

従来、復水器の全気油出用として水封回転式真空ポンプ
を設ける場合、”一般に2〜3台設置され、プラント起
動に際しては全台数を運転して急速に起動準備をととの
え、起動の後正常運転中は通常1台を休止せしめて予備
機としている。
Conventionally, when water ring rotary vacuum pumps were installed to extract all gas from a condenser, ``generally, two to three units were installed, and when the plant was started, all units were operated to rapidly prepare for startup. During normal operation, one unit is normally shut down and used as a spare unit.

しかし、正常運転中であっても運転条件の如何によシ、
特に低負荷運転時においては真空ポンプの空気抽出能力
が不足傾向となり、その結果復水器の真空度が低下し、
従ってタービン排気側の真空度が低下して熱効率が低下
する場合がある。このようガ状態においては休止中の真
空ポンプを運転して復水器の真空度を高く維持して熱効
率を向上させることが適切であると考えられる。
However, even during normal operation, the
Especially during low-load operation, the air extraction capacity of the vacuum pump tends to be insufficient, resulting in a decrease in the degree of vacuum in the condenser.
Therefore, the degree of vacuum on the turbine exhaust side may decrease, resulting in a decrease in thermal efficiency. In such a situation, it is considered appropriate to operate the idle vacuum pump to maintain a high degree of vacuum in the condenser and improve thermal efficiency.

発明者らは最近の研究により、蒸気タービンを用いた発
電プラントを定格の25%の負荷で運転する場合、真空
ボッ11台を運転するときに比して2台を運転すると真
空度が10wHz向上し、熱効率が1%向上することを
確認し、これによシ真空ポンプの運転台数の管理が経済
的に重要な意義を有していることが判明した。
The inventors have found through recent research that when operating a power generation plant using a steam turbine at a load of 25% of the rated load, the degree of vacuum increases by 10wHz when two vacuum bottles are operated compared to when operating 11 vacuum bottles. It was confirmed that the thermal efficiency improved by 1%, and it was therefore found that controlling the number of vacuum pumps in operation has an important economic significance.

第1図は横軸に真空度をとシ、縦軸に空気流量をとって
、真空ポンプの抽気流量を実線で、漏洩空気量を破線で
示した図表である。
FIG. 1 is a chart in which the degree of vacuum is plotted on the horizontal axis and the air flow rate is plotted on the vertical axis, with the bleed air flow rate of the vacuum pump shown as a solid line and the amount of leaked air shown as a broken line.

真空ポンプの抽気量は1台運転のときと2台運転のとき
との2本のカーブを描き、漏洩空気量はタービン負荷率
が100%、75%、50%。
The amount of air extracted from the vacuum pump draws two curves, one when one pump is operating and the other when two pumps are operating, and the leakage air amount is 100%, 75%, and 50% at the turbine load rate.

25%の場合について4本のカーブを示しである。Four curves are shown for the 25% case.

実線と破線との交点の横軸座標がその運転条件における
真空度を意味する。
The horizontal axis coordinate of the intersection of the solid line and the broken line means the degree of vacuum under the operating conditions.

各種の運転条件に応じて真空ポンプの運転台数を何台に
すれば良いかという問題については、復水器の冷却水温
度も考慮する必要がある。第2図は横軸に負荷率りをと
シ、縦軸に復水器の真空度をとった座標面に、復水器の
冷却能力から定まる基準真空度Vm=f(L、T) ただし、T:冷却水温CC) を、各冷却水温ととに実線で示した図表の一例である。
Regarding the question of how many vacuum pumps should be operated depending on various operating conditions, it is also necessary to consider the temperature of the cooling water in the condenser. In Figure 2, the horizontal axis shows the load factor, and the vertical axis shows the vacuum degree of the condenser. , T: Cooling water temperature CC) is an example of a chart showing each cooling water temperature with a solid line.

上記の座標面上の各点の運転条件において、真空ポンプ
の最適運転台数を経済性に基づいて評価して対応させる
と、同図の左上部では2台運転が適し、右下部では1台
運転が適しておシ、その境界は破線で示した台数切替限
界真空度カーブVt=f(L)の如くになる。
Under the operating conditions at each point on the coordinate plane above, if we evaluate the optimal number of vacuum pumps to operate based on economic efficiency, we find that in the upper left part of the figure it is appropriate to operate two vacuum pumps, and in the lower right part it is suitable to operate one vacuum pump. is suitable, and its boundary is as shown by the number switching limit vacuum degree curve Vt=f(L) shown by a broken line.

縦軸に冷却水温度をとって上記図表の限界真空度曲線V
t、を転写すると第3図のごとく台数切替限界冷却水温
度T。= f (L>カーブが得られる。
By taking the cooling water temperature on the vertical axis, the limit vacuum degree curve V in the above chart is obtained.
When t is transferred, the number of units switching limit cooling water temperature T is obtained as shown in Fig. 3. = f (L>curve is obtained.

このカーブの右上部は1台運転が適する負荷率−冷却水
温範囲であシ、左下部は2台運転が適する負荷率−冷却
水温範囲である。
The upper right corner of this curve is the load factor-cooling water temperature range suitable for one-unit operation, and the lower left corner is the load factor-cooling water temperature range suitable for two-unit operation.

本発明は上述の研究結果に基づいて、複数台の真空ポン
プを備えた蒸気タービン用復水器について、最も経済的
なように真空ポンプの運転台数を管理、制御する方法、
および同装置を提供しようとするものである。
Based on the above research results, the present invention provides a method for managing and controlling the number of vacuum pumps in operation in the most economical manner for a steam turbine condenser equipped with a plurality of vacuum pumps;
and the same equipment.

上記の目的を達成するため、本発明方法は、蒸気タービ
ンの負荷率、復水器冷却水温、および復水器真空度を検
出し、上記の検出値の内の少なくとも二つを自動演算器
に入力して該演算器によシ真空ポンプの最適運転台数を
算出し、これに基づいて真をポンプの運転制御を行なう
ことを特徴とする。
In order to achieve the above object, the method of the present invention detects the steam turbine load factor, condenser cooling water temperature, and condenser vacuum degree, and sends at least two of the above detected values to an automatic calculator. The system is characterized in that the optimal number of vacuum pumps to be operated is calculated by the arithmetic unit based on the input information, and the operation of the pumps is controlled based on this.

第4図は本発明の方法を実施するために構成した真空ポ
ンプ運転台数制御装置の一例を備えた蒸気タービン発電
プラントの系統図である。
FIG. 4 is a system diagram of a steam turbine power generation plant equipped with an example of a device for controlling the number of vacuum pumps in operation configured to carry out the method of the present invention.

1は蒸気発生装置、2は蒸気供給管、3は蒸気タービン
、4は発電機、5は復水器、6は冷却水供給管、7は給
水ポンプ、8は給水管である。上記の復水器5には空気
抽出管10を介して2台の真空ポンプlla、llbが
接続されている。
1 is a steam generator, 2 is a steam supply pipe, 3 is a steam turbine, 4 is a generator, 5 is a condenser, 6 is a cooling water supply pipe, 7 is a water supply pump, and 8 is a water supply pipe. Two vacuum pumps lla and llb are connected to the condenser 5 through an air extraction pipe 10.

12a、12bはそれぞれ駆動用モータである。12a and 12b are drive motors, respectively.

発電機4に負荷信号発信器21を設けて発電機の負荷、
即ち蒸気タービン3の負荷率を検出し、冷却水供給管6
に冷却水温度発信器22を設けて復水器冷却水温を検出
し、復水器5に復水器真空度発信器25を設けて復水器
真空度を検出する。
A load signal transmitter 21 is provided in the generator 4 to control the load of the generator,
That is, the load factor of the steam turbine 3 is detected, and the cooling water supply pipe 6 is
A cooling water temperature transmitter 22 is provided in the condenser 5 to detect the condenser cooling water temperature, and a condenser vacuum degree transmitter 25 is provided in the condenser 5 to detect the condenser vacuum degree.

上記の各発信器の出力信号を入力する演算器23を設け
、後述のようにして真空ポンプの最適運転台数を算出さ
せる。
A computing unit 23 is provided to input the output signals of the respective transmitters described above, and the optimum number of vacuum pumps to be operated is calculated as described later.

24は上記演算器23に付設した表示器である。24 is a display attached to the arithmetic unit 23.

第5図は第4図の装置を用いて本発明方法を実施した一
例における制御原理図である。
FIG. 5 is a control principle diagram in an example in which the method of the present invention is implemented using the apparatus shown in FIG. 4.

自動演算器23中に台数切替限界冷却水温度演算部23
.1を構成し、第3図に示した’ro=r(L)カーブ
を記憶させておく。このカーブは既述のごとく第2図の
図表から導かれるものであるから、復水器の真空度に関
する要素が第2図の縦軸の値として織シ込まれている。
Number switching limit cooling water temperature calculation unit 23 in automatic calculation unit 23
.. 1 and store the 'ro=r(L) curve shown in FIG. As described above, this curve is derived from the diagram of FIG. 2, so the factors related to the degree of vacuum of the condenser are included as values on the vertical axis of FIG.

前記第3図のカーブ、即ち第5図の23.1のカーブに
よれば負荷率りを与えられるとこれに対応する真空ポン
プ台数切替限界冷却水温Toを算出することができる。
According to the curve in FIG. 3, ie, the curve 23.1 in FIG. 5, when a load factor is given, the corresponding limit cooling water temperature To for switching the number of vacuum pumps can be calculated.

上記の演算部23.1に負荷信号発信器21の出力信号
を与えて前記の切替限界温度Toを算出させ、これを最
適運転台数判定部23.2に入力させる。同最適運転台
数判定部23,2には冷却水温度発信器22からの実測
冷却水温度Tを入力させ、前記切替限界温度Toと実測
水温Tとを比較させる。
The output signal of the load signal transmitter 21 is given to the arithmetic unit 23.1 to calculate the switching limit temperature To, and this is input to the optimum operating number determining unit 23.2. The optimum operating number determination units 23 and 2 are inputted with the actually measured coolant temperature T from the coolant temperature transmitter 22, and are made to compare the switching limit temperature To with the actually measured coolant temperature T.

ただし、単純にToとTとを比較させると、ToL=l
Tの場合に比較結果が短時間のうちに何度も変化して真
空ポンプの運転・停止を頻繁に繰シ返すことになるので
、不感帯を与えるだめの適宜の定数Cを設定し、 実測水温T>To+Cの成立によ91台運転実測水温’
r<’ro −c  の成立によシ2台運転上記2式に
よシ最適運転台数を判定させる。
However, if we simply compare To and T, ToL=l
In the case of T, the comparison result will change many times in a short period of time and the vacuum pump will have to be started and stopped frequently, so set an appropriate constant C to provide a dead zone and calculate the actual water temperature. Actual measured water temperature in operation of 91 units due to the establishment of T>To+C
If r<'ro -c holds true, the optimum number of machines to be operated is determined by the above two equations.

判定結果を表示部24に表示し、これに従って作業員が
真空ポンプlla、llbの運転・停止操作を行なって
もよく、若しくは判定結果に基づいて演算器23に真空
ポンプ駆動モータの制御信号26a、26bを発信せし
めて駆動モータ12a。
The determination result may be displayed on the display unit 24, and the operator may operate or stop the vacuum pumps lla and llb according to the display, or the operator may send the vacuum pump drive motor control signals 26a and 26a to the calculator 23 based on the determination result. 26b to the drive motor 12a.

12bを自動制御せしめてもよい。12b may be automatically controlled.

第6図は上記惨と異なる実施例における制御原理図であ
る。
FIG. 6 is a control principle diagram in an embodiment different from the above-mentioned disaster.

演算器23に、前述の第2図の図表における真空ポンプ
台数切替限界真空度Vb=f(L)のカーブを記憶させ
た台数切替限界真空度演算部23.3と、基準真空度V
m = f (L、 T)のカーブを記憶させた基準真
空度演算部23.4とを構成し、負荷発信器21による
負荷率りを上記の演算部23.3に入力させて切替限界
真空度VLを算出させるとともに、上記の負荷率りおよ
び冷却水温Tを演算部23.4に入力させて基準真空度
vIlを算出させ、上記のVt、とVmとを最適運転台
数判定部23.5で比較させ、 VL≧■1 が成立すると1台運転と判定させ、VL<
Vl  が成立すると2台運転と判定させ、その結果を
表示器24に表示させるとともに制御信号を発信させて
真空ポンプ駆動モータ12a。
The calculation unit 23.3 stores the curve of the vacuum pump number switching limit vacuum degree Vb=f(L) in the chart of FIG. 2 described above, and the reference vacuum degree Vb.
A reference vacuum calculation unit 23.4 is configured in which the curve of m = f (L, T) is stored, and the load factor from the load transmitter 21 is inputted to the calculation unit 23.3 to determine the switching limit vacuum. degree VL is calculated, and the above load factor and cooling water temperature T are inputted into the calculating section 23.4 to calculate the reference degree of vacuum vIl, and the above Vt and Vm are calculated by the optimum operating number determining section 23.5. If VL≧■1 holds true, it is determined that one unit is in operation, and VL<
When Vl is established, it is determined that two units are in operation, the result is displayed on the display 24, and a control signal is transmitted to drive the vacuum pump drive motor 12a.

12bを自動制御させる。12b is automatically controlled.

第7図は更に異なる実施例を示す。この実施例において
は前例(第6図)と同様の台数切替限界真空度演算部2
3.3を構成して前例と同様に切替限界真空度VLを算
出させ、真空度発信器25の実測真空度V、と上記の算
出値Vy−とを最適運転台数判定部23.6で比較させ
る。
FIG. 7 shows a further different embodiment. In this embodiment, the unit number switching limit vacuum calculation unit 2 is similar to the previous example (Fig. 6).
3.3 to calculate the switching limit vacuum degree VL in the same manner as in the previous example, and compare the actual vacuum degree V of the vacuum degree transmitter 25 and the above calculated value Vy- in the optimum operation number determination unit 23.6. let

V −) V Lのときは真空ポンプの空気抽出能力が
漏洩空気量を上回っている状態であると判断されるので
1台運転と判定し、Va≧VLの場合は2台運転と判定
する。
V-) When VL, it is determined that the air extraction capacity of the vacuum pump exceeds the amount of leaked air, so it is determined that one pump is in operation, and when Va≧VL, it is determined that two pumps are in operation.

演算器23に記憶させている第2図の図表及び第3図の
図表は、蒸気タービンプラントの経年変化によって漏洩
空気量が変化するとこれに伴って変化するので、定期的
に漏洩空気量を測定して記憶値を修正することが望まし
いが、゛上記の定期的測定、修正のインターバルは年間
1〜2回で充分である。上記の修正は、真空ポンプの抽
出空気量を常時計測して、その変化に基づいて修正する
こともできる。
The diagrams in Figure 2 and Figure 3 stored in the calculator 23 change as the amount of leaked air changes due to aging of the steam turbine plant, so the amount of leaked air is measured periodically. Although it is desirable to correct the stored values, it is sufficient to carry out the above periodic measurement and correction once or twice a year. The above correction can also be made by constantly measuring the amount of air extracted by the vacuum pump and making corrections based on changes in the amount of air extracted by the vacuum pump.

前述の演算器23に必要な機能および記憶容量は比較的
少ないので、専用の演算器として設置する場合は小型の
マイコンで足シ、設備コストは高価でない。また、上述
のごとく小容量のもので足シるから、たとえば発電プラ
ント全体の制御、監視用の大形電算機の容量の余裕を利
用して組みこむことも容易である。
Since the functions and storage capacity required for the arithmetic unit 23 described above are relatively small, if it is installed as a dedicated arithmetic unit, a small microcomputer is sufficient and the equipment cost is not expensive. Furthermore, as mentioned above, since a small-capacity computer is insufficient, it is easy to incorporate the system into a large-sized computer for controlling and monitoring the entire power plant, for example, by taking advantage of its extra capacity.

上述の実施例においては、タービン低負荷域における復
水器真空度を従来に比して5〜10 mH。
In the above-mentioned embodiment, the degree of vacuum of the condenser in the low turbine load range is 5 to 10 mH compared to the conventional one.

高く維持することができ、熱消費率が1〜2%向上され
た。
The heat consumption rate was improved by 1 to 2%.

まだ、上側のごとく演算器23の演算結果に基づいて真
空ポンプの運転・停止指令信号を発信せしめて真空ポン
プ駆動子〜りを制御させると、本発明の復水器真空ポン
プ運転台数制御方法を全自動的に行なうことができるの
で便利である。
However, if the vacuum pump drive elements are controlled by transmitting the vacuum pump operation/stop command signal based on the calculation result of the calculator 23 as shown above, the method for controlling the number of operating condenser vacuum pumps of the present invention can be performed. It is convenient because it can be done completely automatically.

以上詳述したように、本発明の復水器真空ポンプ運転台
数制御方法は、複数台のX全ポンプを備えた蒸気タービ
ン用復水器において、蒸気タービンの負荷、復水器冷却
水温度および復水器真空度を検出し、上記の検出値の内
の少なくとも二つを自動演算器に入力して該自動演算器
によシ前記複数台の真空ポンプの最適運転台数を算出し
、最も経済的なように管理、制御することができる。
As described in detail above, the method for controlling the number of operating condenser vacuum pumps of the present invention applies to the steam turbine load, the condenser cooling water temperature, and the The degree of vacuum in the condenser is detected, at least two of the above detected values are input into an automatic calculator, and the automatic calculator calculates the optimum number of the plurality of vacuum pumps to be operated. management and control.

また、本発明の復水器真空ポンプ運転台数制御装置は、
複数台の真空ポンプを備えた蒸気タービン用復水器にお
いて、蒸気タービンの負荷検出手段、復水器冷却水温度
検出手段および復水器真空度検出手段を設けるとともに
、上記の各検出手段の検出信号を入力せしめる自動演算
器を設け、上記の自動演算器によって前後複数台の真空
ポンプの最適運転台数を算出せしめ得べくなすことによ
シ、前記の本発明方法を容易に実施してその効果を発揮
させることができる。
Further, the condenser vacuum pump operation number control device of the present invention has the following features:
In a steam turbine condenser equipped with a plurality of vacuum pumps, a steam turbine load detection means, a condenser cooling water temperature detection means, and a condenser vacuum degree detection means are provided, and the detection means for each of the above detection means are provided. By providing an automatic calculator for inputting signals and allowing the automatic calculator to calculate the optimal number of operating vacuum pumps in the front and rear, the method of the present invention described above can be easily implemented and its effects can be achieved. can be demonstrated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は真空ポンプの真空度と空気流量との関係の一例
を示す図表、第2図は蒸気タービンの負荷率と復水器真
空度との関係の一例を示す図表、第3図は蒸気タービン
の負荷率と冷却水温度との関係の一例を示す図表、第4
図は本発明装置の一実施例を示す系統図、第5図乃至第
7図はそれぞれ本発明方法の一実施例における制御原理
図である。 3・・・蒸気タービン、4・・・発電機、5・・・復水
器、6・・・冷却水供給管、10・・・空気抽出管、i
ta。 flb・・・真空ポンプ、12a、12b川駆動モータ
、21・・・負荷信号発信器、22・・・冷却水温度発
信号、23・・・演算器、24・・・同表示器、25・
・・復水器真空度発信器、26a、26b・・・モータ
制御信号。 代理人 弁理士 秋本正実 # l 目 りfθ      7メθ     7Jθ     
 グ2θ      71θX’fボ〉フ゛眼込X ’
ig (ntwt m Ic、)−     $2囚 θ  zs%   sa”l  ys7.  //C1
頁Fr’l−”<Lノ ”    25’/−10”A   7Si、  /6
10:/。 屓jフ)牽 (lン
Figure 1 is a chart showing an example of the relationship between vacuum pump vacuum and air flow rate, Figure 2 is a chart showing an example of the relationship between steam turbine load factor and condenser vacuum, and Figure 3 is steam Chart showing an example of the relationship between turbine load factor and cooling water temperature, No. 4
The figure is a system diagram showing one embodiment of the apparatus of the present invention, and each of FIGS. 5 to 7 is a control principle diagram of an embodiment of the method of the present invention. 3... Steam turbine, 4... Generator, 5... Condenser, 6... Cooling water supply pipe, 10... Air extraction pipe, i
ta. flb...Vacuum pump, 12a, 12b river drive motor, 21...Load signal transmitter, 22...Cooling water temperature signal, 23...Arithmetic unit, 24...Display unit, 25...
...Condenser vacuum transmitter, 26a, 26b...Motor control signal. Agent Patent Attorney Masami Akimoto #l Eyes fθ 7Meθ 7Jθ
2θ 71θX'f
ig (ntwt m Ic,) - $2 prisoner θ zs% sa”lys7. //C1
Page Fr'l-"<Lノ"25'/-10"A 7Si, /6
10:/.屓jfu) き (ln)

Claims (1)

【特許請求の範囲】 1、複数台の真空ポンプを備えた蒸気タービン用復水器
において、蒸気タービンの負荷、復水器冷却水温度およ
び復水器真空度を検出し、上記の検出値の少なくとも二
つを自動演算器に入力して該自動演算器によシ前記複数
台の真空ポンプの最適運転台数を算出することを特徴と
する復水器真空ポンプ運転台数制御方法。 2、複数台の真空ポンプを備えた蒸気タービン用復水器
において、蒸気タービンの負荷検出手段。 復水器冷却水温度検出手段および復水器真空度検出手段
を設けるとともに、上記の各検出手段の検出信号の少な
くとも二つを入力せしめる自動演算器を設け、上記の自
動演算器によって前記複数台の真空ポンプの最適運転台
数を算出せしめ得べくなしたることを特徴とする復水器
真空ポンプ運転台数制御装置。 3、前記の自動演算器は、算出した最適運転台数に基づ
いて前記の複数台の真空ポンプに対して運転・停市指令
信号を発する機能を備えたものとすることを特徴とする
%訂H青求の範囲第1項に記載の復水器真壁ポンプ運転
台数制御装置。
[Claims] 1. In a steam turbine condenser equipped with a plurality of vacuum pumps, the steam turbine load, condenser cooling water temperature, and condenser vacuum degree are detected, and the above detected values are A method for controlling the number of condenser vacuum pumps in operation, characterized by inputting at least two values into an automatic calculator and calculating the optimum number of operating vacuum pumps of the plurality of vacuum pumps by the automatic calculator. 2. In a steam turbine condenser equipped with a plurality of vacuum pumps, a steam turbine load detection means. A condenser cooling water temperature detection means and a condenser vacuum degree detection means are provided, and an automatic calculator is provided to input at least two of the detection signals of each of the detection means, and the automatic calculator is used to detect the plurality of units. A device for controlling the number of condenser vacuum pumps in operation is characterized by calculating the optimum number of vacuum pumps to be operated. 3. The automatic calculator has a function of issuing an operation/stop command signal to the plurality of vacuum pumps based on the calculated optimum number of operating units. A device for controlling the number of condenser Makabe pumps in operation according to item 1 of the Aokimu scope.
JP11075882A 1982-06-29 1982-06-29 Method and device for controlling operating number of condenser vacuum pump Granted JPS594884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11075882A JPS594884A (en) 1982-06-29 1982-06-29 Method and device for controlling operating number of condenser vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11075882A JPS594884A (en) 1982-06-29 1982-06-29 Method and device for controlling operating number of condenser vacuum pump

Publications (2)

Publication Number Publication Date
JPS594884A true JPS594884A (en) 1984-01-11
JPH0155400B2 JPH0155400B2 (en) 1989-11-24

Family

ID=14543812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11075882A Granted JPS594884A (en) 1982-06-29 1982-06-29 Method and device for controlling operating number of condenser vacuum pump

Country Status (1)

Country Link
JP (1) JPS594884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157093A (en) * 1984-08-28 1986-03-22 Fujitsu Ltd Magnetic bubble memory cassette device
US6588499B1 (en) * 1998-11-13 2003-07-08 Pacificorp Air ejector vacuum control valve
WO2020084991A1 (en) * 2018-10-23 2020-04-30 三菱日立パワーシステムズ株式会社 Computing device, system, notifying device, computing method, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560174A (en) * 1978-10-31 1980-05-07 Fuji Electric Co Ltd Vacuum adjuster for condenser
JPS5623506A (en) * 1979-08-03 1981-03-05 Mitsubishi Motors Corp Automatic valve insert device
JPS5623504A (en) * 1979-07-19 1981-03-05 Toshiba Corp Vacuum control device of condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560174A (en) * 1978-10-31 1980-05-07 Fuji Electric Co Ltd Vacuum adjuster for condenser
JPS5623504A (en) * 1979-07-19 1981-03-05 Toshiba Corp Vacuum control device of condenser
JPS5623506A (en) * 1979-08-03 1981-03-05 Mitsubishi Motors Corp Automatic valve insert device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157093A (en) * 1984-08-28 1986-03-22 Fujitsu Ltd Magnetic bubble memory cassette device
US6588499B1 (en) * 1998-11-13 2003-07-08 Pacificorp Air ejector vacuum control valve
WO2020084991A1 (en) * 2018-10-23 2020-04-30 三菱日立パワーシステムズ株式会社 Computing device, system, notifying device, computing method, and program
JP2020067769A (en) * 2018-10-23 2020-04-30 三菱日立パワーシステムズ株式会社 Arithmetic device, system, notification device, arithmetic method, and program

Also Published As

Publication number Publication date
JPH0155400B2 (en) 1989-11-24

Similar Documents

Publication Publication Date Title
CN109681313A (en) A kind of control method and device of use for diesel engine cooling fan rotation speed
CN105298815A (en) Method and system for controlling seawater cooling system
JPS594884A (en) Method and device for controlling operating number of condenser vacuum pump
CN109114776B (en) A kind of central air-conditioning servo water pump circulating energy-saving control system
CN105259950B (en) Temperature control system and implementation method for PE can packing machine high-frequency heating closing devices
CN112954978B (en) Intelligent energy-saving frequency converter control system
JP2509322B2 (en) Combined heat load centralized cooling control method
JPH07190679A (en) Heat exchanger cooling system monitoring control device
JP4742548B2 (en) Method and apparatus for monitoring a liquefied gas tank
CN113310706B (en) Method for diagnosing resistance increasing fault of liquid cooling pipeline of electric automobile based on electronic water pump
JPS5941687A (en) Pump control device
JP2566957B2 (en) Driving support device
JPH0324591B2 (en)
JP2806663B2 (en) Liquid refrigerant circulation control device
JP2528823B2 (en) Operation control device for heat storage air conditioner
JPH0424634B2 (en)
JPH07334229A (en) Steam turbine operation monitoring device
KR102589151B1 (en) Control system of seawater pump for vessels
JP3603145B2 (en) Operating device for seawater pump
JP2509618B2 (en) Operation control method for heat storage air conditioner
JPS63167086A (en) Monitoring control device for highly effective operation of distribution pump unit
JP3532648B2 (en) Turning abnormality detector
JPH01320506A (en) Plant monitoring device
JPS6139046Y2 (en)
JPH09222202A (en) Abnormal state diagnosing device