JPS5948616A - Optical type rotary encoder - Google Patents

Optical type rotary encoder

Info

Publication number
JPS5948616A
JPS5948616A JP16021382A JP16021382A JPS5948616A JP S5948616 A JPS5948616 A JP S5948616A JP 16021382 A JP16021382 A JP 16021382A JP 16021382 A JP16021382 A JP 16021382A JP S5948616 A JPS5948616 A JP S5948616A
Authority
JP
Japan
Prior art keywords
lens
light
refractive index
slit
main signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16021382A
Other languages
Japanese (ja)
Other versions
JPH0244374B2 (en
Inventor
Katsushige Nakai
中井 克滋
Takashi Kishimoto
隆 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP16021382A priority Critical patent/JPH0244374B2/en
Publication of JPS5948616A publication Critical patent/JPS5948616A/en
Publication of JPH0244374B2 publication Critical patent/JPH0244374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • G01D5/34723Scale reading or illumination devices involving light-guides

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To make a light receiving apparatus compact by admitting transmission lights through a main signal slit section and those through a sub slit section into a single lens with a light receiving element composed of a refractive index distribution type lens whose refractive index decreases parabolically to the periphery from the maximum on the center axis. CONSTITUTION:In a light projection element 11, one end of an optical transmission fiber 14 is connected to one end face of a refractive index distribution type lens 12 whose lens length is set at 1/4 pitch to match optical axes thereof, a similar refractive index distribution type lens 13 is connected to the other end thereof 14 and a light source 15 such as light emitting diode is arranged opposite to the lens 13. Light from the light source 15 enters the refractive index distribution type lens 13 to be focused, is transmitted through the optical fiber 14 and made parallel light with the lens 13. The diameter of the lens 13 is so selected that the parallel light 16 emitted from the lens 13 passes through both of a main signal slit section 5 and a zero signal slit section 6 on a rotary disc 2.

Description

【発明の詳細な説明】 本発明は回転円板に設けられた主信号スリット及びゼロ
信号スリットを透過した両信号光を単一の受光子に入射
させて分離検出するようにし受光装置のコンパクト化を
図った光学式ロータリーエンコーダに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention allows both signal lights transmitted through a main signal slit and a zero signal slit provided on a rotating disk to be incident on a single photodetector for separate detection, thereby making the light receiving device more compact. This invention relates to an optical rotary encoder.

回転数の計測1回転角度変位の計測、被加工物の位置決
め等に広く使用されている光学式のロータリーエンコー
ダは一般にオ1図のように構成される。
Measuring the number of revolutions An optical rotary encoder, which is widely used for measuring the angular displacement of one rotation, positioning a workpiece, etc., is generally constructed as shown in Figure O1.

すなわち回転数が計測されるモータなど被測定機構に連
結された回転軸/に円板コを設けこの円板2の円周に沿
って等間隔に遮光部3と透光部グからなる主信号スリッ
トSを設ける。
In other words, a disk 2 is provided on a rotating shaft connected to a mechanism to be measured such as a motor whose rotational speed is measured, and a main signal consisting of light-shielding parts 3 and transparent parts 2 are arranged at equal intervals along the circumference of this disc 2. A slit S is provided.

またこの主信号スリットsよりも内周側には単一の小面
積の遮光部(円板−が透明材料の場合)または透光部(
円板2が遮光材料の場合)からなるゼロ信号用スリット
6を設ける。
In addition, on the inner circumferential side of this main signal slit s, there is a single small-area light-shielding part (if the disc is made of a transparent material) or a light-transmitting part (
When the disc 2 is made of a light-shielding material), a zero signal slit 6 is provided.

そして主信号スリットSの通過位置及びゼロ信号スリッ
ト乙の通過位置に対応させて小さな開口ざA。
A small opening A is formed corresponding to the passing position of the main signal slit S and the passing position of the zero signal slit B.

ざBを設けたインデックススケール7を回転円板−の周
辺近くに固定配置する。
An index scale 7 provided with a gap B is fixedly arranged near the periphery of a rotating disk.

そして回転円板−の両面側に両信号スリット3゜乙に対
応させてそれぞれ投光子9A、9Bと受光子10A、1
0Bを対向配置する。
Then, on both sides of the rotating disk, there are emitters 9A, 9B and receivers 10A, 1 corresponding to both signal slits 3°, respectively.
Place 0B facing each other.

これにより、回転円板−が/回転する毎に投光子9Bか
ら受光子10Hに向う光線がゼロ信号スリット乙で遮断
または透過して/回転が検出される。
As a result, each time the rotating disk rotates, the light beam from the emitter 9B to the photoreceiver 10H is blocked or transmitted by the zero signal slit B, and the rotation is detected.

また投光子qAから受光子10Aに向う光線が主信号ス
リットjで断続して微小な回転角変位が検出される。
Further, the light beam from the emitter qA toward the photoreceiver 10A is interrupted by the main signal slit j, and a minute rotational angular displacement is detected.

上記のような光学式ロータリーエンコーダにおいては各
信号スリン) 5.4に対応させて一対ずつの投光子9
A、9Bおよび受光子IOA、10Bを配置しているた
めにこれら投光子および受光子の設置に大きなスペース
を必要としてロータリーエンコーダ装置全体の大きさを
あまり小さくできないという問題があった。
In the optical rotary encoder as described above, a pair of light emitters 9 are provided in correspondence with each signal line (5.4).
Since the light emitters A, 9B and the photoreceivers IOA, 10B are arranged, a large space is required to install these light emitters and photoreceivers, and there is a problem in that the overall size of the rotary encoder apparatus cannot be made very small.

本発明の目的は上記従来の問題を解決し、特に受光子側
における部品配置スペースを大きく節約できて装置全体
をコンパクト化できる光学式ロー(3) タリーエンコーダを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical row (3) tally encoder which can solve the above-mentioned conventional problems and can greatly save space for arranging components, particularly on the photoreceptor side, and make the entire device compact.

本発明は上記目的を達成するために、回転円板の円周方
向に間隔をおいた遮光部と透光部からなる主信号スリッ
トを設けるとともに、これよりも内周側にゼロ信号発信
用等の副スリットを設け、これらスリット部を挾んで前
記回転円板の両面側に投光子および受光子をそれぞれ配
置してなる光学式ロータリーエンコーダにおいて、前記
受光子を、屈折率が中心軸上で最大で周辺に向けて放物
状に減少する分布をもつ屈折率分布形レンズで構成する
とともに、前記主信号スリット部透過光と副スリット部
透過光とを単一のレンズに入射させ、該レンズの出射面
には前記各スリット部透過光の出射位置に対応させて光
伝送ファイバーを接続して一一タリーエンコーダを構成
し、上記ファイバーの他端をフォ))ランシスター等の
光電変換素子に接続する。
In order to achieve the above object, the present invention provides a main signal slit consisting of a light-shielding part and a light-transmitting part spaced apart in the circumferential direction of a rotating disk, and also has a main signal slit for transmitting a zero signal on the inner circumference side of the main signal slit. In an optical rotary encoder, a light emitter and a light receiver are arranged on both sides of the rotary disk, sandwiching these slits, and the light receiver has a maximum refractive index on the central axis. The lens is composed of a gradient index lens having a distribution that decreases parabolically toward the periphery, and the light transmitted through the main signal slit and the light transmitted through the sub-slit are made incident on a single lens. Optical transmission fibers are connected to the output surface in correspondence with the output positions of the light transmitted through each of the slits to form a single tally encoder, and the other end of the fiber is connected to a photoelectric conversion element such as a run sister. do.

以下本発明を図面に示した実施例について詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments shown in the drawings.

牙2図は本発明の一実施例を示す斜視図であり(1 従来と変らない部分については牙1図と共通の番号を付
しである。
Fig. 2 is a perspective view showing an embodiment of the present invention (1) The same parts as in Fig. 1 are given the same numbers as in Fig. 1.

第2図において//は投光子であり、7.2は受光子で
ある。
In FIG. 2, // is a light emitter, and 7.2 is a photoreceiver.

投光子//はレンズ長さを1分の/ピッチ長とした屈折
率分布型レンズ/3の一端面に光伝送ファイバー/グの
一端を光軸を合せて接続して構成し、光伝送ファイバー
/lの他端には同様の屈折率分布型レンズ/3を接続し
、このレンズ/3に対して発光ダイオード等の光IMi
sを対向配置する。
The projector is constructed by connecting one end of an optical transmission fiber to one end surface of a gradient index lens with a pitch length of 1 minute and an optical axis of the optical transmission fiber. A similar gradient index lens /3 is connected to the other end of /l, and a light IMi such as a light emitting diode is connected to this lens /3.
s are placed facing each other.

これにより光源15から出た光線は屈折率分布型レンズ
/3に入射し他端面に集束して光ファイバー/ゲで伝送
され、レンズ/3で平行光線に変換される。
As a result, the light beam emitted from the light source 15 enters the gradient index lens /3, is focused on the other end face, is transmitted through the optical fiber /ge, and is converted into a parallel light beam by the lens /3.

レンズ13の径はこのレンズ/3から出射した平行光線
/乙が回転円板−十の主信号スリット部Sおよびゼロ信
号スリット部乙の両方を通過するような大きさに選定し
ておく。
The diameter of the lens 13 is selected so that the parallel ray /B emitted from this lens /3 passes through both the main signal slit section S and the zero signal slit section O of the rotating disk-10.

ここで屈折率分布型レンズは周知のように、ガラスまた
はプラスチックの透明円柱体からなり中心(j) 軸上の屈折率Noを最大として中心軸からrの距離にお
ける屈折率N (r)が、 N (r) =NO(/ −//2 Ar2) ・・−
・・・−(/)ただしAは正の定数 で表わされる分布をもっている。
Here, as is well known, a gradient index lens is made of a transparent cylindrical body made of glass or plastic, and the refractive index N (r) at a distance r from the central axis is the maximum refractive index No on the center (j) axis. N (r) =NO(/-//2 Ar2)...-
...-(/) However, A has a distribution expressed by a positive constant.

かかる屈折率分布型レンズに光軸に平行入射した光線は
7周期(ピッチ)の長さPが、 P−ノπ/V’A  ・・・・・・・・ (2)である
サインカーブを描いて進行する。
A ray of light incident parallel to the optical axis into such a gradient index lens forms a sine curve whose length P of 7 periods (pitch) is P - π/V'A (2) Draw and proceed.

受光子/2は上記のような屈折率分布型レンズ/3の一
端面を中心軸/ざに対する垂直面から一定角度θだけ傾
けて軸対称に斜断研摩することにより一対の傾斜した入
射面/7A、/7Bを設けて構成される。これにより、
投光子//から出て主信号スリット部jを通過した光線
/乙Aがレンズ/3の入射面/7Aに入射し、ゼロ信号
スリット部乙を透過した光線/乙Bがレンズ/3の入射
面/7Bに入射するようにする。
The photoreceptor /2 is formed by obliquely polishing one end face of the gradient index lens /3 as described above by tilting it by a certain angle θ from a plane perpendicular to the central axis /, thereby forming a pair of inclined incidence surfaces /3. 7A and /7B are provided. This results in
Light ray / Otsu A that came out from the projector // and passed through main signal slit part j enters the entrance surface / 7A of lens / 3, and light ray / Otsu B that passed through zero signal slit part O is incident on lens / 3 Make it incident on surface /7B.

(≦) レンズ長2はおよそo、2s P (ピッチ)にしてお
く0 入射面/7A、/7Bが中心軸/ざに垂直な面である場
合はレンズ長2を0..2!;Pにすると中心軸に平行
に入射した光線l乙Aおよび/乙Bはレンズ/3の他端
面で中心に集束することになるが、上記のように入射面
を両面の成す角が/ざ0度未満となるように傾斜面/7
A、/7Bとしておくとこれら入射面/7A、/7Bに
入射した光線は中心軸寄りに屈折し、レンズ/3の他端
面よりも若干内側において中心に集束した後、交叉して
レンズ他端面では中心軸からr2の距離だけ偏位した位
置で出射する。
(≦) Lens length 2 should be approximately o, 2s P (pitch) 0. If the entrance plane /7A, /7B is a plane perpendicular to the central axis /za, set lens length 2 to 0. .. 2! ; When P, the rays A and B incident parallel to the central axis will be focused at the center on the other end surface of lens 3, but as shown above, if the angle formed by both sides of the incident surface is Slanted surface so that it is less than 0 degrees/7
A, /7B, the light rays incident on these incident surfaces /7A, /7B are refracted toward the center axis, converged slightly inside the other end surface of lens /3, and then intersect to reach the other end surface of the lens. Then, the light is emitted at a position offset by a distance r2 from the central axis.

そしてこの両光線/乙A、/乙B出射位置に一対の光伝
送ファイバー/llA 、 /4’Bの一端側をそれぞ
れ接続する。
Then, one end side of a pair of optical transmission fibers /llA and /4'B is connected to the output positions of these two beams /OtsuA and /OtsuB, respectively.

また両光伝送ファイバー/4’A 、 /4’Bの他端
に、o、、2s p長の屈折率分布型レンズを接続して
ファイバーからの拡散出射光を平行光に変換してフォト
トランジスタのような受光素子/りに入射させる。
In addition, a graded index lens of o, 2sp length is connected to the other ends of both optical transmission fibers /4'A and /4'B to convert the diffused emitted light from the fibers into parallel light and convert it into a phototransistor. The light is incident on a light-receiving element such as

ここで、レンズ130入射面傾斜角θと出射光線の中心
軸からの偏位量r2の関係は、 r2=  (No−/)  Xθ/NOV’A  ・−
−−・・<3)であられすことができる。
Here, the relationship between the angle of inclination θ of the incident surface of the lens 130 and the amount of deviation r2 of the output light beam from the central axis is r2= (No-/) Xθ/NOV'A ・-
--...<3).

上記のようにして単一の屈折率分布型レンズ/3に両信
号光/Ah、/乙Bを入れてレンズ内で分岐させるよう
にしているので、回転円板上における主信号スリットS
とゼロ信号スリット乙との間隔を両者が接触するぎりぎ
りの限界近くまで狭めることができ、それに伴なって受
光子/3の外径寸法を上記両スリットの外縁間間隔付近
まで小さくすることができる。
As described above, both signal lights /Ah and /B are put into a single gradient index lens /3 and are split within the lens, so the main signal slit S on the rotating disk
The distance between the zero signal slit B and the zero signal slit B can be narrowed to the limit where the two contact each other, and the outer diameter of the photoreceptor/3 can be reduced accordingly to the distance between the outer edges of both slits. .

さらに、入射面傾斜角θを適当に選ぶことにより、主信
号とゼロ信号の雨検出用光ファイバー/l A。
Furthermore, by appropriately selecting the incident surface inclination angle θ, the rain detection optical fiber/lA of the main signal and zero signal can be obtained.

/47B の側面間隔を最小限度ゼロ、つまりファイバ
ーの外径をdとして2r2=aに設定することもでき、
光ファイバーの配線も極めて小さいスペースで済む。
/47B It is also possible to set the minimum side spacing to zero, that is, the outer diameter of the fiber is d, and 2r2 = a,
Optical fiber wiring also requires an extremely small space.

また回転部から離れたスペースを充分確保し得る位置に
受光素子/9を設置することができる。
Further, the light receiving element/9 can be installed at a position away from the rotating part where a sufficient space can be secured.

本発明で使用する受光子/2としては屈折率分布型レン
ズ/3の一端面を、面間の成す角が1gO度未満となる
ように軸対称に複数の斜断面/7A。
As the photoreceptor /2 used in the present invention, one end surface of the gradient index lens /3 has a plurality of axially symmetrical oblique cross sections /7A such that the angle between the surfaces is less than 1 gO degree.

/7B とする以外に、オ乙図に示す如く両端面を中心
軸に垂直な平行平面とした。、、2sピツチ長の屈折率
分布型レンズ/3の一方の端面に、屈折率が一様な通常
のガラスあるいはプラスチックからなる所定の角度の画
調断面/7A、/7Bを設けたプリズム20を貼り合せ
て受光子/、2を構成してもよい。
/7B In addition, both end faces were made parallel planes perpendicular to the central axis as shown in the diagram. ,, A prism 20 is provided on one end face of a gradient index lens /3 with a pitch length of 2s, and is made of ordinary glass or plastic with a uniform refractive index and has image sections /7A and /7B at a predetermined angle. The photodetector/2 may be configured by bonding them together.

オグ図に本発明の他の実施例を示す。Another embodiment of the present invention is shown in the diagram.

本例は回転円板−に主信号スリットjおよびゼロ信号ス
リットにA以外に他の副スリット6Bを設けたロータリ
ーエンコーダの構造例を示し、受光子/2を成すおよそ
0..2!;ピッチ長の屈折率分布型レンズ/3一端面
に光軸垂直面に対してそれぞれ異なる角度θ1.θ2.
θ3で傾斜する入射面/7A、/7B、17G を設け
、これら三種の傾斜入射(9) 面/7A、/7B、/70にそれぞれ主信号スリットタ
、ゼロ信号スリット乙Aおよび付加的機能をもたせた副
スリット6Bを透過した光線を入射させるようにしてい
る。
This example shows an example of the structure of a rotary encoder in which a main signal slit J and a zero signal slit 6B are provided in addition to the sub slit 6B on a rotating disk, and approximately 0.0. .. 2! ; Pitch length gradient index lens/3 One end surface has different angles θ1 to the plane perpendicular to the optical axis. θ2.
Incident surfaces /7A, /7B, and 17G that are inclined at θ3 are provided, and these three types of inclined incidence surfaces (9) /7A, /7B, and /70 are provided with a main signal slittor, a zero signal slit A, and additional functions, respectively. The light beam transmitted through the sub-slit 6B is made incident.

そして上記各入射面で屈折してレンズ/3内に入り、レ
ンズ他端面で分岐する各光線をこのレンズ/3の端面と
図外受光素子間に接続した光ファイバー/llA、 /
4/B 、 /llCに入射させる。
Then, each light beam is refracted at each of the incident surfaces and enters the lens /3, and is branched at the other end face of the lens. Optical fibers /llA, /
4/B, /llC.

以上の例では屈折率分布型レンズ/3の一端を角度を成
す多面に形成して受光子7.2としたが、牙j図に示す
ように両端面が中心軸に垂直な平行平面の屈折率分布型
レンズ/3を用いてこのレンズ長ZをO,,2にピンチ
を越えO1jピッチ以下の長さに選んでもよい。
In the above example, one end of the gradient index lens /3 was formed into a multifaceted surface forming an angle to form the photoreceptor 7.2, but as shown in the diagram, both end faces are parallel planes perpendicular to the central axis. Using a rate distribution type lens /3, the lens length Z may be selected to be more than a pinch of O, 2 and less than an O1j pitch.

かかるレンズ/3においては中心軸からr3の距離をお
いて中心軸に平行に入射した光線はレンズ他端面におい
て中心軸からr4の距離偏位して出射し、r3とr4 
との間には r4 = r3 cos V’I Z  ・−−−−−
・−(11)(10) の関係が成立する。
In such lens /3, a ray of light incident parallel to the central axis at a distance of r3 from the central axis exits at the other end surface of the lens with a distance of r4 from the central axis, and r3 and r4
Between r4 = r3 cos V'I Z ・------
・-(11)(10) The relationship holds true.

したがって上記のr4が裸のまたは樹脂コート等で被覆
した接続光ファイバー/グA、/4’Bの半径にほぼ等
しくなるようにレンズ長Zを選定すれば、インデックス
スケール7の主信号用、ゼロ信号用開口間の間隔如何に
よらず最小限度の配線スペースで済むことになる。
Therefore, if the lens length Z is selected so that the above r4 is approximately equal to the radius of the connecting optical fiber /4'B, which is bare or coated with a resin coat, etc., the main signal and zero signal of the index scale 7 can be Regardless of the spacing between the openings, the minimum wiring space is required.

さらにオフ図に示すように両端面が平行平面の屈折率分
布型レンズ13に2つ以上のプリズム、2OA。
Further, as shown in the off-line diagram, two or more prisms and 2OA are included in the gradient index lens 13 whose end surfaces are parallel planes.

、20B・・を貼り合せることによって、回転円板2お
よびインデックススケール7を透過してくる多種の信号
光を単一のレンズ/3で受けてレンズ内で分岐させてそ
れぞれ別途の受光素子に通じる光ファイバー/l・・・
・・・・・に入射させるように構成することもできる。
, 20B, etc., the various signal lights transmitted through the rotary disk 2 and the index scale 7 are received by a single lens/3, branched within the lens, and connected to separate light receiving elements. Optical fiber/l...
It is also possible to configure the beam to be incident on...

【図面の簡単な説明】[Brief explanation of drawings]

オフ図は従来の光学式ロータリーエンコーダを示す斜視
図、オフ図は本発明の一実施例を示す斜視図、第3図は
オフ図の要部を示す側断面図、牙1図は本発明の他の実
施例を示す要部側断面図。 牙S図は本発明のさらに別の実施例を示す要部側断面図
、オ乙図は本発明の他の実施例を示す要部側断面図、オ
フ図は本発明のさらに他の実施例を示す要部側断面図で
ある。 −・・・・・・・・回転円板  S・・・・・・・・主
信号スリット名・・・・・・・・ゼロ信号スリット (
副スリット)7・・・・・・・・インデックススケール
9A、9B 、//・・・・・・・・投光子   7.
2・・・・・・・・受光子/3・・・・・・・・屈折率
分布型レンズ/、4(、/IIA 、 /4’B・・・
・・・・・光伝送ファイバー/S・・・・・・・・光源
  /6・・・・・・・・光線/9・・・・・・・・受
光素子 −0,20A、、20B・・・・プリズム特許
出願人 日本板硝子株式会社 代理人 弁理士 大 野 精 市
The OFF view is a perspective view showing a conventional optical rotary encoder, the OFF view is a perspective view showing an embodiment of the present invention, FIG. FIG. 7 is a side sectional view of a main part showing another embodiment. The S diagram is a side sectional view of a main part showing still another embodiment of the present invention, the O diagram is a side sectional view of a main part showing another embodiment of the invention, and the off diagram is a side sectional view of a main part showing another embodiment of the invention. FIG. −・・・・・・Rotating disk S・・・・・・Main signal slit name・・・・・・Zero signal slit (
Subslit) 7... Index scales 9A, 9B, //... Emitter 7.
2...Photoreceptor/3...Gradient index lens/, 4(, /IIA, /4'B...
......Optical transmission fiber/S...Light source /6......Light beam/9......Light receiving element -0,20A,,20B... ... Prism patent applicant Nippon Sheet Glass Co., Ltd. agent Patent attorney Seiichi Ohno

Claims (1)

【特許請求の範囲】[Claims] 回転円板の円周方向に間隔をおいた遮光部と透光部から
なる主信号スリットを設けるとともに、これよりも内周
側にゼロ信号発信用等の副スリットを設け、これらスリ
ット部を挾んで前記回転円板の両面側に投光子および受
光子をそれぞれ配置してなる光学式ロータリーエンコー
ダにおいて、前記受光子を、屈折率が中心軸上で最大で
周辺に向けて放物状に減少する分布をもつ屈折率分布型
レンズで構成するとともに、前記主信号スリット部透過
光と副スリツト部透過光とを単一のレンズに入射させ、
該レンズの出射面には前記各スリット部透過光の出射位
置に対応させて光伝送ファイバーを接続したことを特徴
とする光学式ロータリーエンコーダ。
A main signal slit consisting of a light-shielding part and a light-transmitting part is provided at intervals in the circumferential direction of the rotating disk, and a sub-slit for transmitting a zero signal, etc. is provided on the inner circumference side of this, and these slit parts are sandwiched. In the optical rotary encoder in which a light emitter and a light receiver are arranged on both sides of the rotating disk, the refractive index of the light receiver is maximum on the central axis and decreases parabolically toward the periphery. The lens is configured with a gradient index lens having a refractive index distribution, and the light transmitted through the main signal slit portion and the light transmitted through the sub-slit portion are incident on a single lens,
An optical rotary encoder characterized in that an optical transmission fiber is connected to the output surface of the lens in correspondence with the output position of the light transmitted through each of the slits.
JP16021382A 1982-09-14 1982-09-14 KOGAKUSHIKIROOTARIIENKOODA Expired - Lifetime JPH0244374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16021382A JPH0244374B2 (en) 1982-09-14 1982-09-14 KOGAKUSHIKIROOTARIIENKOODA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16021382A JPH0244374B2 (en) 1982-09-14 1982-09-14 KOGAKUSHIKIROOTARIIENKOODA

Publications (2)

Publication Number Publication Date
JPS5948616A true JPS5948616A (en) 1984-03-19
JPH0244374B2 JPH0244374B2 (en) 1990-10-03

Family

ID=15710185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16021382A Expired - Lifetime JPH0244374B2 (en) 1982-09-14 1982-09-14 KOGAKUSHIKIROOTARIIENKOODA

Country Status (1)

Country Link
JP (1) JPH0244374B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008959A1 (en) * 1988-03-07 1989-09-21 Telemetry Research Ii, Inc. Method and apparatus for remote commodity transfer control and monitoring
US4908510A (en) * 1988-09-02 1990-03-13 The Boeing Company Optical fiber coupled resolver having a reference signal
US5003239A (en) * 1990-01-11 1991-03-26 Baxter International Inc. Peristaltic pump monitoring device
US5279556A (en) * 1989-04-28 1994-01-18 Sharp Kabushiki Kaisha Peristaltic pump with rotary encoder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008959A1 (en) * 1988-03-07 1989-09-21 Telemetry Research Ii, Inc. Method and apparatus for remote commodity transfer control and monitoring
US4908510A (en) * 1988-09-02 1990-03-13 The Boeing Company Optical fiber coupled resolver having a reference signal
US5279556A (en) * 1989-04-28 1994-01-18 Sharp Kabushiki Kaisha Peristaltic pump with rotary encoder
US5003239A (en) * 1990-01-11 1991-03-26 Baxter International Inc. Peristaltic pump monitoring device
WO1991010934A1 (en) * 1990-01-11 1991-07-25 Baxter International Inc. Peristaltic pump monitoring device and method
EP0462238B1 (en) * 1990-01-11 1997-03-19 Baxter International Inc. Device for monitoring the rotation of a drive shaft, for instance in a peristaltic pump

Also Published As

Publication number Publication date
JPH0244374B2 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
US4420261A (en) Optical position location apparatus
US5399876A (en) Optical point level sensor with lens
KR920005443B1 (en) Optical sensor
US7145127B2 (en) Optical encoding that utilizes total internal reflection
US5038031A (en) Optical rotary encoder having large and small numerical aperture fibers
US3598493A (en) Optical graduated rule of transparent material
WO2019130844A1 (en) Droplet sensor
US3940609A (en) Angular position measuring apparatus
JP2004191087A (en) Optical encoder
US3954339A (en) Angular sensor
US4934783A (en) Off-axis fiber optic rotary joint
JPS5948616A (en) Optical type rotary encoder
US4580130A (en) Rotary encoder
JPS63132139A (en) Liquid refractive index meter
JPS5861408A (en) Transmission type optical coupler
US20170102324A1 (en) Gas concentration measurement device
JPH03183903A (en) optical measurement device
US5223706A (en) Fiber optic collimator for position encoders
JPS6089759A (en) Optical rotation sensor
SU653986A1 (en) Photoelectric device for linear scanning of images
JPH08160152A (en) Method and device for detecting medium
KR200262722Y1 (en) Optical apparatus for adjusting shaft center between two shafts
TW202329562A (en) Rotary joint and optical measurement device using same
JPS61241621A (en) Optical fiber rotary encoder
JPS59180426A (en) Modulating light type rotary encoder