JPS5948511B2 - Electrodes for fuel cells and air cells - Google Patents

Electrodes for fuel cells and air cells

Info

Publication number
JPS5948511B2
JPS5948511B2 JP55013037A JP1303780A JPS5948511B2 JP S5948511 B2 JPS5948511 B2 JP S5948511B2 JP 55013037 A JP55013037 A JP 55013037A JP 1303780 A JP1303780 A JP 1303780A JP S5948511 B2 JPS5948511 B2 JP S5948511B2
Authority
JP
Japan
Prior art keywords
electrode
air
cells
electrodes
cyanocobalamin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55013037A
Other languages
Japanese (ja)
Other versions
JPS56112071A (en
Inventor
敏郎 平井
準一 山木
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55013037A priority Critical patent/JPS5948511B2/en
Publication of JPS56112071A publication Critical patent/JPS56112071A/en
Publication of JPS5948511B2 publication Critical patent/JPS5948511B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 本発明は、分極が小さく大電流の取得を可能とする燃料
電池及び空気電池用の電極、さらに詳細には、燃料電池
及び空気電池の空気極又は酸素極において、該電極が触
媒としてシアノコバラミン(ビタミンB、、)を含有す
る新規な上記電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides electrodes for fuel cells and air cells that have small polarization and can obtain large currents, more specifically, an air electrode or an oxygen electrode for fuel cells and air cells. The present invention relates to the novel above-mentioned electrode, wherein the electrode contains cyanocobalamin (vitamin B, . . . ) as a catalyst.

従来、燃料電池及び空気電池用の空気極又は酸素極に用
いる触媒については種々の提案がされている。
Conventionally, various proposals have been made regarding catalysts used in air electrodes or oxygen electrodes for fuel cells and air cells.

すなわち、燃料電池用の空気極触媒又は酸素極触媒とし
ては、銅、銀、金、白金、パラジウム、オスミウム等の
金属類、又は、鉄若しくは銅フタロシアニン、タングス
テンブロンズ、更には、活性炭又はリチウムをドープし
た酸化ニッケル等が、又空気電池用の空気極触媒として
は、白金、パラジウム、ルテニウム、銀等の貴金属類、
Ag−Hg、Ru−Au等の合金、又はマンガン、オス
ミウム等の遷移金属酸化物、更には、NiFe、O、、
CoFe20。
That is, the air electrode catalyst or oxygen electrode catalyst for fuel cells may be doped with metals such as copper, silver, gold, platinum, palladium, or osmium, or iron or copper phthalocyanine, tungsten bronze, or activated carbon or lithium. nickel oxide, etc., and noble metals such as platinum, palladium, ruthenium, silver, etc. as air electrode catalysts for air batteries.
Alloys such as Ag-Hg and Ru-Au, or transition metal oxides such as manganese and osmium, as well as NiFe, O,
CoFe20.

、Ni0に304、CoA1204等のスピネル酸化物
などが提案された。しかしながら、従来技術におけるこ
れら触媒のうち貴金属類は高価であつて経済的でなく、
他方、貴金属類以外のものは安価ではあるものの、これ
を触媒として用いた空気極又は酸素極では分極が少なか
らず生起し、また大電流密度領域でのかなりな電位低下
が避けられないなど電極特性が十分でなく、ひいては、
このような電極を組込んだ燃料電池や空気電池において
大電流が取得できないといつた欠点があつた。
, spinel oxides such as 304 and CoA1204 have been proposed for Ni0. However, among these catalysts in the prior art, precious metals are expensive and uneconomical;
On the other hand, although non-precious metals are inexpensive, air electrodes or oxygen electrodes using them as catalysts suffer from considerable polarization, and electrode characteristics such as a considerable potential drop in high current density regions are unavoidable. is not sufficient, and in turn,
Fuel cells and air cells incorporating such electrodes have the drawback of not being able to obtain large currents.

本発明は、前記現状に鑑みてなされたもので、その目的
は分極が小さく、かつ、大電流密度領域、においても電
位低下が殆んど起らず大電流の取得が可能であつて、高
エネルギー密度の燃料電池及び空気電池に使用される空
気極又は酸素極を提供することである。
The present invention has been made in view of the above-mentioned current situation, and its purpose is to have small polarization and to be able to obtain a large current with almost no potential drop even in a large current density region. It is an object of the present invention to provide an air electrode or an oxygen electrode used in energy-dense fuel cells and air cells.

この目的を達成する本発明は、燃料電池及び空気電池の
空気極又は酸素極において、該電極がシアノコバラミン
(ビタミンB12)を含有することを特徴とする燃料電
池及び空気電池用の電極である。
The present invention, which achieves this object, is an electrode for fuel cells and air cells, characterized in that the air electrode or oxygen electrode of the fuel cell and air cell contains cyanocobalamin (vitamin B12).

フ これまで燃料電池及び空気電池用の空気極又は酸素
極に触媒としてシアノコバラミンを用いた例はない。
F. Until now, there has been no example of using cyanocobalamin as a catalyst in the air electrode or oxygen electrode for fuel cells and air cells.

本発明によれば、電極にシアノコバラミンを含有させる
新規な構成により、後述するように、分極を小さくし、
かつ、大電流の取得を可能7にするという優れた効果が
得られる。本発明によつてシアノコバラミンを含有する
空気極又は酸素極は、これを正極として燃料電池及び空
気電池(金属空気電池)に組込んで使用される。
According to the present invention, a novel configuration in which the electrode contains cyanocobalamin reduces polarization, as will be described later.
Moreover, the excellent effect of making it possible to obtain a large current can be obtained. The air electrode or oxygen electrode containing cyanocobalamin according to the present invention is used by incorporating it into a fuel cell or an air cell (metal air cell) as a positive electrode.

燃料電池は、負極活物として水素ガス等を使用し、電解
質としてKOH,NaOH等のアルカリ電解質、NaC
l,KCl等の中性電解質、リン酸等の酸性電解質を使
用して構成され、又、空気電池は負極活物質として亜鉛
、アルミニウム、マグネシウム、白金又はこれらの合金
等を使用し、電解質として上記と同じものを使用して構
成される。本発明における空気極又は酸素極の電極材料
は、炭素粉末、活性炭、グラフアイト、アセチレンブラ
ツク等の炭素物質とテフbン等の撥水剤などとの混合粉
体からなり、これにシアノコバラミンが混合又は含浸等
の手段により担持される。電極は、上記の炭素物質、撥
水剤、シアノコバラミン等からなる混合粉体をニツケル
、銀等の金属網とともに成形圧着し加熱焼成して作製さ
れ、その構造は第1図に示すとおりである。このように
して作られた本発明の電極は、燃料電池及び空気電池に
おいて電極材料を電解質側に金属網をガス側に接するよ
うに向きを定めて配置して組込まれる。下記の実施例1
に示すように第1図において1は電極材料層、2は金属
網である。そして、電極の寿命を延ばすために、ガス側
に接する金属網の外側に第2の電極材料層をサンドウイ
チ型に設けてもよく、この場合第2の層は電・解質側の
第1の層よりも撥水剤の混合割合を多くして撥水性を高
め、かつ、多孔度を大にする。
A fuel cell uses hydrogen gas etc. as a negative electrode active material, and an alkaline electrolyte such as KOH or NaOH, or NaC as an electrolyte.
The air battery is constructed using a neutral electrolyte such as 1, KCl, etc., and an acidic electrolyte such as phosphoric acid, and the air battery uses zinc, aluminum, magnesium, platinum, or an alloy thereof as the negative electrode active material, and the above-mentioned electrolyte is used as the negative electrode active material. Constructed using the same thing as . The electrode material of the air electrode or oxygen electrode in the present invention is made of a mixed powder of a carbon material such as carbon powder, activated carbon, graphite, or acetylene black, and a water repellent such as Teflon, and cyanocobalamin is mixed therein. Or supported by means such as impregnation. The electrode is fabricated by molding and pressing a mixed powder consisting of the above-mentioned carbon material, water repellent, cyanocobalamin, etc. together with a metal mesh of nickel, silver, etc., followed by heating and baking, and its structure is as shown in FIG. The electrode of the present invention produced in this way is installed in a fuel cell or an air cell by arranging the electrode material so that it is in contact with the electrolyte side and the metal mesh with the gas side. Example 1 below
As shown in FIG. 1, 1 is an electrode material layer and 2 is a metal mesh. Then, in order to extend the life of the electrode, a second layer of electrode material may be provided in a sandwich shape on the outside of the metal mesh in contact with the gas side, in which case the second layer covers the first layer on the electrolyte/electrolyte side. The mixing ratio of water repellent agent is higher than that of the layer to increase water repellency and increase porosity.

シアノコバラミンの使用量は本発明の目的を達成する限
度の触媒量でよく、このものは他の触媒と併用すること
もできる。また、本発明の電極に.はその目的に反しな
い限り他の材料を適宜添加してもよい。シアノコバラミ
ンが触媒として有効である理由は、ポルフイリン環に似
た平面構造の環の中心に配位中心金属としてコバルトが
存在する金属錯体j部分において、コバルトの3d軌道
電子と酸素分子の反結合性π電子との相互作用により酸
素分子が容易に金属錯体部分に吸着し、更にこの相互作
用により酸素分子の反応エネルギーが低下して電気化学
反応速度を高めるためであると考えられqる。
The amount of cyanocobalamin used may be within the catalytic amount that achieves the object of the present invention, and it can also be used in combination with other catalysts. In addition, the electrode of the present invention. Other materials may be appropriately added as long as they do not contradict the purpose. The reason why cyanocobalamin is effective as a catalyst is that in the metal complex j part where cobalt is present as a coordination center metal at the center of a ring with a planar structure similar to a porphyrin ring, the 3d orbital electron of cobalt and the antibonding property π of the oxygen molecule This is thought to be because oxygen molecules are easily adsorbed to the metal complex portion due to interaction with electrons, and this interaction further lowers the reaction energy of oxygen molecules and increases the electrochemical reaction rate.

次に、本発明を実施例によつて説明するが、本発明はこ
れによりなんら限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way.

なお、以下実施例において測定は20〜25℃の室温で
行つた。実施例 1 炭素粉末(100メツシユ通過)0.20g、活性炭0
.08g、テフロン粉末(50メツシユ通過)0.12
g及びシアノコバラミン0.05gを混合し、これを直
径20mmの円板成形金型内に50メツシユのニツケル
製網とともに入れ、圧力400kg/?でプレスし、そ
の後、130℃の乾燥機内で30分間加熱し、更に40
0℃の炉内で30分間焼成して電極を作製した。
In addition, in the following examples, measurements were performed at room temperature of 20 to 25°C. Example 1 Carbon powder (passed through 100 meshes) 0.20g, activated carbon 0
.. 08g, Teflon powder (passed through 50 meshes) 0.12
g and 0.05 g of cyanocobalamin were mixed, and this was placed in a disk molding mold with a diameter of 20 mm together with 50 meshes of nickel mesh, and the pressure was 400 kg/? , then heated in a dryer at 130°C for 30 minutes, and then heated at 40°C for 30 minutes.
An electrode was produced by baking in a furnace at 0° C. for 30 minutes.

第]図はこの電極の構造を示し、]は前記混合粉体から
なる電極材料層であり、2はニツケル製網である。この
電極を電池に組込むに当つては電極材料層1が電解質に
ニツケル製網2がガスに接するようその向きを定める。
この結果、電極材料層1中に電解質、ガス及び電極粒体
の三相界面が形成される。電解質には1NK0Hを用い
、白金を負極として電池を作製した。
Figure ] shows the structure of this electrode, where ] is an electrode material layer made of the above-mentioned mixed powder, and 2 is a nickel mesh. When this electrode is assembled into a battery, it is oriented so that the electrode material layer 1 is in contact with the electrolyte and the nickel mesh 2 is in contact with the gas.
As a result, a three-phase interface of electrolyte, gas, and electrode particles is formed in the electrode material layer 1. A battery was produced using 1NKOH as the electrolyte and platinum as the negative electrode.

そして、空気中及び酸素ガス中で電極電位(E/対Ag
−AgCl)の電流密度依存性を測定した。第2図のa
は空気中における電位一電流曲線であり、bは酸素ガス
中におけるそれである。
Then, the electrode potential (E/vs Ag
-AgCl) was measured. Figure 2 a
is the potential-current curve in air, and b is that in oxygen gas.

第2図の測定結果によれば、空気中で平衡電位一0.0
5V(対Ag−AgCl)に対して100mA/♂のと
き−0.338V(対Ag−AgCl)であり、酸素ガ
ス中では平衡電位−0.038V(対Ag−AgCl)
に対して100mA/An2のとき0.31V(対Ag
−AgCl)となつていることがわかる。実施例 2 シアノコバラミンの1重量%エタノール溶液中に活性炭
を加え、活性炭にシアノコバラミンを含浸させ、その後
乾燥させる。
According to the measurement results shown in Figure 2, the equilibrium potential in air is -0.0
5V (vs. Ag-AgCl) at 100 mA/♂ is -0.338V (vs. Ag-AgCl), and in oxygen gas the equilibrium potential is -0.038V (vs. Ag-AgCl)
0.31V at 100mA/An2 (vs. Ag
-AgCl). Example 2 Activated carbon is added to a 1% by weight ethanol solution of cyanocobalamin to impregnate the activated carbon with cyanocobalamin, and then dried.

この活性炭0.08gに炭素粉末(100メツシユ通過
)0.20g、テフロン粉末(50メツシユ通過)0.
12gを混合し、これを直径20mmの円板成形金型内
に50メツシユのニツケル製網とともに入れ、実施例1
と同様にして電極を作製し、電池を構成した。第3図の
aは実施例2における電極の電位一電流曲線を示す。
To 0.08 g of this activated carbon, 0.20 g of carbon powder (passed through 100 meshes) and 0.20 g of Teflon powder (passed through 50 meshes).
Example 1
Electrodes were prepared in the same manner as above, and a battery was constructed. FIG. 3a shows the potential-current curve of the electrode in Example 2.

図中bは、参考のために、シアノコバラミンの代りに従
来の硝酸白金を用いたほかは実施例2と同様にして作製
した電極における電位一電流曲線を示す。第3図の測定
結果によれば、本発明の電極では、硝酸白金を用いた従
来の場合に比し、分極が小さく、大電流密度領域でも電
位の大幅な低下がみられず安定していることがわかる。
For reference, b in the figure shows a potential-current curve of an electrode prepared in the same manner as in Example 2, except that conventional platinum nitrate was used instead of cyanocobalamin. According to the measurement results shown in Figure 3, the electrode of the present invention has smaller polarization than the conventional electrode using platinum nitrate, and is stable with no significant drop in potential even in the high current density region. I understand that.

以上の説明から明らかなように、シアノコバラミンを用
いた本発明の電極は、分極が小さく、かつ、大電流密度
領域においても電位低下が殆んど起らず、この点、従来
品に比し優れた効果を発揮するものである。
As is clear from the above explanation, the electrode of the present invention using cyanocobalamin has small polarization and almost no potential drop even in the high current density region, and is superior to conventional products in this respect. It has the following effects.

このため、この電極を空気極又は酸素極として組込んだ
燃料電池及び空気電池は、大電流の取得ができ、又より
一層の高エネルギー密度化が可能であつて、従来品に比
し極めて高い実用価値を期待することができる。
For this reason, fuel cells and air cells incorporating this electrode as an air electrode or oxygen electrode can obtain large currents and have even higher energy density, which is extremely high compared to conventional products. Practical value can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例である電極の断面概略図、第
2図は本発明の実施例1における電極の電位一電流曲線
、そして第3図は実施例2における電極の電位一電流曲
線と硝酸白金を用いた従来品の電位一電流曲線との比較
を示す。 第1図において、1・・・炭素粉末、触媒等よりなる電
極材料層、2・・・ニツケル製網。
FIG. 1 is a schematic cross-sectional view of an electrode that is a specific example of the present invention, FIG. 2 is a potential-current curve of an electrode in Example 1 of the present invention, and FIG. 3 is a potential-current curve of an electrode in Example 2. A comparison between the curve and the potential-current curve of a conventional product using platinum nitrate is shown. In FIG. 1, 1... electrode material layer made of carbon powder, catalyst, etc., 2... nickel net.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料電池及び空気電池の空気極又は酸素極において
、該電極がシアノコバラミン(ビタミンB_1_2)を
含有することを特徴とする燃料電池及び空気電池用電極
1. An electrode for fuel cells and air cells, characterized in that the air electrode or oxygen electrode of the fuel cell and air cell contains cyanocobalamin (vitamin B_1_2).
JP55013037A 1980-02-07 1980-02-07 Electrodes for fuel cells and air cells Expired JPS5948511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55013037A JPS5948511B2 (en) 1980-02-07 1980-02-07 Electrodes for fuel cells and air cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55013037A JPS5948511B2 (en) 1980-02-07 1980-02-07 Electrodes for fuel cells and air cells

Publications (2)

Publication Number Publication Date
JPS56112071A JPS56112071A (en) 1981-09-04
JPS5948511B2 true JPS5948511B2 (en) 1984-11-27

Family

ID=11821912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55013037A Expired JPS5948511B2 (en) 1980-02-07 1980-02-07 Electrodes for fuel cells and air cells

Country Status (1)

Country Link
JP (1) JPS5948511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0500701A2 (en) * 2005-07-20 2007-02-28 Univ Szegedi Conductive-polymer electrode from multicomponent system and the use thereof
US20110136005A1 (en) * 2009-12-04 2011-06-09 Gregory Scott Callen Vitamin B12 iron battery
JP6315708B2 (en) * 2015-06-22 2018-04-25 日本電信電話株式会社 Lithium-air secondary battery, method for producing lithium-air secondary battery, and apparatus equipped with lithium-air secondary battery

Also Published As

Publication number Publication date
JPS56112071A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
Ignaszak et al. Titanium carbide and its core-shelled derivative TiC@ TiO2 as catalyst supports for proton exchange membrane fuel cells
US4132619A (en) Electrocatalyst
Mao et al. Carbon-supported PdSn–SnO2 catalyst for ethanol electro-oxidation in alkaline media
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
JPH10334925A (en) Platinum carrier catalyst, its manufacture, gas diffusion electrode, proton conductive polymer film covered with catalyst and film electrode unit for anode of pem fuel cell
US3121031A (en) Catalyst sieve electrode and production therewith of a directed flow in devices for electrochemical conversion of liquid materials
Chai et al. Facile aqueous phase synthesis of Pd3Cu–B/C catalyst for enhanced glucose electrooxidation
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
Hu et al. Bifunctional oxygen electrocatalysts enriched with single Fe atoms and NiFe2O4 nanoparticles for rechargeable zinc–air batteries
CN108923050A (en) A kind of carbon nano-structured elctro-catalyst of the nucleocapsid of high catalytic performance and preparation method thereof
CA2666634A1 (en) Catalyst support for fuel cell
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: Electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE
JP6967761B2 (en) Electrochemical oxygen reduction catalyst
Yong et al. A NixCu100-x/NiOOH synergetic Pd complex for durable methanol oxidation electrocatalysis
Wu et al. Rapid screening of NixFe1− x/Fe2O3/Ni (OH) 2 complexes with excellent oxygen evolution reaction activity and durability by a two-step electrodeposition method
JP2005235688A (en) Carrying catalyst for fuel cell, its manufacturing method and fuel cell
Wu et al. Direct design of cage-like bimetallic NiFe hydroxides with regulated electron structure to boost the kinetic activity of oxygen evolution reaction
Zhai et al. One-pot fabrication of Nitrogen-doped graphene supported binary palladium-sliver nanocapsules enable efficient ethylene glycol electrocatalysis
JP4590533B2 (en) Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
JPS5948511B2 (en) Electrodes for fuel cells and air cells
US3940510A (en) Process for the manufacture of silver-coated tungsten carbide electrode material
JP2003115299A (en) Solid polymer fuel cell
Ravichandran et al. PANI-SnO2 nanorods decorated with Pdx-Niy nanoparticles for improved electrooxidation of methanol with extended durability
Choi et al. Liquid electrolyte-free cathode for long-cycle life lithium–oxygen batteries