JPS5948333B2 - High-responsive resistance thermometer sensor - Google Patents

High-responsive resistance thermometer sensor

Info

Publication number
JPS5948333B2
JPS5948333B2 JP15770679A JP15770679A JPS5948333B2 JP S5948333 B2 JPS5948333 B2 JP S5948333B2 JP 15770679 A JP15770679 A JP 15770679A JP 15770679 A JP15770679 A JP 15770679A JP S5948333 B2 JPS5948333 B2 JP S5948333B2
Authority
JP
Japan
Prior art keywords
inner tube
tube
metal
resistance thermometer
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15770679A
Other languages
Japanese (ja)
Other versions
JPS5679927A (en
Inventor
寿幸 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamari Industries Ltd
Original Assignee
Yamari Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamari Industries Ltd filed Critical Yamari Industries Ltd
Priority to JP15770679A priority Critical patent/JPS5948333B2/en
Publication of JPS5679927A publication Critical patent/JPS5679927A/en
Publication of JPS5948333B2 publication Critical patent/JPS5948333B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は測温抵抗素子を内管を介して外装金属管に挿入
固定せしめた測温抵抗体の改良に係るものであり、測温
抵抗素子を嵌入した内管の外債L内側或いは上部より圧
力を加えて該素子を内管の内部に圧着固定し且つ内管を
外管に密着固定することにより素子の強固な固定並びに
伝熱効果と放熱効果を向上して耐振性、動的応答性にす
ぐれしかも自己加熱の影響を少なくした測温抵抗体感温
部を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a temperature sensing resistor in which a resistance temperature sensing element is inserted and fixed into an exterior metal tube through an inner tube. By applying pressure from inside or above the outer bond L, the element is crimped and fixed inside the inner tube, and the inner tube is closely fixed to the outer tube, thereby firmly fixing the element, improving heat transfer and heat radiation effects, and improving vibration resistance. It is an object of the present invention to provide a temperature-sensing section of a resistance thermometer that has excellent performance and dynamic response and is less affected by self-heating.

従来、測温抵抗体は素子が保護管内に無機絶縁粉末をも
つて固定されたものが標準タイプであつたが、この型は
製造時に粉末の充填を強固にできないために固定が不完
全であり、耐振性に欠けるところがあり、しかも素子と
外管の間に無機絶縁粉末が存在するために伝熱効果が阻
害されて応答性に欠けるきらいがあり、又測温時の素子
に対する印加電流による素子の自己加熱の放熱が阻害さ
れる結果、測定誤差を生ずる等のきらいがあつた。
Conventionally, the standard type of resistance temperature detector was one in which the element was fixed in a protective tube with inorganic insulating powder, but with this type, the fixation was incomplete because the powder could not be firmly filled during manufacturing. However, the presence of inorganic insulating powder between the element and the outer tube tends to impede the heat transfer effect and result in a lack of responsiveness. As a result of inhibiting self-heating heat dissipation, measurement errors may occur.

これらの欠陥を排除する目的をもつて本発明者゜ は先
に実公昭52−39506号をもつて出願公告された如
く素子を長手方向に縦割り溝を有する弾性をもつ金属円
筒中に嵌入してこれを外装金属管に挿嵌する構成の測温
抵抗体を考案して前述欠陥を排除した測温抵抗体を提供
しているが、本発・ 明は前記公告の金属内管の構造、
材質に改良を加えて精度応答性を尚一層向上せんとする
ものである。加えて元来棒状測温抵抗素子の感温部は熱
電対のごとく先端ではなくその長手方向の側面であるこ
とは周知であるが、この素子が絶縁粉末を介して外装金
属管の軸心に所在する従来型では管外からの受熱が管壁
に伝熱し、しかも断熱性を有する絶縁粉末を経て芯部に
所在する素子に到達するため応答を遅らせる原因となつ
ており、又特に外管の径が大である場合必然的に大径の
素子を必要とる結果となつた。
In order to eliminate these defects, the present inventor inserted the device into an elastic metal cylinder having vertical grooves in the longitudinal direction, as previously announced in Utility Model Publication No. 52-39506. However, the present invention is based on the structure of the metal inner tube of the above-mentioned public notice.
The aim is to improve the accuracy and response even further by improving the material. In addition, it is well known that the temperature-sensing part of a rod-shaped resistance thermometer element is not the tip like a thermocouple, but the longitudinal side surface of the element. In the existing conventional type, heat received from outside the tube is transferred to the tube wall and reaches the element located in the core through the insulation powder, which causes a delay in response. When the diameter is large, a large diameter element is inevitably required.

本発明は叙上の欠陥を除去するためになしたものであり
、その要旨とするところは大径外装金属管に嵌入した熱
伝導良好な内管の端部より長手方向に嵌孔した細孔中に
或いは内管の管壁に削成又は形成した細溝中に小径素子
を装着固定したことで大径外装金属管の軸心に対して素
子を偏心して固定した点にある。
The present invention has been made to eliminate the above-mentioned defects, and its gist is to provide a small hole fitted in the longitudinal direction from the end of an inner tube with good heat conduction fitted into a large-diameter exterior metal tube. The small-diameter element is mounted and fixed in a narrow groove cut or formed in the inner tube or on the tube wall of the inner tube, so that the element is eccentrically fixed with respect to the axis of the large-diameter exterior metal tube.

結果 1受熱量は外装金属管と中空薄肉の内管壁のみとなり従
来法に比しヒートマスが著しく減少され、又内管中に存
在する小径素子が測定対象に近接するために測定対象物
の温度と短時間で平衡して高応答性が増加される結果と
なり、2大径外装金属管に従来法のごとき大径素子を用
いることなく応答性良好な小径素子を使用し、しかも高
応答性をうることを可能とし、3内管の複数の細孔中に
1個づつ複数の素子を対向位置に装着せしめて、二連、
三連素子用としてその平均温度を求めることを可能とし
、4別の方法として小径素子を直列或いは並列に複数個
リード結線することを可能とし、5又、長寸の内管の長
手方向に段違いに穿孔した複数の細孔のそれぞれに段違
いに素子を装着して、温度分布の多点測定用の測温抵抗
体とすることも可能としたものである。
Result 1: The amount of heat received is limited to the outer metal tube and the hollow thin-walled inner tube wall, so the heat mass is significantly reduced compared to the conventional method. Also, since the small-diameter elements present in the inner tube are close to the measurement object, the temperature of the measurement object is reduced. As a result, the high response is increased by balancing in a short time, and a small diameter element with good response is used for the two large diameter exterior metal tubes instead of using a large diameter element as in the conventional method. A plurality of elements are mounted in opposing positions in the plurality of pores of the three inner tubes, and two series,
It is possible to determine the average temperature for triple elements, 4. Alternatively, it is possible to connect multiple small diameter elements in series or parallel, and 5. It is also possible to install elements at different levels in each of the plurality of pores drilled in the structure, thereby making it possible to use a resistance temperature detector for multi-point measurement of temperature distribution.

即ち、本発明は小径の測温抵抗体素子を大径外装金属管
の軸心に対して偏心させ、且つ外装金属管内壁に近接し
て装着せしめたことが要旨であればよく、内管の細孔は
穿孔でなく細溝であつてもよいことは勿論である。
That is, the gist of the present invention is that the small-diameter resistance temperature detector element is eccentric to the axis of the large-diameter exterior metal tube and mounted close to the inner wall of the exterior metal tube, and Of course, the pores may be narrow grooves instead of perforations.

本発明を説明図によつて詳説すると、 第1図は周知の測温抵抗体素子1を正面図として示すも
のであつて、ガラス封入素子、セラミツク被包素子、マ
イカ型素子等電気絶縁性良好な絶縁体によつて絶縁され
ている。
The present invention will be explained in detail with reference to explanatory diagrams. Fig. 1 shows a well-known resistance temperature sensor element 1 as a front view, and it shows a glass-encapsulated element, a ceramic-encapsulated element, a mica-type element, etc., which have good electrical insulation properties. It is insulated by a suitable insulator.

第2図の内管2は展延性に優れ熱伝導良好な金属(たと
えば銀、アルミニウム、銅等)又は熱伝導良好で機械加
工可能な非金属(たとえば窒化硼素)製で素子1の直径
より稍大きい厚さをもち、小径素子1の長さより稍長い
長さをもつものであつて、この内管2には、その端部3
より素子1を嵌入可能な直径をもつ細孔4を穿孔するも
のである。
The inner tube 2 in FIG. 2 is made of a metal with good malleability and good heat conduction (for example, silver, aluminum, copper, etc.) or a non-metal with good heat conduction and machinability (for example, boron nitride), and has a diameter smaller than that of the element 1. The inner tube 2 has a large thickness and a length slightly longer than the length of the small diameter element 1, and the inner tube 2 has an end portion 3.
A pore 4 having a diameter into which the element 1 can be inserted is bored.

この細孔は第3図の42の如く複数であつてもよく、又
、内管2の外壁に削成した単数或いは複数の細溝4〃(
想像線で示す)であつてもよい。次に上記内管2の細孔
4,4又は細溝422にそれぞれ単数或いは複数の抵抗
素子1を第4図の如く嵌入装着するものである。即ち、
内管2に形成した単数或いは複数の細孔4,42又は細
溝422に単数或いは複数の素子1を挿入したものを内
管2が挿嵌可能な内径をもち、保護管として充分な機械
的、化学的、強度を有し可及的薄肉の外装金属管5の開
口端より底部まで挿入した後、内管2を外装金属管5と
一体的に密着固定するために外装金属管外側或いは金属
内管2の内側より冶具を用いて加圧、たとえばスエージ
もしくはカシメ或いはフレアー加工等して固定する。
There may be a plurality of pores as shown in 42 in FIG. 3, or one or more pores 4 (
(shown with imaginary lines). Next, one or a plurality of resistance elements 1 are fitted into the narrow holes 4, 4 or the narrow grooves 422 of the inner tube 2, respectively, as shown in FIG. That is,
The inner tube 2 has an inner diameter that allows insertion of one or more elements 1 into one or more small holes 4, 42 or narrow grooves 422 formed in the inner tube 2, and has sufficient mechanical strength as a protective tube. After inserting the chemically strong, thin-walled exterior metal tube 5 from the open end to the bottom, the inner tube 2 is tightly fixed integrally with the exterior metal tube 5 by inserting a metal It is fixed by applying pressure from the inside of the inner tube 2 using a jig, for example, by swaging, caulking, flaring, etc.

この場合、内管2として金属製のものを使用していると
きは展延性を有し中空であるために細孔4中に嵌入され
ている素子1を破損することなく素子1は外装金属管5
の軸心に対し偏心し、且つ外装金属管5の内壁に最も近
接した位置、即ち、外部対象熱を最も受けやすい位置に
装着されるものである。又、内管材質が非金属管の場合
は、外装金属管の開放端より内管上端部を冶具を用いて
圧入して外装金属管に密着固定せしめるものである。な
}、内管2として、外側面に細溝422を長手方向に保
有するように弾性金属板を曲折して形成した略筒体を用
いることも可能である。
In this case, when a metal tube is used as the inner tube 2, the element 1 can be replaced with an outer metal tube without damaging the element 1 fitted in the pore 4 because it is malleable and hollow. 5
It is eccentric to the axis of the exterior metal tube 5 and is installed at a position closest to the inner wall of the exterior metal tube 5, that is, at a position where it is most likely to receive external heat. If the material of the inner tube is a non-metallic tube, the upper end of the inner tube is press-fitted from the open end of the outer metal tube using a jig to tightly fix it to the outer metal tube. However, as the inner tube 2, it is also possible to use a substantially cylindrical body formed by bending an elastic metal plate so as to have narrow grooves 422 in the longitudinal direction on the outer surface.

本発明は以上の如き構成からなるので、文初に記述のご
とく応答性良好な小径素子1を外装金属管5に最も近接
して装着せしめ、外側面からの受熱に対してヒートマス
を減少して応答性を高めるとともに複数個の素子1を対
向位置に装着して、二連、三連用としてその平均温度の
測定を可能とし又複数孔に複数個の素子をそれぞれ直列
に結線装着することにより、たとえば50オームの素子
2個を直列に結線して100オームの素子1個と同結果
を得ることを可能にした。
Since the present invention has the above configuration, as described at the beginning of this paper, the small diameter element 1 with good response is mounted closest to the exterior metal tube 5, thereby reducing the heat mass against heat received from the outer surface. In addition to increasing responsiveness, it is possible to measure the average temperature by mounting multiple elements 1 in opposing positions for double or triple series, and by connecting and mounting multiple elements in series in multiple holes, respectively. For example, it has become possible to connect two 50 ohm elements in series to obtain the same result as one 100 ohm element.

加えて、所要長の内管2に段違いに細孔4,42或いは
細溝422を削成又は形成して素子1を嵌入してから、
外装金属管5に挿嵌固定するという従来法に比し簡単な
方法で温度分布の多点測定用測温抵抗体をうることを可
能ともするのである。上記は装着位置による作用効果の
諸例であるが外装金属管5の内壁と素子1を嵌入した内
管2が密着して一体化されている結果、耐振性が増加し
又外装金属管5外より受熱した測定対象の熱が伝熱性良
好な内管に嵌装された測温抵抗体素子1ヘ速やかに伝熱
する一方、測定電流による自己加熱は同じく伝熱性良好
な内管2を経て放熱を促進される効果をも併有するもの
であつて、本発明は、文初記述の従来法の欠陥を排除し
高応答性測温抵抗体感温部を提供するものである。
In addition, after cutting or forming fine holes 4, 42 or fine grooves 422 at different levels in the inner tube 2 of a required length and inserting the element 1,
This also makes it possible to obtain a resistance temperature detector for multi-point measurement of temperature distribution using a simpler method than the conventional method of inserting and fixing it into the exterior metal tube 5. The above are examples of the effects depending on the mounting position, but as a result of the inner wall of the exterior metal tube 5 and the inner tube 2 into which the element 1 is inserted are closely integrated, the vibration resistance is increased and the outside of the exterior metal tube 5 is The heat of the measurement object that has received more heat is quickly transferred to the resistance temperature detector element 1 fitted in the inner tube with good heat conductivity, while the self-heating due to the measurement current is radiated through the inner tube 2 which also has good heat conductivity. The present invention eliminates the defects of the conventional method described at the beginning of the article and provides a high-responsive resistance temperature sensing section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は素子の正面図、第2,3図は内管の実施例斜視
図、第4図は組立状態を示す説明図、第5図は素子を段
違いに挿嵌した内管の斜視図である。 1・・・素子、2・・・内管、3・・・端部、4・・・
細孔、42′・・細溝、5・・・外装金属管。
Fig. 1 is a front view of the element, Figs. 2 and 3 are perspective views of an example of the inner tube, Fig. 4 is an explanatory diagram showing the assembled state, and Fig. 5 is a perspective view of the inner tube with the elements inserted in different levels. It is. DESCRIPTION OF SYMBOLS 1...Element, 2...Inner tube, 3...End part, 4...
Pore, 42'... Thin groove, 5... Exterior metal tube.

Claims (1)

【特許請求の範囲】 1 電気絶縁性良好な固体絶縁物で被包された小径測温
抵抗体素子を伝熱性と展延性に優れた金属内管端部より
長手方向に削成又は形成した細孔中に嵌入し更に該内管
外側に大径の外装金属管を嵌挿し抵抗素子を外装金属管
の軸心に対し偏心して位置せしめ且つ内管並びに外装金
属管を互に伝熱可能に接触させ素子を外装金属管の内側
に近接してなる測温抵抗体感温部。 2 外装金属管外側或いは金属内管内側から、加圧して
外装金属管と金属内管を一体的に密着固定してなる特許
請求の範囲第1項記載の高応答性測温抵抗体感温部。 3 金属製内管に穿削した細孔及びこれに装着する素子
は単数又は複数である特許請求の範囲第1項記載の高応
答性測温抵抗体感温部。 4 金属製内管の外壁に単数或いは複数の細溝を削成し
且つ、その細溝中にそれぞれ単数或いは、複数個の測温
抵抗体素子を装着してなる特許請求の範囲第1項記載の
高応答性測温抵抗体感温部。 5 金属製内管の細孔或いは細溝中に嵌入・固定する素
子を直列或いは並列に結線してなる特許請求の範囲第1
項記載の高応答性測温抵抗体感温部。 6 所要長の金属製内管の細孔或いは細溝中に管の長手
方向に対して段違いに素子を装着してなる特許請求の範
囲第1項記載の高応答性測温抵抗体感温部。 7 外側面に細溝を長手方向に保有するように弾性金属
板を曲折して形成した略筒体を内管として用いてなる特
許請求の範囲第1項記載の高応答性測温抵抗体感温部。
[Scope of Claims] 1. A small-diameter resistance thermometer element encapsulated with a solid insulator with good electrical insulation properties, which is machined or formed in the longitudinal direction from the end of a metal inner tube with excellent heat conductivity and malleability. A large-diameter exterior metal tube is inserted into the hole and then inserted into the outside of the inner tube, and the resistance element is positioned eccentrically with respect to the axis of the exterior metal tube, and the inner tube and the exterior metal tube are brought into contact with each other to enable heat transfer. A temperature-sensing part of a resistance thermometer with an element placed close to the inside of an exterior metal tube. 2. The high-responsive resistance thermometer thermosensor according to claim 1, wherein the exterior metal tube and the metal inner tube are integrally and closely fixed by applying pressure from the outside of the exterior metal tube or the inside of the metal inner tube. 3. The high-responsive resistance temperature sensor temperature-sensing unit according to claim 1, wherein the metal inner tube has a hole cut therein and one or more elements are attached to the hole. 4. Claim 1, wherein one or more thin grooves are cut in the outer wall of the metal inner tube, and one or more resistance temperature detector elements are installed in each of the narrow grooves. Highly responsive resistance thermometer sensor. 5. Claim 1, which is formed by connecting elements in series or parallel to be fitted into and fixed in the pores or narrow grooves of the metal inner tube.
The high-responsive resistance thermometer temperature-sensing section described in . 6. The high-responsive resistance thermometer thermosensing section according to claim 1, wherein elements are mounted in pores or narrow grooves of a metal inner tube of a required length at different levels in the longitudinal direction of the tube. 7. The high-responsive resistance thermometer according to claim 1, which uses as an inner tube a substantially cylindrical body formed by bending an elastic metal plate so as to have narrow grooves in the longitudinal direction on its outer surface. Department.
JP15770679A 1979-12-04 1979-12-04 High-responsive resistance thermometer sensor Expired JPS5948333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15770679A JPS5948333B2 (en) 1979-12-04 1979-12-04 High-responsive resistance thermometer sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15770679A JPS5948333B2 (en) 1979-12-04 1979-12-04 High-responsive resistance thermometer sensor

Publications (2)

Publication Number Publication Date
JPS5679927A JPS5679927A (en) 1981-06-30
JPS5948333B2 true JPS5948333B2 (en) 1984-11-26

Family

ID=15655586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15770679A Expired JPS5948333B2 (en) 1979-12-04 1979-12-04 High-responsive resistance thermometer sensor

Country Status (1)

Country Link
JP (1) JPS5948333B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575705A (en) * 1984-02-17 1986-03-11 Weed Instrument Co., Inc. Temperature probe
JPS61105835U (en) * 1984-12-17 1986-07-05
JPS61208552A (en) * 1985-03-14 1986-09-16 Nec Corp Data controller
JPS61167534U (en) * 1985-04-05 1986-10-17
JPH0816569B2 (en) * 1989-12-27 1996-02-21 株式会社ユニシアジェックス Air conditioner

Also Published As

Publication number Publication date
JPS5679927A (en) 1981-06-30

Similar Documents

Publication Publication Date Title
US4575705A (en) Temperature probe
US8935843B2 (en) Temperature sensor and method for its manufacture
US9488528B2 (en) Immersion temperature sensor
JP2944796B2 (en) Thermal mass flowmeter sensor
US5711608A (en) Thermocouple assemblies
JPS5948333B2 (en) High-responsive resistance thermometer sensor
US3061806A (en) Resistance thermometer
US8529127B2 (en) Construction and manufacturing method for a sensor of a thermal flow measuring device
US4492948A (en) Fast response surface contact temperature sensor
US4586246A (en) Method for assembling resistance temperature detector
JP3337306B2 (en) Temperature measurement method
JP3782958B2 (en) Heat flux meter
JPS5842912Y2 (en) Resistance temperature sensing part
CN216770828U (en) High stability generator coolant temperature sensor
JPH0142018Y2 (en)
CN219830136U (en) Self-locking patch type temperature sensor
CN217304167U (en) High-sensitivity high-heat-conduction response fast fork rod type temperature sensor packaging structure
JP3045559B2 (en) Pirani vacuum gauge
JP6825919B2 (en) Temperature sensor
CN215647416U (en) Metal heating body
JPH02273902A (en) Temperature measuring resistor
CN220418693U (en) Slope temperature field transient temperature measuring instrument
JPH0140026Y2 (en)
JP3007342U (en) PTC thermistor for temperature detection
JPS5828194Y2 (en) temperature sensor