JPS5948311B2 - solar power plant - Google Patents

solar power plant

Info

Publication number
JPS5948311B2
JPS5948311B2 JP55104290A JP10429080A JPS5948311B2 JP S5948311 B2 JPS5948311 B2 JP S5948311B2 JP 55104290 A JP55104290 A JP 55104290A JP 10429080 A JP10429080 A JP 10429080A JP S5948311 B2 JPS5948311 B2 JP S5948311B2
Authority
JP
Japan
Prior art keywords
heat
steam
heat storage
temperature
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55104290A
Other languages
Japanese (ja)
Other versions
JPS5732077A (en
Inventor
俊一 安斉
健 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55104290A priority Critical patent/JPS5948311B2/en
Publication of JPS5732077A publication Critical patent/JPS5732077A/en
Publication of JPS5948311B2 publication Critical patent/JPS5948311B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Description

【発明の詳細な説明】 本発明は太陽熱発電プラントに係り、特にそのシステノ
・構成と制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar thermal power generation plant, and particularly to its system configuration and control method.

太陽熱発電プラントは太陽光エネルギーを熱エネルギー
を介して電気エネルギーに変換するプラントである。
A solar thermal power generation plant is a plant that converts sunlight energy into electrical energy via thermal energy.

地上で得る太陽光エネルギーは天候に左右され、定常的
な熱エネルギーを得ることは期待できずむしろ急激な粗
密を繰り返す場合があり、そのま・急激な熱変動を発電
装置系へ直接与えることはできない。
The solar energy obtained on the ground is affected by the weather, and it is not possible to expect to obtain steady thermal energy; rather, it may repeat sudden changes in density and density, so it is impossible to directly apply sudden thermal fluctuations to the power generation system. Can not.

また太陽光は夜間には全く得ることはできず、なんらか
の対策無くしては夜間には発電を継続することはできな
い。
Furthermore, sunlight cannot be obtained at all at night, and power generation cannot continue at night without some kind of countermeasure.

か・る問題に対処するため、集光集熱装置系と発電装置
系との間に蓄熱装置系を設け、日射条件の良好な時に集
熱量の一部を蓄え、日射条件の悪い時に蓄熱装置系の熱
を引き出しで発電を継続する方法が従来から考えられて
いる。
In order to deal with this problem, a heat storage system is installed between the condensing heat collector system and the power generation system, and a part of the collected heat is stored when the solar radiation conditions are good, and the heat storage system is used when the solar radiation conditions are poor. Conventionally, methods have been considered to continue generating electricity by extracting heat from the system.

第1図は従来提案されている最も実施可能性の大きい太
陽熱発電プラントの概略系統図である。
FIG. 1 is a schematic system diagram of a conventionally proposed solar thermal power generation plant with the greatest feasibility.

このプラントの太陽光から集熱しタービン4を駆動する
集熱作動媒体(以下媒体という)には水を使用し、また
溶融塩等を蓄熱材とする潜熱型の溶融塩蓄熱器(以下蓄
熱器という)2ば例えばフッ化カリウム−フッ化リチウ
ム−フッ化すトリウム(KF−L、iF −NaF、混
合比42−46.5−11.5mo1%、融点454℃
、融解潜熱95kcal/’kg)あるいは塩、化カリ
ウムー塩化リチウム(KCI−LiC’l、混合比41
.5−58.5mo1%、融点354o(−、、融解潜
PA57kcal/kg)等の溶融塩、類中から蒸気タ
ービン主気温度より若干融点の高いものを蓄熱材としで
いる。
Water is used as the heat collection working medium (hereinafter referred to as the medium) that collects heat from sunlight in this plant and drives the turbine 4, and a latent heat type molten salt heat storage device (hereinafter referred to as the heat storage device) that uses molten salt as a heat storage material. )2 For example, potassium fluoride-lithium fluoride-thorium fluoride (KF-L, iF-NaF, mixing ratio 42-46.5-11.5 mo1%, melting point 454°C
, latent heat of fusion 95 kcal/'kg) or salt, potassium chloride-lithium chloride (KCI-LiC'l, mixing ratio 41
.. Molten salts having a melting point slightly higher than the main air temperature of the steam turbine are used as heat storage materials.

−7この発電プラントの運転制御方式は、集光集熱器1
で媒体の給水を蓄熱器2の蓄熱材の融点より50−10
0℃高温に加熱し、蓄熱器2を通過させて蓄熱材融点ま
での熱量を蓄熱材の融解潜熱として蓄え、さらにタービ
ン4を駆動して発電機5によって発電出力を得る。
-7 The operation control method of this power generation plant is as follows:
50-10 below the melting point of the heat storage material of heat storage device 2.
It is heated to a high temperature of 0° C., passed through a heat storage device 2, and stores the amount of heat up to the melting point of the heat storage material as latent heat of fusion of the heat storage material, and further drives the turbine 4 to obtain power generation output from the generator 5.

日射条件が良好で発電機5にか・る負荷よりも集熱量が
多い場合には、集光集熱器1への給水量を増量し余剰蒸
気を蓄熱型2の出「1側より蒸気管18でアキュムレー
タ3に導き圧縮水として貯湯する。
When solar radiation conditions are good and the amount of heat collected is greater than the load on the generator 5, the amount of water supplied to the collector 1 is increased and the excess steam is transferred to the output of the heat storage type 2 from the steam pipe 1. At 18, the hot water is led to the accumulator 3 and stored as compressed water.

一方日射条件が悪く発電機5の負荷より集熱量が少ない
場合には、集光集熱器1への給水量を減量し蒸気不足分
をコントロール弁10を調節してアキュムレータ3を減
圧し発生する飽和蒸気を蒸気管19で蓄熱器2人口側に
導き集光集熱器1からの蒸気とともに蓄熱器2を通過さ
せ蓄熱材の融解潜熱によりはパワ蓄熱材融点と同温度ま
で加熱してタービン4に供給する。
On the other hand, if the solar radiation conditions are bad and the amount of heat collected is less than the load of the generator 5, the amount of water supplied to the collector 1 is reduced and the steam shortage is generated by adjusting the control valve 10 to reduce the pressure in the accumulator 3. The saturated steam is guided to the heat storage device 2 population side through the steam pipe 19, passes through the heat storage device 2 together with the steam from the condenser collector 1, and is heated to the same temperature as the melting point of the power heat storage material using the latent heat of fusion of the heat storage material. supply to.

さらに日射量が全く無い時に発電出力が要求される場合
には必要蒸気量の全てをアキュムレータ3で補強し蓄熱
器2で過熱蒸気化してタービン4を駆動する。
Further, when a power generation output is required when there is no solar radiation, all the required amount of steam is reinforced by the accumulator 3 and superheated into steam by the heat storage device 2 to drive the turbine 4.

タービン4より排出された蒸気は復水器6で冷凝され給
水ポンプ7で集光集熱器1に送り込まれ再循環する。
Steam discharged from the turbine 4 is cooled and condensed in a condenser 6, and sent to a concentrator 1 by a water supply pump 7 for recirculation.

このようにアキュムレータ3と蓄熱器2よりなる蓄熱装
置系により日射量の変化による集熱量の変動を吸収し負
荷側の要求に応じてプラントを運転するとともに、蓄熱
材の大きな融解潜熱により主蒸気温度を蓄熱材融点とは
パワ同温度にコントロールし、タービン4に急激な熱変
動を与えないことを主眼として提案されている。
In this way, the heat storage system consisting of the accumulator 3 and the heat storage device 2 absorbs fluctuations in the amount of heat collected due to changes in the amount of solar radiation and operates the plant according to the demands of the load. It has been proposed to control the power to the same temperature as the melting point of the heat storage material, and to prevent sudden thermal fluctuations from being caused to the turbine 4.

しかし慎重に検討すると、か・る従来のプラントにおい
ても蓄熱装置系出口蒸気温度が大きく変動し発電装置系
に急激な熱変動がか・るお・それのあることが明らかで
ある。
However, upon careful consideration, it is clear that even in such conventional plants, the temperature of the steam at the exit of the heat storage system fluctuates greatly, and there is a risk of rapid thermal fluctuations occurring in the power generation system.

この欠点を発電出力IMWのプラントの試設計を例に、
その運転特性計算結果により説明する。
This shortcoming can be explained using the trial design of a power generation output IMW plant as an example.
This will be explained using the calculation results of the driving characteristics.

第1表はIMW太陽熱発電プラントを試設計しその概略
仕様を示したものである。
Table 1 shows a trial design of an IMW solar thermal power generation plant and its general specifications.

この設計条件は設置場所を香川床とし、春分の南中時の
2時間後にお・ける日射強度が0.75kW/m2のと
きIMWの発電出力があるように集光集熱装置系を設計
した。
The design conditions were such that the installation location was Kagawadoko, and the solar and heat collector system was designed to produce IMW power generation output when the solar radiation intensity was 0.75kW/m2 two hours after the midpoint of the vernal equinox. .

集光集熱器にはタワー集光方式、パワボラ集光方式お・
よび平面鏡−パラボラ併用方式等があるが、こ・では平
面鏡−パラボラ併用方式で試算した。
Concentrating heat collectors include tower concentrating method, power mullet concentrating method, and
There are a combination of plane mirror and parabola, and a combination of plane mirror and parabola.

タービン主蒸気条件は、圧力14ata、温度343℃
とした。
Turbine main steam conditions are pressure 14ata, temperature 343℃
And so.

蓄熱装置は主蒸気条件との兼ね合いから、アキュムレー
タの貯湯圧力(使用圧力範囲)を18〜40a taと
し、溶融塩蓄圧器には354°Cに融点のある前記KC
l−LiC1を蓄熱材とし、その蓄熱材を密閉小容器に
封入したカプセル型蓄熱器を採用して計算した。
In consideration of main steam conditions, the heat storage device has a hot water storage pressure (working pressure range) of 18 to 40 ata in the accumulator, and the molten salt pressure accumulator has the above-mentioned KC, which has a melting point of 354°C.
Calculations were made using a capsule-type heat storage device in which l-LiC1 was used as a heat storage material and the heat storage material was sealed in a small sealed container.

集光集熱器の集熱温度はKCI −LiC1蓄熱材の融
点より66℃高い420℃とした。
The heat collecting temperature of the light collector was set to 420° C., which is 66° C. higher than the melting point of the KCI-LiC1 heat storage material.

また蓄熱装置の蓄熱容量は最高蓄熱時で定格IMW発電
が約4時間できる熱容量とした。
In addition, the heat storage capacity of the heat storage device was such that it could generate rated IMW power for about 4 hours at maximum heat storage.

か・る条件のもとに試設計したIMW太陽太陽熱発電プ
ラント機略仕様は第2図に示すごと゛く、集光面積(=
平面鏡面積)11600m2、定格時の集熱蒸気量(=
主蒸気量) 6200kg/hとなる。
The mechanical specifications of the IMW solar thermal power generation plant, which were trial designed under these conditions, are as shown in Figure 2.
Plane mirror area) 11,600 m2, heat collected steam volume at rated time (=
Main steam amount) 6200 kg/h.

アキュムレータは総容積約272m3必要で最高219
トンの貯湯が可能である。
The total volume of the accumulator is approximately 272 m3, and the maximum is 219 m3.
It is possible to store tons of hot water.

溶融塩蓄熱器は約20トンのKCl−LiC1蓄熱材を
外径48.6mm、有効伝熱長さ16mの479本のカ
プセルに封入した規模になり約4300Mcal蓄熱す
ることが可能である。
The molten salt heat storage device has a scale in which about 20 tons of KCl-LiC1 heat storage material is sealed in 479 capsules with an outer diameter of 48.6 mm and an effective heat transfer length of 16 m, and is capable of storing about 4300 Mcal of heat.

このプラントの運転特性とくに蓄熱装置の追従性を実測
日射条件を基に計算し欠点を明らかにする。
The operating characteristics of this plant, especially the followability of the heat storage device, will be calculated based on actually measured solar radiation conditions, and its shortcomings will be clarified.

こ・で計算方法は集光集熱器に関してはモンテカルロ法
、溶融塩蓄熱器とアキュムレータに関しては差分法を用
いた。
In this calculation, the Monte Carlo method was used for the concentrating heat collector, and the finite difference method was used for the molten salt heat storage device and accumulator.

第2図は以下に示す計算の変数名で、それぞれ次の意味
を持つ。
Figure 2 shows the variable names for the calculations shown below, each having the following meanings.

φ8 :直達日射量(kW/m2) Go:集熱蒸気量(kg/h) 集熱条件を40a ta、420℃にコントロールした
時の値 GH:溶融塩蓄熱器通過蒸気量(kg/h)−G。
φ8: Direct solar radiation (kW/m2) Go: Amount of heat collected steam (kg/h) Value when heat collection conditions are controlled to 40a ta, 420℃ GH: Amount of steam passing through the molten salt heat storage device (kg/h) -G.

+GAou1G□ :タービン必要蒸気量(kg/h)
GA:アキュムレータ貯湯量(トン) GAin :アキュムレータ流入蒸気量(kg/h)G
AOut:アキュムレータ放出蒸気量(kg/h)TH
,n:溶融塩蓄熱器入口蒸気温度(℃)T、4゜ol:
溶融塩蓄熱器出口蒸気温度(’C)T□ :主蒸気温度
(’C) PA:アキュムレータ貯湯圧力(ata)QH:溶融塩
蓄熱器蓄熱残量(Meal)Pw:発電出力要求値(k
W) 第3図は前記試設計によるIMW太陽熱発電プランI・
を設置仮定場所の1977年9月278の日射量実験値
φ8を基に発電出力要求値Pwを図示した様に仮定して
運転した場合の蓄熱装置の追従性を計算したものである
+GAou1G□: Turbine required steam amount (kg/h)
GA: Accumulator hot water storage amount (tons) GAin: Accumulator inflow steam amount (kg/h) G
AOut: Accumulator release steam amount (kg/h) TH
, n: Molten salt heat storage inlet steam temperature (°C) T, 4°ol:
Molten salt heat storage outlet steam temperature ('C) T□: Main steam temperature ('C) PA: Accumulator hot water storage pressure (ata) QH: Molten salt heat storage remaining heat storage amount (Meal) Pw: Power generation output request value (k
W) Figure 3 shows IMW solar power generation plan I based on the trial design.
The followability of the heat storage device is calculated based on the experimental value of solar radiation φ8 on September 278, 1977 at the assumed installation location, and when the required power generation output value Pw is assumed to be as shown in the figure and operated.

また蓄熱装置には前Hの発電終了時に定格IMW発電が
約1.3時間可能なだけの蓄熱量を残しく従って朝の起
動時にもは’1.3時間相当分の熱量がある)、さらに
当Hの発電終了時には次の目のために同熱量を残すこと
とした。
In addition, at the end of the previous H power generation, the heat storage device has enough heat storage to enable the rated IMW power generation for about 1.3 hours. At the end of the current generation, we decided to leave the same amount of heat for the next generation.

すなわち連日同一日射量φ、があれば、連BP、の発電
出力を得ることができる。
That is, if there is the same amount of solar radiation φ on consecutive days, it is possible to obtain a power generation output of BP on consecutive days.

7時30分より発電が開始される。Power generation will begin at 7:30.

運転開始当初には日射量φ8が少ないため集熱蒸気量G
At the beginning of operation, the amount of solar radiation φ8 is small, so the amount of collected steam G
.

も少ない。There are also few.

時間の経過とともに増加し午後になって再び減少する。It increases as time passes and decreases again in the afternoon.

主蒸気量G1は発電出力要求値PWを満足させるための
必要蒸気量である。
The main steam amount G1 is the required amount of steam to satisfy the power generation output request value PW.

アキュムレータの運転は集熱蒸気量Gcと主蒸気必要量
G□どの多少関係により定まり集熱蒸気量GCが多い場
合には余剰分(GA、n= GC−G、、)が溶融塩蓄
熱器量「−1側よりアキュムレータに供給される。
The operation of the accumulator is determined by the relationship between the amount of collected steam Gc and the required amount of main steam G It is supplied to the accumulator from the -1 side.

逆に主蒸気必要量G□の方が多い場合には不足分(GA
Out ”’ GT ”’Go)がアキュムレータより
補充される。
Conversely, if the required amount of main steam G□ is greater, the shortage (GA
Out ``' GT ''' Go) is replenished from the accumulator.

しかし本計算例では朝の起動時には主蒸気必要量G□が
多いので、アキュムレータから蒸気が放出(GAOLI
υされる。
However, in this calculation example, the required amount of main steam G□ is large at startup in the morning, so steam is released from the accumulator (GAOLI
υ will be

しかし口中時は集熱蒸気量GCが多いためアキュムレー
タに貯?易(GA、n)され、さらに夕方には再びアキ
ュムレータより蒸気が放出される。
However, when it is in the mouth, the amount of collected steam GC is large, so it is stored in the accumulator. Steam is released from the accumulator again in the evening.

しか(7でアキュムレータ貯湯圧力PAと貯湯量GAと
はアキュムレータへの蒸気人出により変化し、発電終r
時19時には起動時7時30分とはパ同−状態になる。
However (in 7, the accumulator hot water storage pressure PA and the hot water storage amount GA change depending on the steam flow to the accumulator, and the end of power generation r
At 7:30 p.m., it will be in a PC state compared to when it started at 7:30.

一方溶融塩蓄熱器の蒸気通過量GHはj′キュムレータ
の蒸気放出が無い場合は集熱蒸気の全てが、アキュムレ
ータの蒸気放出がある場合には集熱蒸気とアキュムレー
タ放出蒸気との混合蒸気が、集光集熱器が運転されない
場合にはアキュムレータ放出蒸気だけが通過し、流入蒸
気温度と蓄熱温度との関係で蓄熱あるいは吸熱してター
ビンに供給される。
On the other hand, the amount of steam passing through the molten salt heat storage device GH is j′ if there is no steam release from the accumulator, all of the collected steam is present, and when there is steam release from the accumulator, the mixed steam of the collected steam and the steam released from the accumulator is: When the condensing heat collector is not operated, only the steam released from the accumulator passes through, stores or absorbs heat depending on the relationship between the inflow steam temperature and the heat storage temperature, and is supplied to the turbine.

しかしてプラントの起動時7時30分には420°Cの
集熱蒸気とアキュj、レータ放出蒸気とが合流し、は−
260℃(Tl(ir、)で供給されて蓄熱材融点35
4°C(THOu、)まで加熱される。
However, at 7:30 when the plant was started up, the collected steam at 420°C and the steam released from the accu-j and the rotor merged, and -
The heat storage material melting point is 35 when supplied at 260℃ (Tl(ir,)
Heated to 4°C (THou, ).

■耐量φ8が増えるに従って集熱蒸気量GCが増え(ア
キュムレータ放出蒸気量は減少)、次第に流入温度TI
(ir、が上昇する。
■As the withstand capacity φ8 increases, the amount of collected steam GC increases (the amount of steam released from the accumulator decreases), and the inflow temperature TI gradually increases.
(ir increases.

はパ8時15分以降にはアキュムレータの放出蒸気が無
いので420℃の集熱蒸気が流入し、蓄熱器に放熱して
約354°Cで放出される。
Since there is no steam released from the accumulator after 8:15 p.m., collected steam at 420°C flows in, radiates heat to the heat storage device, and is released at approximately 354°C.

また15時30分以降にはアキュムレータの再蒸気放出
によって流入温度T、□。
Moreover, after 15:30, the inflow temperature T, □ due to re-steam release from the accumulator.

が低下し7、さらに17後以降にはアキュムレータ放出
蒸気だけが流入するが、は−354℃まで加熱される。
7, and after 17, only the steam released from the accumulator flows in, but is heated to -354°C.

すなわち流入温度T、1、□の方が流出温度’rHOr
、1より高温の所が蓄熱(社)への蓄熱時であり、流入
温度の方が低温の所が蓄熱器の放熱時を示す。
In other words, the inflow temperature T, 1, □ is higher than the outflow temperature 'rHOr
, 1 indicates the time when heat is being stored in the heat storage device, and the location where the inflow temperature is lower indicates the time when heat is released from the heat storage device.

蓄熱と放熱の繰返しにより蓄熱器の蓄熱量Q、は増用1
あるいは減少しプラント停止時19時には起動時7時;
30分の蓄熱状態とはパ同一になる。
Due to repeated heat storage and heat radiation, the amount of heat stored in the heat storage device, Q, increases by 1.
Or it decreases and the plant stops at 19:00 and starts at 7:00;
The temperature is the same as the heat storage state for 30 minutes.

前記従来のプラントの欠点がこの計算結果に現れている
The shortcomings of the conventional plant appear in this calculation result.

すなわち10時20分頃の蓄熱器出し一]蒸気温度TI
(01Jtは蓄熱量Q、□が増えているにもかかわらず
約320℃まで低下し、さらに177時頃は約370°
Cまで上昇している。
In other words, when the heat storage unit is discharged at around 10:20, the steam temperature TI
(At 01 Jt, despite the increase in heat storage Q,
It has risen to C.

蓄熱器の流出蒸気はそのま・タービンへ供給されるため
、主蒸気温度′r1、は蓄熱器出[−1蒸気温度’l[
’HOLltによって変動する。
Since the steam flowing out of the heat storage device is directly supplied to the turbine, the main steam temperature 'r1, is equal to the heat storage temperature [-1 steam temperature 'l[
'Varies depending on HOLlt.

すなわち従来のブランI・では主蒸気温度が犬ItJに
変動する可能性があり、タービンに大きな熱変動がか・
るおそれがあることが明らかである。
In other words, in the conventional Buran I, the main steam temperature may fluctuate to a large extent, causing large thermal fluctuations in the turbine.
It is clear that there is a risk of

蓄熱器の出[」蒸気温度T、。Output of the heat storage ['steam temperature T,.

ユがこのように変動する原因を第5図により詳細に説明
する。
The reason why Y fluctuates in this way will be explained in detail with reference to FIG.

第5図は上記運転特性計算における蓄熱器内部の蓄熱材
温度分布(実線)と、蒸気温度分布(鎖線)とを各時刻
ごとに示したものである。
FIG. 5 shows the heat storage material temperature distribution (solid line) inside the heat storage device and the steam temperature distribution (dashed line) at each time in the above operation characteristic calculation.

7時30分起動時には前日夕方の放熱により蓄熱型入[
」側で低温(約220℃)、出L−1側で高温(約35
4°C)になっている。
At startup at 7:30, the heat storage type is turned on due to the heat dissipation from the evening of the previous day.
” side is low temperature (about 220℃), and the output L-1 side is high temperature (about 35℃).
4°C).

従ってこの時刻の流入低温蒸気は蓄熱15の中間部で加
熱される。
Therefore, the inflowing low-temperature steam at this time is heated in the middle part of the heat storage 15.

9時頃には流入蒸気温度は420℃になり入口側の低温
蓄熱材に蓄熱する。
At around 9 o'clock, the temperature of the incoming steam reaches 420°C, and heat is stored in the low-temperature heat storage material on the inlet side.

蓄熱することによって蒸気自体の温度は約300℃まで
低下するが後流側の蓄熱材により約354℃まで加熱さ
れる。
By storing heat, the temperature of the steam itself decreases to about 300°C, but it is heated to about 354°C by the heat storage material on the downstream side.

すなわちこの時間蓄には全体的には蓄熱であるが蓄熱器
の大LJ側で蓄熱が、出口側で放熱が行われている様に
なる。
In other words, during this time storage, heat is stored as a whole, but heat is stored on the large LJ side of the heat storage device, and heat is radiated on the exit side.

それに伴って蓄熱器の最低温部■が徐々に少なくなると
ともに順時後流側に移動する。
Accordingly, the lowest temperature part (2) of the heat storage device gradually decreases and gradually moves to the downstream side.

しかして9時過ぎよりその低温部■の影響が流出蒸気温
度に現れ10時20分には約320°Cまで低下する。
However, after 9 o'clock, the influence of the low temperature zone (2) appears on the outflow steam temperature, which drops to about 320°C by 10:20.

一方L1中時には420℃の集熱蒸気により蓄熱され、
蓄熱器には420℃の高温部■が順次増えてくる。
On the other hand, during L1, heat is stored by collected steam at 420℃,
The number of high-temperature parts (■) at 420°C will gradually increase in the heat storage unit.

15時以降になって流入蒸気温度が低下すると入口近傍
の蓄熱材によって加熱されて420℃に上昇し、出口側
で逆に蒸気より蓄熱材に熱を与えては一゛354℃で放
出される。
When the temperature of the incoming steam drops after 3:00 pm, it is heated by the heat storage material near the inlet and rises to 420℃, and on the outlet side, the steam gives heat to the heat storage material and is released at 1.354℃. .

すなわちこの時間帯には高温部■が徐々に少なくなると
ともに順時後流側に移動する。
That is, during this time period, the high temperature part (2) gradually decreases and gradually moves to the downstream side.

しかして17時にはその影響が蓄熱器出口側に現れ流出
蒸気温度は約370℃に達する。
However, at 17:00, the effect appears on the outlet side of the heat storage device, and the temperature of the outflow steam reaches approximately 370°C.

以上IMW太陽熱発電プラントの試設計と運転特性計算
結果を例に説明したように、従来のプラントには主蒸気
温度が大巾に変動し、タービンに大きな熱変動がか・る
おそれがある。
As explained above using the trial design and operation characteristic calculation results of an IMW solar power generation plant as an example, in conventional plants, the main steam temperature fluctuates widely, which may cause large thermal fluctuations to the turbine.

引いてはプラントの寿命、安全性等に多大の影響を与え
る欠点がある。
Furthermore, there are drawbacks that greatly affect the lifespan, safety, etc. of the plant.

本発明の目的は、か・る従来の太陽熱発電プラントの欠
点をなくし主蒸気条件を一定に制御することによって安
定運転の可能な太陽熱発電プラントを提供するにある。
An object of the present invention is to eliminate the drawbacks of the conventional solar thermal power generation plants and to provide a solar thermal power generation plant that can operate stably by controlling main steam conditions to a constant level.

か・る目的は、蓄圧装置出口側に集熱作動媒体温度検出
器を設け、該温度検出器と蓄熱装置出口側との間に、集
光集熱器出口側より高温の集熱作動媒体を導く配管と、
別に低温の集熱作動媒体を導く配管とを設けて、前記温
度検出器の検出温度により前記高温の集熱作動媒体ある
いは低温の集熱作動媒体を蓄熱装置出口側の集熱作動媒
体に供給し、タービンに入る集熱作動媒体の温度を一定
に制御する太陽熱発電プラントによって達成される。
The purpose of this is to install a heat collecting working medium temperature detector on the outlet side of the pressure accumulator, and to supply a heat collecting working medium with a higher temperature than the outlet side of the condensing heat collector between the temperature detector and the outlet side of the heat accumulating device. Piping that leads to
Separately, a pipe for guiding a low temperature heat collecting working medium is provided, and the high temperature heat collecting working medium or the low temperature heat collecting working medium is supplied to the heat collecting working medium on the outlet side of the heat storage device according to the temperature detected by the temperature detector. , achieved by a solar thermal power plant with constant control of the temperature of the collecting working medium entering the turbine.

以下図面を参照して本発明をその一実施例について詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

この実施例の集熱作動媒体には水を使用し、また蓄熱装
置は第1図の従来例と同様な塩化カリウム−塩化リチウ
ム(KCI−LiC1)溶融塩蓄熱器2とアキュムレー
タ3よりなっている。
Water is used as the heat collection working medium in this embodiment, and the heat storage device consists of a potassium chloride-lithium chloride (KCI-LiC1) molten salt heat storage device 2 and an accumulator 3 similar to the conventional example shown in FIG. .

第5図において第1図の従来例と同一番号は同一のもの
を示し、蓄熱器2の出口側には温度検出器15とコント
ロール弁13が設けられ、該コントロール弁とアキュム
レータ3への蒸気管18の分岐点との間に集光集熱器1
の出口側から高温の媒体蒸気を導く途中にコントロール
弁11を有する蒸気管16が設けられ、また前記コント
ロール弁13と温度検出器15との間にアキュムレータ
3の放出蒸気を導く途中にコントロール弁14を有する
蒸気管17が設けられている。
In FIG. 5, the same numbers as those in the conventional example in FIG. Concentrator 1 between the 18 branch points
A steam pipe 16 having a control valve 11 is provided on the way to guide high-temperature medium vapor from the outlet side of the steam pipe, and a control valve 14 is provided on the way to guide the discharged steam of the accumulator 3 between the control valve 13 and the temperature sensor 15. A steam pipe 17 having a diameter is provided.

なお蓄熱器2の入口側とアキュムレータ3の主たる蒸気
管19の合流点との間にもコントロール弁12が設けら
れている。
A control valve 12 is also provided between the inlet side of the heat storage device 2 and the confluence point of the main steam pipe 19 of the accumulator 3.

本実施例の運転制御方式は、その主要部において第1図
の従来例と同一である。
The operation control system of this embodiment is the same as the conventional example shown in FIG. 1 in its main parts.

本実施例の制御は従来例の欠点すなわち蓄熱器2の流出
蒸気温度が設定温度(はパ蓄熱材の融点)より変動した
ときに行われる。
The control of this embodiment is performed when the temperature of the outflow steam of the heat storage device 2 fluctuates from the set temperature (which is the melting point of the heat storage material), which is a drawback of the conventional example.

すなわち温度検出器15により常に主蒸気温度を監視し
、主蒸気温度が設定温度以下になった時(例えば第3図
の10時前後)に蒸気管16のコントロール弁11を調
節して高温の集熱蒸気を蓄熱器2の出口側に導き、主蒸
気温度を設定温度に調節する。
That is, the temperature detector 15 constantly monitors the main steam temperature, and when the main steam temperature falls below the set temperature (for example, around 10 o'clock in FIG. 3), the control valve 11 of the steam pipe 16 is adjusted to collect the high temperature. The hot steam is guided to the outlet side of the heat storage device 2, and the main steam temperature is adjusted to the set temperature.

この場合、蒸気管16の合流点をアキュムレータ3への
蒸気管18の分岐点より後流側にするのは、アキュムレ
ータ3へ貯湯する蒸気まで加熱する無駄をさけるためで
ある。
In this case, the reason why the confluence point of the steam pipes 16 is placed downstream of the branch point of the steam pipes 18 to the accumulator 3 is to avoid wasteful heating of the steam stored in the accumulator 3.

一方主蒸気温度が設定温度以上に上昇した時(例えば第
3図の17時前後)は、蒸気管17のコントロール弁1
4を調節しアキュムレータ3の放出蒸気を蓄熱器2の出
口側に導き主蒸気温度を設定温度に調節する。
On the other hand, when the main steam temperature rises above the set temperature (for example, around 17:00 in Fig. 3), the control valve 1 of the steam pipe 17
4, the steam released from the accumulator 3 is guided to the outlet side of the heat storage device 2, and the main steam temperature is adjusted to the set temperature.

この様にして主蒸気温度を常に設定温度に調整が可能で
ある。
In this way, the main steam temperature can always be adjusted to the set temperature.

この実施例の効果を前記従来例と同一条件のもとの運転
特性計算結果を例に説明する。
The effects of this embodiment will be explained using as an example the results of calculation of driving characteristics under the same conditions as the conventional example.

第6図は以下に示す計算の変数名で第2図と同一記号は
同一意味をあられす。
Figure 6 shows variable names for the calculations shown below, and the same symbols as in Figure 2 have the same meanings.

新たな2変数はそれぞれ次の意味である。The two new variables have the following meanings.

GCb:集光集熱器から蒸気管16を通って蓄熱器出口
側へ供給される集熱蒸気量(kg/h)GA、:アキュ
ムレータから蒸気管17を通って蓄熱器出口側へ供給さ
れる放出蒸気量 (kg/h) 第7図は本実施例の前記同一条件下の運転特性計算結果
である。
GCb: Amount of collected steam (kg/h) supplied from the heat collector to the outlet side of the heat storage unit through the steam pipe 16; GA: Quantity of collected steam supplied from the accumulator to the outlet side of the heat storage unit through the steam pipe 17. Amount of released steam (kg/h) FIG. 7 shows the calculation results of the operating characteristics of this example under the same conditions as described above.

温度検出器15の設定温度はKCl−LiC1蓄熱材の
融点354℃とした。
The set temperature of the temperature detector 15 was set to the melting point of the KCl-LiC1 heat storage material, 354°C.

日射量φ5、集熱蒸気量G。Solar radiation amount φ5, heat collected steam amount G.

、発電出力要求値PWシタ−ン必要蒸気量G、1〜は第
3図と同一計算条件である。
, power generation output request value PW, required steam amount G, 1~ are the same calculation conditions as in FIG. 3.

蓄熱器2の出口蒸気温度THo1..は9時以降しだい
に低下し10時30分頃には320°C程度まで降下す
る。
Outlet steam temperature THo1 of heat storage device 2. .. The temperature gradually decreases after 9:00 and reaches around 320°C by around 10:30.

しかし、温度検出器15が温度変化を検知し、その信号
によりコントロール弁11が作動して必要量の溶融塩蓄
熱器バイパス流量G。
However, the temperature detector 15 detects a temperature change, and the control valve 11 is actuated in response to the signal to reduce the required amount of molten salt heat storage bypass flow rate G.

bが流れ、溶融塩蓄熱器を通った蒸気と合流し、その温
度を上昇させ、タービンに入る主蒸気温度T□は設定温
度354℃に保たれる。
b flows, joins with the steam that has passed through the molten salt heat storage, increases its temperature, and the main steam temperature T□ entering the turbine is maintained at the set temperature of 354°C.

一方、17時20分前後には溶融塩蓄熱器出口蒸気温度
THOutが最高370℃まで上昇するが、上記と同様
、この温度変化を温度検出器15が検知し、この場合は
設定温度より高いので、アキュムレータ出口にあるコン
トロール弁14が作動し、低温蒸気(流量GAB)が溶
融塩蓄熱器を通った蒸気と合流し、主蒸気温度は調節さ
れて、第8図最下段にT1で示したように一定に保たれ
る。
On the other hand, around 17:20, the molten salt heat storage outlet steam temperature THOut rises to a maximum of 370°C, but as above, the temperature detector 15 detects this temperature change, and in this case, it is higher than the set temperature. , the control valve 14 at the accumulator outlet is activated, low-temperature steam (flow rate GAB) merges with the steam that has passed through the molten salt heat storage, and the main steam temperature is regulated as shown by T1 in the bottom row of Figure 8. is kept constant.

特に蒸気タービンは発電プラントにおける主要機器であ
り、主蒸気温度の芯部な変化や大きな変化[−1Jは熱
応力の増大、従って寿命の低下につながる。
In particular, the steam turbine is the main equipment in a power generation plant, and a core change or a large change in the main steam temperature [-1J] leads to an increase in thermal stress and, therefore, a decrease in service life.

本発明により主蒸気温度は一定に維持できるので、蒸気
タービンの長寿命化、信頼性向上が図れる。
Since the main steam temperature can be maintained constant according to the present invention, the life of the steam turbine can be extended and reliability can be improved.

第8図は本発明の別の実施例であって、第5図の実施例
と同一番号は同一のものを示し、蓄熱装置は溶融塩蓄圧
器2のみでアキュムレータ3を設けず、またコントロー
ル弁13を備えていない。
FIG. 8 shows another embodiment of the present invention, in which the same numerals as in the embodiment of FIG. It does not have 13.

温度検出器15と蒸気管16の合流点との間に減温器2
4を設け、該減温器に給水ポンプ7の出口側から復水器
6によって冷凝された進熱作動媒体の低温の凝縮液(こ
の場合は低温の水)を導く途中にコントロール弁23を
有する配管25を設けており、前記実施例と同様に蓄熱
器出口の蒸気温度THOu、が約370℃まで上昇した
とき、温度検出器15の検出により、低温の水を減温器
24に導き高温の子蒸気と接触させ主蒸気温度T1を設
定温度354℃一定にコントロールするようになってい
る。
A desuperheater 2 is installed between the temperature detector 15 and the confluence of the steam pipe 16.
4, and a control valve 23 is provided on the way to guide the low temperature condensate of the heat advancing working medium (low temperature water in this case) cooled and condensed by the condenser 6 from the outlet side of the water supply pump 7 to the attemperator. A piping 25 is provided, and when the steam temperature THOu at the outlet of the heat storage device rises to about 370° C. as in the previous embodiment, low temperature water is guided to the desuperheater 24 according to the detection by the temperature sensor 15. The main steam temperature T1 is controlled to a constant set temperature of 354° C. by contacting with the child steam.

以上詳細に説明したように、本発明は従来の太陽熱発電
プラントの欠点をなくし、主蒸気温度を一定に制御しプ
ランI・の安定運転を可能にする効果を有する。
As described in detail above, the present invention has the effect of eliminating the drawbacks of conventional solar thermal power generation plants, controlling the main steam temperature at a constant level, and enabling stable operation of Plan I.

本発明はその実施例について具体的に説明したが、本発
明の技術範囲内で種々の変法が可能である。
Although the present invention has been specifically described with respect to its embodiments, various modifications are possible within the technical scope of the present invention.

例えば集光集熱器1は平面鏡−パラボラ併用方式でなく
、タワー集光方式、パラボラ集光方式、凸レンズ集光方
式、フレネルレンズ集光方式などでもよく、また蓄熱装
置はKCl−LiC1溶融塩、蓄熱器でなく別の溶融塩
蓄熱器、他の潜熱型蓄熱器、顕熱型蓄熱器でもよい。
For example, the condenser 1 may be a tower condensing type, a parabola condensing type, a convex lens condensing type, a Fresnel lens condensing type, etc., instead of a plane mirror/parabola combination type, and the heat storage device is a KCl-LiC1 molten salt, Instead of a heat storage device, it may be another molten salt heat storage device, another latent heat type heat storage device, or a sensible heat type heat storage device.

さらに集熱作動媒体は水でなく、他の異なる媒体でもよ
い。
Furthermore, the heat collecting working medium may not be water, but may be another different medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の太陽熱発電プラントの概略系統図、第2
図は従来プランI・におけるブラント運転特性計算の変
数名を示すもの、第3図は第1図に示す従来プラントの
運転特性計算結果図表、第4図は第3図の計算における
溶融塩蓄熱型内温度分布の経時変化を示す図表、第5図
は本発明の一実施例の概略系統図、第6図は本実施例の
運転特性計算の変数名を示すもの、第7図は本実施例の
運転特性計算結果図表、第8図は本発明の別の実施例の
概略系統図である。 1・・・・・・集光集熱器、2・・・・・・溶融塩蓄熱
器、3・・・・・・アキュムレータ、4・・・・・・タ
ービン、5・・・・・・発電機、6・・・・・・復水器
、7・・・・・・給水ポンプ、8ないし14、23・・
・・・・コントロール弁、15・・・・・・温度検出器
、16ないし19・・・・・・蒸気管、24・・・・・
・減温器、25・・・・・・配管。
Figure 1 is a schematic diagram of a conventional solar thermal power generation plant;
The figure shows the variable names for the calculation of blunt operating characteristics in the conventional plan I. Figure 3 is a chart of the calculation results of the operating characteristics of the conventional plant shown in Figure 1. Figure 4 is the molten salt heat storage type in the calculation of Figure 3. Figure 5 is a schematic system diagram of an embodiment of the present invention, Figure 6 is a diagram showing the names of variables used in calculating the operating characteristics of this embodiment, and Figure 7 is a diagram showing changes over time in internal temperature distribution. FIG. 8 is a schematic system diagram of another embodiment of the present invention. 1... Light collector, 2... Molten salt heat storage device, 3... Accumulator, 4... Turbine, 5... Generator, 6...Condenser, 7...Water pump, 8 to 14, 23...
... Control valve, 15 ... Temperature detector, 16 to 19 ... Steam pipe, 24 ...
・Desuperheater, 25...Piping.

Claims (1)

【特許請求の範囲】[Claims] 1 太陽熱を集光し集熱作動媒体を/7[1熱し太陽光
エネルギーを熱エネルギーとして集収する集光集熱器と
、集収した熱エイ・ルギーの一部を蓄える蓄熱装置と、
熱、エネルギーを電気エイ・ルギーに変換するためのタ
ービ〕/及び該タービンにて駆動される発心機とを有す
る太陽熱発電プランI・にお・いで、前記蓄熱装置出口
側と前記夕・−ビンとの間に設置した集熱作動媒体温度
検出器と、重犯蓄熱装置の出[−1と集熱作動媒体温度
検出器との間に前記集光集熱型出ロ測Jニリ直接高温の
集熱作動媒体を導く配管と低温の集熱作動媒体を導く別
の配管と、前記2つの配管にぞれぞれ設けられたコン1
へロール弁とを備え、前記コンI・ロール弁は、前記集
熱作動媒体温度検出器の信号に応じで制御され前記ター
ビンに入る集熱作動媒体の温度を一定に制御するように
した太陽熱発電プラント。
1. A solar collector that collects solar heat and heats a heat collecting working medium/7 [1] and collects solar energy as thermal energy, and a heat storage device that stores a part of the collected heat energy.
A solar thermal power generation plan I having a turbine for converting heat and energy into electric energy/and a generator driven by the turbine, the exit side of the heat storage device and the generator The heat collecting working medium temperature detector installed between the A pipe leading to a thermal working medium, another pipe leading to a low-temperature heat-collecting working medium, and a controller 1 provided in each of the two pipes.
a solar thermal power generation device, wherein the control I/roll valve is controlled in response to a signal from the heat collecting working medium temperature detector to keep the temperature of the heat collecting working medium entering the turbine constant. plant.
JP55104290A 1980-07-31 1980-07-31 solar power plant Expired JPS5948311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55104290A JPS5948311B2 (en) 1980-07-31 1980-07-31 solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55104290A JPS5948311B2 (en) 1980-07-31 1980-07-31 solar power plant

Publications (2)

Publication Number Publication Date
JPS5732077A JPS5732077A (en) 1982-02-20
JPS5948311B2 true JPS5948311B2 (en) 1984-11-26

Family

ID=14376792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55104290A Expired JPS5948311B2 (en) 1980-07-31 1980-07-31 solar power plant

Country Status (1)

Country Link
JP (1) JPS5948311B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199948U (en) * 1987-06-10 1988-12-22
JPH0159459U (en) * 1987-10-12 1989-04-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199948U (en) * 1987-06-10 1988-12-22
JPH0159459U (en) * 1987-10-12 1989-04-14

Also Published As

Publication number Publication date
JPS5732077A (en) 1982-02-20

Similar Documents

Publication Publication Date Title
JP6596303B2 (en) Solar thermal power generation apparatus and control method thereof
US7051529B2 (en) Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US9546640B2 (en) Pressurized solar power system with sealed bubble pressurizer and control system
US4171617A (en) Solar thermal electric systems
Suresh et al. Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization
CN102483263B (en) Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
WO2007073008A2 (en) Heat medium supply facility, composite solar heat electricity generation facility, and method of controlling the facilities
CN110057115A (en) A kind of light, electricity complementary trough photovoltaic power generation system and its operation method
WO2013049724A1 (en) Effective and scalable solar energy collection and storage
CN104896764A (en) Solar thermal power generation method and device
CN108256670A (en) Photo-thermal power generation and thermoelectricity unit combined adjusting peak Optimized model based on cogeneration of heat and power
JP6184243B2 (en) Solar thermal energy generator
CN110198052B (en) Photo-thermal-wind power combined grid-connected power generation coordination control method
CN102445010A (en) Temperature control method and device for heat collection system
JP6613176B2 (en) Power generation system
JPH0346671B2 (en)
JPS60122865A (en) Solar heat electric power generation apparatus
JPS5948311B2 (en) solar power plant
CN204693854U (en) A kind of solar energy thermal-power-generating device
CN110854937A (en) Thermal power frequency modulation method of coupling heat storage device
JPS63183346A (en) Solar system for generating steam
CN211183438U (en) Thermal generator set coupled with heat storage device
CN215176096U (en) Solar photovoltaic photo-thermal hybrid power generation system
Cohen Operation and efficiency of large-scale solar thermal power plants
JPS60159377A (en) Power generator utilizing solar heat