JPS5948133B2 - Wet flue gas desulfurization method using slag - Google Patents

Wet flue gas desulfurization method using slag

Info

Publication number
JPS5948133B2
JPS5948133B2 JP51012077A JP1207776A JPS5948133B2 JP S5948133 B2 JPS5948133 B2 JP S5948133B2 JP 51012077 A JP51012077 A JP 51012077A JP 1207776 A JP1207776 A JP 1207776A JP S5948133 B2 JPS5948133 B2 JP S5948133B2
Authority
JP
Japan
Prior art keywords
absorption
slag
slurry
absorption tower
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51012077A
Other languages
Japanese (ja)
Other versions
JPS5295578A (en
Inventor
義明 美浦
正隆 金安
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP51012077A priority Critical patent/JPS5948133B2/en
Publication of JPS5295578A publication Critical patent/JPS5295578A/en
Publication of JPS5948133B2 publication Critical patent/JPS5948133B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/464Sulfates of Ca from gases containing sulfur oxides

Description

【発明の詳細な説明】 本発明は鉱滓を使用する湿式排煙脱硫方法においてより
経済性を高める方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving economic efficiency in a wet flue gas desulfurization method using slag.

鉱滓(高炉滓、転炉滓、平炉滓、電炉滓等)は製鉄原料
、セメント原料、肥料、路盤材等として1部利用されて
いるものの大部分は埋立用等に投棄されており利用価値
は低い。
Mining slag (blast furnace slag, converter slag, open hearth slag, electric furnace slag, etc.) is partially used as raw material for steelmaking, cement raw material, fertilizer, roadbed material, etc., but most of it is disposed of in landfills, etc., and its utility value is low. low.

しかし鉱滓中には酸化カルシウムが40〜50%含まれ
ており、この酸化カルシウムが排煙中の亜硫酸ガスの除
去に利用しうろことはよく知られている。
However, slag contains 40 to 50% calcium oxide, and it is well known that this calcium oxide can be used to remove sulfur dioxide gas from flue gas.

即ち、鉱滓を微粉に粉砕し、水に懸濁させてスラリー液
とし、このスラリー液によって排煙を洗浄することによ
り排煙中の亜硫酸ガスを0式に従って除去する。
That is, slag is pulverized into fine powder and suspended in water to form a slurry liquid, and the flue gas is washed with this slurry liquid, thereby removing sulfur dioxide gas in the flue gas according to Equation 0.

CaO(鉱滓) +5O2=CaSOa””■亜硫酸カ
ルシウムは用途等に限定があるので通常は石膏にまで酸
化し回収している。
CaO (mine slag) +5O2=CaSOa""■ Calcium sulfite has limited uses, so it is usually oxidized to gypsum and recovered.

石灰を使用する湿式排煙脱硫法(石灰−石膏法)の場合
には亜硫酸カルシウムを含むスラリーを吸収塔外へ抜き
出し、酸化装置で空気酸化し、石膏にして回収している
In the case of a wet flue gas desulfurization method using lime (lime-gypsum method), a slurry containing calcium sulfite is extracted from the absorption tower, air oxidized in an oxidizer, and recovered as gypsum.

鉱滓の場合にはA1203,5iOz、FezOa、M
nO等が含まれており、これらの成分には酸化触媒性が
あるため、この触媒が作用する条件下で0式の吸収反応
と同時に0式の反応を進め、吸収塔内で亜硫酸カルシウ
ムを石膏にまで酸化し、回収している。
In the case of slag, A1203,5iOz, FezOa, M
Contains nO, etc., and these components have oxidation catalytic properties, so under the conditions where this catalyst acts, the 0-type absorption reaction proceeds simultaneously with the 0-type absorption reaction, and calcium sulfite is converted to gypsum in the absorption tower. It is oxidized and recovered.

CaSO3+y202=CaSO4・・・・・・■この
ように鉱滓を使用する排煙脱硫法は亜硫酸ガスの吸収と
同時に吸収塔内で石膏化されるので通常の石灰−石膏法
に必要な酸化装置が不要という秀れた利点を有する。
CaSO3+y202=CaSO4・・・■ In this way, the flue gas desulfurization method using slag absorbs sulfur dioxide gas and converts it into gypsum in the absorption tower, so there is no need for the oxidation equipment required for the normal lime-gypsum method. It has excellent advantages.

鉱滓を使用する湿式排煙脱硫の実際的な運転方法として
は次の様な方法が報告されている。
The following methods have been reported as practical operating methods for wet flue gas desulfurization using slag.

1 吸収塔1塔の場合、吸収スラリー液のpHを1.5
〜4として運転する方法。
1 In the case of one absorption tower, the pH of the absorption slurry liquid is set to 1.5.
How to drive as ~4.

2 吸収塔2塔の場合、ガス側からみて前段の吸収塔ス
ラリー液のpHを酸性に後段の吸収塔スラリ一波のpH
を中性あるいはアルカリ性で運転する方法。
2 In the case of two absorption towers, as seen from the gas side, the pH of the slurry liquid in the first absorption tower is made acidic, and the pH of the slurry in the second absorption tower is made acidic.
How to operate in neutral or alkaline conditions.

上記方法はいずれも石膏回収のためスラリー液を抜き出
す吸収塔のスラリー液pHは通常3前後の酸性に限定し
て運転するという特徴がある。
All of the above methods are characterized in that the pH of the slurry in the absorption tower from which the slurry is extracted for gypsum recovery is limited to an acidic pH of about 3.

これは一般に亜硫酸カルシウムの石膏への酸化反応速度
はpHが低い程速く、このことは酸化触媒の存在下にお
いても同様であり、吸収塔内で石膏化するために酸化に
して運転する。
This is because, in general, the lower the pH, the faster the oxidation reaction rate of calcium sulfite to gypsum, and this is true even in the presence of an oxidation catalyst, and the absorption tower is operated as oxidation to convert it into gypsum.

鉱滓を使用する湿式排煙脱硫法は利用価値の乏しい鉱滓
の有効利用となり経済的な方法といえるが、従来法は通
常pH3前後の酸性側に限定して運転するが故に種々の
問題点があり、その解決が望まれている。
The wet flue gas desulfurization method using slag can be said to be an economical method as it makes effective use of slag that has little utility value, but conventional methods usually operate only on the acidic side, around pH 3, and therefore have various problems. , a solution is desired.

1 吸収スラリー液のpHが低いため吸収塔関係の装置
材料の腐食環境が厳しい。
1. Due to the low pH of the absorption slurry liquid, the corrosive environment for equipment materials related to the absorption tower is severe.

このため高級な装置材料を使用しなければならないので
設置費が高くなると同時に腐食によるトラブルが゛多い
For this reason, high-quality equipment materials must be used, which increases installation costs and causes many problems due to corrosion.

2 よく知られているように亜硫酸ガスの吸収率は吸収
スラリー液のpHが低い程低下するので低pHで高い吸
収率を維持しようとすれば吸収塔の性能をあげるため、
例えば塔高を高くつる等大きな吸収塔にせざるを得す、
この点からも設備費および運転費が高くなる。
2. As is well known, the absorption rate of sulfur dioxide gas decreases as the pH of the absorption slurry liquid decreases, so in order to maintain a high absorption rate at low pH, it is necessary to increase the performance of the absorption tower.
For example, it is necessary to build a large absorption tower by increasing the height of the tower.
This also increases equipment costs and operating costs.

本発明は前記の問題点を解決し、鉱滓を使用する湿式排
煙脱硫法の経済性を高めようとするものである。
The present invention aims to solve the above-mentioned problems and improve the economic efficiency of the wet flue gas desulfurization method using slag.

即ち、吸収スラリー液のpHを5以上で且つ0式に示さ
れる範囲におさめ、不必要に低いpHにすることなく、
吸収反応と石膏への酸化反応を同時に進めるものである
That is, by keeping the pH of the absorption slurry liquid at 5 or more and within the range shown by formula 0, without making the pH unnecessarily low,
The absorption reaction and oxidation reaction to gypsum proceed simultaneously.

logpH≦−7,6−S +0.90・、・・・・■
pH:吸収スラリー液pH 8:吸収塔入口亜硫酸ガス濃度(SO□(%)、)と酸
素濃度(02(%))との比 5=SO□(%)10□(%) 本発明の態様を第1図において説明する。
log pH≦-7,6-S +0.90・・・・・■
pH: Absorption slurry liquid pH 8: Ratio of sulfur dioxide gas concentration (SO□ (%), ) to oxygen concentration (02 (%)) at the absorption tower inlet 5 = SO□ (%) 10□ (%) Aspects of the present invention will be explained in FIG.

亜硫酸ガスを含む排ガス13は吸収塔1へ入りポンプ5
により循環する鉱滓を含む吸収スラリー15によって洗
浄され、亜硫酸ガスが除去された後、清浄ガス14とな
って煙突へ放出される。
Exhaust gas 13 containing sulfur dioxide gas enters absorption tower 1 and pump 5
After being cleaned by an absorption slurry 15 containing slag that is circulated by the slag and removing sulfur dioxide gas, it becomes clean gas 14 and is discharged into the chimney.

一方吸収スラリーの流れは原料スラリー調合槽2に粉末
あるいはスラリー状の鉱滓(高炉、転炉滓、平炉滓、電
炉滓等)12および水11を供給し攪拌、混合、濃度調
節をして原料スラリーとじ、ポンプ4によって吸収塔1
に供給される。
On the other hand, the flow of absorption slurry is made by supplying powder or slurry slag (blast furnace, converter slag, open hearth slag, electric furnace slag, etc.) 12 and water 11 to a raw material slurry mixing tank 2, stirring, mixing, and adjusting the concentration to form a raw material slurry. The absorption tower 1 is closed by the pump 4.
supplied to

吸収塔1においては吸収スラリー15をポンプ5で循環
しながら排ガスの亜硫酸ガスを洗浄、吸収する。
In the absorption tower 1, the absorption slurry 15 is circulated by the pump 5 to wash and absorb sulfur dioxide gas from the exhaust gas.

この場合吸収塔入口の亜硫酸ガスおよび酸素濃度検出器
6により検出した値をpH設定器7にいれpH5以上で
且つ0式に従って吸収スラリー液のpHを設定する。
In this case, the values detected by the sulfur dioxide gas and oxygen concentration detector 6 at the inlet of the absorption tower are input into the pH setting device 7, and the pH of the absorption slurry liquid is set to 5 or higher and according to the formula 0.

pH制御器9においてはpH設定器7で設定したpH値
とpH検出器8で検出した吸収スラリー液のpH値から
制御弁10を作動させ、吸収塔1への原料スラリー17
の供給量を制御することにより、吸収スラリー液のpH
を設定値に制御する。
In the pH controller 9, the control valve 10 is operated based on the pH value set by the pH setting device 7 and the pH value of the absorption slurry liquid detected by the pH detector 8, and the raw material slurry 17 is supplied to the absorption tower 1.
By controlling the supply amount of
is controlled to the set value.

このことにより吸収反応と石膏化反応を同時に進める。This allows the absorption reaction and the gypsum reaction to proceed simultaneously.

なお、吸収塔入口の亜硫酸ガスおよび酸素濃度が安定し
ている場合には亜硫酸ガスおよび酸素濃度検出器6およ
びpH設定器7を設けることなく、予めpH5以上で且
つ0式によりpHを設定しておき、このpH設定値をp
H制御器9に入れるだけで十分である。
In addition, when the sulfur dioxide gas and oxygen concentrations at the absorption tower inlet are stable, the sulfur dioxide gas and oxygen concentration detector 6 and the pH setting device 7 are not provided, and the pH is set in advance to a value of 5 or higher using the 0 formula. and set this pH value to p
It is sufficient to input it into the H controller 9.

循環吸収スラリー液の1部16は石膏回収工程3へ抜き
出し、中和処理等を施した後石膏18を回収する。
One part 16 of the circulating absorption slurry liquid is extracted to a gypsum recovery process 3, and after being subjected to neutralization treatment etc., gypsum 18 is recovered.

石膏回収工程3で分離された水は原料スラリー調合槽2
の供給水11等として循環使用する。
The water separated in the gypsum recovery process 3 is transferred to the raw material slurry mixing tank 2.
The water is recycled and used as feed water 11, etc.

なお、第1図は吸収塔1塔の場合を示しているが必要に
応じ複数基にしてもさしつかえない。
Although FIG. 1 shows the case of one absorption tower, it is also possible to use a plurality of absorption towers if necessary.

この場合すべての吸収塔についてpHを5以上で且つ0
式の範囲におさめてもよいが、亜硫酸ガスおよび酸素濃
度の検出およびpH制御等が複雑となるので好ましくは
スラリーの流れからみた最終段の吸収塔即ち石膏スラリ
ーを石膏回収工程へ抜き出す吸収塔のpHを5以上で且
つ0式の範囲におさめ、他の吸収塔のpHは吸収率等の
点から適当に選択すればよい。
In this case, the pH of all absorption towers should be 5 or higher and 0.
However, since detection of sulfur dioxide gas and oxygen concentrations, pH control, etc. are complicated, it is preferable to use the absorption tower at the final stage from the viewpoint of the slurry flow, that is, the absorption tower that extracts the gypsum slurry to the gypsum recovery process. The pH may be kept within the range of 5 or more and 0, and the pH of other absorption towers may be appropriately selected from the viewpoint of absorption rate, etc.

吸収塔を複数とする利点は吸収塔の塔高が低くできコン
パクト化されることにある。
The advantage of having a plurality of absorption towers is that the height of the absorption tower can be lowered and the absorption tower can be made more compact.

pHを5以上で且つ0式に従って吸収塔のスラリー液の
pHを設定する場合、排ガス中の亜硫酸ガスおよび酸素
濃度を検出し、手動でpHを5以上で且つ0式に従って
pH設定することも勿論できるが、好ましくは亜硫酸ガ
スおよび酸素濃度を検出し、pHを5以上で且つ0式に
したがって自動的にpHを設定することである。
When setting the pH of the slurry liquid in the absorption tower to a pH of 5 or more and according to the 0 formula, it is of course possible to detect the sulfur dioxide gas and oxygen concentration in the exhaust gas and manually set the pH to a pH of 5 or more and according to the 0 formula. However, it is preferable to detect the sulfur dioxide gas and oxygen concentrations, and automatically set the pH to 5 or more according to the 0 formula.

この場合亜硫酸ガス濃度あるいは酸素濃度が安定してお
れば安定している成分の検出は省略し、固定値としてp
H設定器7にいれ込むことは勿論可能である。
In this case, if the sulfur dioxide concentration or oxygen concentration is stable, detection of stable components is omitted, and the fixed value is p.
Of course, it is possible to input it into the H setting device 7.

pH設定後の吸収スラリー液のpH制御は通常の方法例
えば第1図に示されるような方法で泪動的に行えばよい
After setting the pH, the pH of the absorption slurry may be controlled dynamically by a conventional method, for example, the method shown in FIG.

また吸収塔入口の亜硫酸ガスと酸素濃度の検出位置は吸
収塔の前に冷却塔を置く場合には冷却塔での亜硫酸ガス
吸収が少ないので冷却塔入口へ移してもさしつかえない
In addition, if a cooling tower is placed in front of the absorption tower, the detection position of the sulfur dioxide gas and oxygen concentrations at the absorption tower entrance can be moved to the cooling tower entrance, since sulfur dioxide gas absorption in the cooling tower is small.

通常排ガスはかなりの温度があるので吸収塔の前に水を
循環するガス冷却塔を置くか吸収塔へ直接排ガスをいれ
て冷却塔を兼用させる方法をとる。
Normally, the exhaust gas has a considerable temperature, so either a gas cooling tower that circulates water is placed in front of the absorption tower, or the exhaust gas is directly introduced into the absorption tower so that it also functions as a cooling tower.

冷却塔を置く場合、冷却塔で除しんされ、冷却塔循環液
中にダストが蓄積するので適宜液を抜き出す必要がある
When a cooling tower is installed, dust is removed by the cooling tower and dust accumulates in the circulating fluid of the cooling tower, so it is necessary to extract the fluid as appropriate.

サイクロン除しん後の焼結排ガスを冷却塔に導入した場
合の冷却塔抜き出し液中の固形物成分の分析例によると
石膏が54%もあり(水に溶解しない焼結ダスト中の酸
化カルシウム濃度は約25%と高い)、後述の第3表に
示す吸収塔から回収した石膏の品位と大差なく、且つ量
的にも少ないので冷却塔抜き出し液を吸収塔から抜き出
す石膏スラリーと混合処理し、石膏を回収しても石膏品
位をほとんど損うことはない。
According to an analysis example of the solid components in the liquid extracted from the cooling tower when the sintering exhaust gas after cyclone removal is introduced into the cooling tower, 54% of the solid content is found in gypsum (the concentration of calcium oxide in the sintering dust that does not dissolve in water is The quality of the gypsum recovered from the absorption tower shown in Table 3 below is not much different, and the quantity is also small. Therefore, the liquid extracted from the cooling tower is mixed with the gypsum slurry extracted from the absorption tower, and the gypsum slurry is extracted from the absorption tower. The quality of the gypsum is hardly affected even if it is recovered.

又、直接ガスを冷却兼吸収塔へ入れる場合この塔でやは
り除しんされ、ダストか゛石膏中に混入するが上記と同
様の理由により石膏品位を損うことはない。
Furthermore, when the gas is directly introduced into the cooling/absorption tower, it is also removed in this tower and dust is mixed into the gypsum, but for the same reason as mentioned above, the quality of the gypsum is not impaired.

本発明を実施する場合の原料の鉱滓スラリー濃度は亜硫
酸ガスの吸収反応あるいは石膏化反応の点から特に限定
を受けないのでスラリーとして取り扱える範囲であれば
よいが実用上は3〜15%が好ましい。
The concentration of the raw material slag slurry in carrying out the present invention is not particularly limited in terms of the absorption reaction of sulfur dioxide gas or the gypsum reaction, so it may be within a range that can be handled as a slurry, but it is preferably 3 to 15% in practice.

次に本発明の原理を実験結果を基にして説明する。Next, the principle of the present invention will be explained based on experimental results.

実験条件は下記の通りである。The experimental conditions are as follows.

実験装置:棚段塔1塔、ガス量1100ON’/H排ガ
ス:焼結排ガス、燃焼排ガス 脱硫剤:転 炉 滓 ■式の酸化反応速度は石灰を使用した場合には吸収スラ
リー液のpH1温度および排ガス中の酸素分圧等の影響
を受けることが知られているが、鉱滓についてはほとん
ど報告されていない。
Experimental equipment: 1 plate tower, gas volume 1100ON'/H Exhaust gas: Sintering exhaust gas, combustion exhaust gas Desulfurization agent: Converter Slag type oxidation reaction rate is based on pH 1 temperature of absorption slurry when lime is used It is known that it is affected by the oxygen partial pressure in exhaust gas, but there are few reports regarding mine slag.

本発明者等の実験結果によると鉱滓の場合0式の酸化反
応速度は触媒作用のため石灰の場合に比べて極めて速い
が、あらゆる条件下で吸収塔内で石膏化することはなく
、石膏化するためには吸収スラリー液pHと吸収塔入口
502(%)102(%)という2要因によって決めら
れるある領域のあることを見出した。
According to the experimental results of the present inventors, in the case of slag, the oxidation reaction rate of formula 0 is extremely fast compared to the case of lime due to the catalytic action, but under all conditions, it does not turn into gypsum in the absorption tower, and it turns into gypsum. It has been found that there is a certain range determined by two factors: absorption slurry liquid pH and absorption tower inlet 502 (%) and 102 (%).

即ち実験結果を第2図に示すが吸収ラリ−液のpHが吸
収塔入口のSO□(%)102(%)に対し、■式に示
される範囲にある時だけ吸収塔内で石膏化できる。
In other words, the experimental results are shown in Figure 2, and gypsum formation in the absorption tower can only be achieved when the pH of the absorption rally liquid is within the range shown by the formula .

従来の報告の中でバッチ式実験(排ガスのみを連続的に
吸収塔へ導入し、鉱滓スラリーの吸収塔への供給、抜き
取りは行わす鉱滓スラリーを循環し、排ガスを洗浄する
In previous reports, batch-type experiments (only the exhaust gas is continuously introduced into the absorption tower, and the slag slurry is supplied to and taken out from the absorption tower) The slag slurry is circulated and the exhaust gas is cleaned.

従ってスラリーのpHは亜硫酸ガスの吸収によって順次
低下してゆく。
Therefore, the pH of the slurry gradually decreases due to absorption of sulfur dioxide gas.

)の結果によると、SO2,0,1%の焼結排ガズ(0
2−12%とするとSO□(%)102(%)−8,3
X1073となる)の場合吸収スラリー液のpHは5以
下でないと吸収塔内で石膏化しないというデータがあり
、第2図の結果と異なる。
) According to the results of SO2, 0,1% sintering exhaust gas (0
If it is 2-12%, SO□(%)102(%)-8,3
In the case of X1073), there is data that says that unless the pH of the absorption slurry liquid is 5 or less, it will not turn into gypsum in the absorption tower, which is different from the results shown in Figure 2.

これは第2図の結果が連続実験(排ガスを連続的に吸収
塔へ導入し、亜硫酸ガスの吸収スラリー液のpHは低下
するが、これを補うため原料の鉱滓スラリーを吸収塔へ
供給すると共に供給分に相当する吸収スラリーを抜き出
すことにより吸収スラリー液のpHを一定に保持する。
This is because the results shown in Figure 2 are from a continuous experiment (exhaust gas is continuously introduced into the absorption tower, and the pH of the sulfur dioxide gas absorption slurry liquid decreases, but in order to compensate for this, the raw material slag slurry is supplied to the absorption tower). The pH of the absorption slurry liquid is maintained constant by withdrawing the absorption slurry corresponding to the amount supplied.

)の結果であるという実験方法の違いによるものであり
、第2図の結果を否定するものではない。
), which is due to the difference in the experimental method, and does not negate the results shown in Figure 2.

亜硫酸ガスの吸収率は石灰を使用する場合にはよく知ら
れているように吸収スラリー液のpHが6程度以下にな
ると低下し始めるので通常の石灰−石膏法ではpH6程
度以上で運転しており、本発明者等の実験によっても同
じ結果が得られている。
As is well known, when lime is used, the absorption rate of sulfur dioxide gas begins to decrease when the pH of the absorption slurry liquid drops to about 6 or below, so the normal lime-gypsum method is operated at a pH of about 6 or above. , the same results were obtained in experiments conducted by the present inventors.

鉱滓の場合については本発明者等が石灰の場合と同じ塔
高の吸収塔、同じ運転条件で実験したことろ石灰の場合
より少し低いpH=5以下で吸収率の低下がみられた。
In the case of slag, the present inventors conducted an experiment using an absorption tower with the same tower height and the same operating conditions as in the case of lime, and found that the absorption rate decreased at pH = 5 or less, which is slightly lower than in the case of lime.

たζ゛し吸収塔の塔高を非常に高くすればpH−5以下
でも吸収率を維持できることがわかった。
It was also found that if the height of the absorption tower was made very high, the absorption rate could be maintained even at pH -5 or lower.

しかし、吸収塔を高くすることは設備費が高くなるにと
・・まらす、塔の圧損も増すので送風動力即ち電力費も
増えることになり、経済性が損われる。
However, increasing the height of the absorption tower not only increases the equipment cost, but also increases the pressure loss of the tower, which increases the blowing power, that is, the electricity cost, which impairs economic efficiency.

従って鉱滓の場合といえどもやはり吸収スラリー液のp
Hは5以上に維持して吸収率を上げると共に、鉱滓を使
用することの最大の利点である吸収塔内で石膏化するこ
とによる酸化装置の不要という点を活かす範囲で運転す
べきである。
Therefore, even in the case of slag, the p of the absorption slurry liquid is
H should be maintained at 5 or higher to increase the absorption rate, and the operation should be carried out within a range that takes advantage of the greatest advantage of using slag, which is that no oxidation equipment is required because it is turned into gypsum in the absorption tower.

第2図によると5O2(%)102(%)≦26 X
10−30210%とすると802≦0.26%となり
工業的に実施されている排煙脱硫装置の排煙範囲を十分
カバーしている。
According to Figure 2, 5O2 (%) 102 (%) ≦26 X
When it is 10-30210%, it becomes 802≦0.26%, which sufficiently covers the exhaust gas range of industrially implemented flue gas desulfurization equipment.

)の範囲では吸収スラリー液のpHは高い吸収率の維持
できる5以上でも吸収塔内で石膏化でき、酸化装置不要
という鉱滓使用の最大の利点は損われない。
), even if the pH of the absorption slurry liquid is 5 or more, which allows a high absorption rate to be maintained, it can be turned into gypsum in the absorption tower, and the greatest advantage of using slag, which is that an oxidizer is not required, is not impaired.

以上のように実験結果を基にして本発明の詳細な説明し
たが、この中で′も明らかなように本発明の実施により
鉱滓使用湿式排煙脱硫法の経済性を最大限に高めること
ができる。
The present invention has been described in detail based on the experimental results as described above, and as is clear from the above, it is possible to maximize the economic efficiency of the wet flue gas desulfurization method using slag by implementing the present invention. can.

本発明に従うと極力スラリー液のpHを上げて運転でき
るのでいたずらに吸収塔設備を過大にすることなしに高
い吸収率が得られると共に高pH運転による装置材料の
低級化が計れ、しかも装置トラブル等が解消する。
According to the present invention, it is possible to operate with the pH of the slurry liquid as high as possible, so a high absorption rate can be obtained without unnecessarily increasing the absorption tower equipment, and it is possible to lower the quality of equipment materials due to high pH operation, and moreover, it is possible to avoid equipment troubles. is resolved.

次に概ね第1図の工程で実施した本発明の詳細な説明す
る。
Next, a detailed explanation will be given of the present invention, which was carried out generally through the steps shown in FIG.

吸収塔に棚段塔1塔、脱硫剤に転炉滓(表1表)を使用
し、燃焼排ガス(100ONm3/H)の脱硫実験を行
い、第2表に示すように高い脱硫率が得られた。
Using a plate tower as an absorption tower and converter slag (Table 1) as a desulfurization agent, a desulfurization experiment was conducted on flue gas (100ONm3/H), and as shown in Table 2, a high desulfurization rate was obtained. Ta.

また回収された反応生成物は第3表に示すように完全に
石膏化していた。
Further, the recovered reaction product was completely converted into gypsum as shown in Table 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を説明するための概略図、第
2図は本発明の詳細な説明する図(実験結果)。 1は吸収塔、2は原料スラリー調合槽、3は石膏回収工
程、4,5はポンプ、6はso2.o2検出器、7はp
Hは設定器、8はpH検出器、9はpH制御器、10は
制御弁、11は水、12は鉱滓、13は排ガス、14は
清浄ガス、15〜17はスラリー経路、18は石膏。
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail (experimental results). 1 is an absorption tower, 2 is a raw material slurry mixing tank, 3 is a gypsum recovery process, 4 and 5 are pumps, and 6 is an SO2. o2 detector, 7 is p
H is a setting device, 8 is a pH detector, 9 is a pH controller, 10 is a control valve, 11 is water, 12 is slag, 13 is exhaust gas, 14 is clean gas, 15 to 17 are slurry paths, and 18 is plaster.

Claims (1)

【特許請求の範囲】 1[t’鉱滓を使用する湿式排煙脱硫方法において、吸
収スラリー液のpHを5以上で且つ0式に示される範囲
におさめ、該pH範囲内で脱硫と同時に石膏化を行うこ
とを特徴とする湿式排煙脱硫方法。 log; pH≦−7,6−S +0.90−・・・・
−■pH:吸収スラリー液pH 8:吸収塔入口亜硫酸ガス濃度(SO2(%))と酸素
濃度(02(%))との比 5=SO2(%)10□(%)
[Claims] 1 [t' In a wet flue gas desulfurization method using slag, the pH of the absorption slurry liquid is kept at 5 or more and within the range shown by the formula 0, and within the pH range, desulfurization and gypsumization are performed at the same time. A wet flue gas desulfurization method characterized by carrying out the following. log; pH≦-7,6-S +0.90-...
- ■ pH: Absorption slurry liquid pH 8: Ratio of sulfur dioxide gas concentration (SO2 (%)) to oxygen concentration (02 (%)) at the inlet of absorption tower 5 = SO2 (%) 10□ (%)
JP51012077A 1976-02-06 1976-02-06 Wet flue gas desulfurization method using slag Expired JPS5948133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51012077A JPS5948133B2 (en) 1976-02-06 1976-02-06 Wet flue gas desulfurization method using slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51012077A JPS5948133B2 (en) 1976-02-06 1976-02-06 Wet flue gas desulfurization method using slag

Publications (2)

Publication Number Publication Date
JPS5295578A JPS5295578A (en) 1977-08-11
JPS5948133B2 true JPS5948133B2 (en) 1984-11-24

Family

ID=11795511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51012077A Expired JPS5948133B2 (en) 1976-02-06 1976-02-06 Wet flue gas desulfurization method using slag

Country Status (1)

Country Link
JP (1) JPS5948133B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171124U (en) * 1988-05-12 1989-12-04

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360880A (en) * 1976-11-12 1978-05-31 Nippon Steel Corp Wet desulfurizing method for exhaust gas by use of slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857887A (en) * 1971-11-22 1973-08-14
JPS4869769A (en) * 1971-12-24 1973-09-21
JPS4930264A (en) * 1972-07-18 1974-03-18
JPS5039688A (en) * 1973-08-15 1975-04-11

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857887A (en) * 1971-11-22 1973-08-14
JPS4869769A (en) * 1971-12-24 1973-09-21
JPS4930264A (en) * 1972-07-18 1974-03-18
JPS5039688A (en) * 1973-08-15 1975-04-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171124U (en) * 1988-05-12 1989-12-04

Also Published As

Publication number Publication date
JPS5295578A (en) 1977-08-11

Similar Documents

Publication Publication Date Title
DK172817B1 (en) Process for desulphurizing flue gas by the wet method
CN102755827B (en) Flue gas desulfurization process and device adopting acetylene sludge-gypsum method
CN110436506A (en) Using industrial waste sulfuric acid to the method for semi-dry desulphurization ash oxidation processes
CN101607173A (en) The sulfur removal technology of using external regenerative cycle magnesium sulfate method flue gas or waste gas
CN1712113A (en) Smoke desulfidation from amino bialkali method
CN1207083C (en) Technology for magnesia wet method stack gas desulfurization and recovering the products
CA1289336C (en) Process for removing gaseous sulfur compounds and sulfur dioxide fromthe flue gases of a furnace
CN102284238A (en) Bialkali-method flue-gas desulphurization process
US3980756A (en) Air pollution control system
CN101844036A (en) Wet flue gas desulfurization (WFGD) process for gypsum through oxidization in tower by using calcium-based strongly basic substance
JPS6255890B2 (en)
KR100306377B1 (en) Method of processing desulfurization absorption liquid and apparatus therefor
US4490341A (en) Flue gas desulfurization process
CA1214310A (en) Method of producing calcium sulfate dihydrate in connection with the desulfurization of flue gases
US4073864A (en) Method of desulfurizing exhaust emission using pulverized slag as absorbent
JPS5948133B2 (en) Wet flue gas desulfurization method using slag
JP2001179048A (en) Method for desulfurizing exhaust gas by magnesium hydroxide system
US4191731A (en) Wet process using steel slag for waste gas desulfurization
CN106044820A (en) Method for producing strontium carbonate from carbon dioxide in exhaust gas
CN110368801A (en) Sodium backbone method or semi-dry process flue gas desulphurization by-product processing unit and processing method
JPS5951328B2 (en) Method for absorbing and removing sulfur oxides in exhaust gas using red mud slurry containing calcium ions
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
CA1289337C (en) Process for removing gaseous sulfur compounds, such as sulfur dioxide, from the flue gases of a furnace
JP3611258B2 (en) Gas purification equipment
JP4644912B2 (en) Control method of sintering machine exhaust gas desulfurization equipment