JPS5948049B2 - Method for producing fast-curing phenolic resin - Google Patents

Method for producing fast-curing phenolic resin

Info

Publication number
JPS5948049B2
JPS5948049B2 JP53161059A JP16105978A JPS5948049B2 JP S5948049 B2 JPS5948049 B2 JP S5948049B2 JP 53161059 A JP53161059 A JP 53161059A JP 16105978 A JP16105978 A JP 16105978A JP S5948049 B2 JPS5948049 B2 JP S5948049B2
Authority
JP
Japan
Prior art keywords
catalyst
resin
phenol
ratio
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53161059A
Other languages
Japanese (ja)
Other versions
JPS5590524A (en
Inventor
基行 南條
「つとむ」 渡辺
茂 越部
圭二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP53161059A priority Critical patent/JPS5948049B2/en
Priority to DE19803022326 priority patent/DE3022326A1/en
Publication of JPS5590524A publication Critical patent/JPS5590524A/en
Publication of JPS5948049B2 publication Critical patent/JPS5948049B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 本発明は速硬化性フェノール樹脂を安全容易且収率良く
安価に製造することを目的とするものであり、その特徴
は2価金属塩の中から選ばれた付加反応に効果的な触媒
と、縮合反応に効果的な触媒とを併用して反応させるこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The purpose of the present invention is to produce a fast-curing phenolic resin safely, easily, with high yield, and at low cost. The purpose of the reaction is to use a catalyst effective for the condensation reaction in combination with a catalyst effective for the condensation reaction.

H−L−Benderらにより、オルソ結合金有率の高
いハイオルソノボラックが速硬化性を有することが報告
されて以来、このハイオルソノボラックに関する種々の
製造法が開発され実用化されている。
Since H-L-Bender et al. reported that a high-ortho novolak with a high ortho-bonded metal content has fast curing properties, various production methods for this high-ortho-novolak have been developed and put into practical use.

これら従来の製造方法は、触媒として弱酸性の2価金属
1種を用いるものや、弱酸性2価金属と酸触媒を用いる
もの等がある。通常、ノMオルソノボラックは弱酸性触
媒若しくは塩基性触媒により、まずフエノールメチロー
ル体を生成せしめ、これを縮合することにより製造して
いる。
These conventional manufacturing methods include those that use one weakly acidic divalent metal as a catalyst, and those that use a weakly acidic divalent metal and an acid catalyst. Ortho-novolak is usually produced by first generating a phenol methylol compound using a weak acidic catalyst or a basic catalyst, and then condensing this.

ただ1種の弱酸性触媒のみで反応を行う時には、メチロ
ール化とメチレン化をバランスよく進行させることは難
しい。メチロiル化に優れた触媒を用いた時には、縮合
時にゲル化を起こす可能性がある。又、安全のためにメ
チロール化を抑えた触媒を使用すると収率やオルソパラ
結合比、即ち速硬化性の低下が避けることのできない問
題である。そこで弱酸性触媒、若しくは塩基性触媒でメ
チロール化を行い次に酸触媒を投入しメチレン化を行う
方法等が考えられている。しかしながら、これらの方法
は、酸投入時の発熱制御や酸触媒による急激なメチレン
化の発熱反応制御等の問題を有している。このため酸触
媒添加の前後2回還流反応を行う製造方法も考えられて
いる。このような2回の還流反応は反応時間長によるコ
ストアップを招くだけでなく、本発明者らの実験によれ
ば、還流反応中に樹脂のハイオルソ性が低下していくた
め、速硬化性が失われることが判明した。更に、同一製
造工程中に2度別々に触媒を添加するという繁雑さがあ
ること等、速硬化性ハイオルソノボラックの工業的に適
した製造法は確立されていなかつた。本発明は前記の問
題を全て解決したものであり、この発明の目的とすると
ころは、2種の働きの異つた2価金属塩を併用すること
、即ち付加反応(メチロール化)に優れた働きを持つ2
価金属塩と縮合反応(メチレン化)に優れた働きを持つ
2価金属塩とを併用することにより、付加と縮合の両反
応をバランス良く進行させ、安全且つ低コストで速硬化
ノボラックが製造できることを見い出したものである。
本発明の要旨とするところは、フェノール類とホルムア
ルデヒドとをモル比(以下F/Pと表わす。)0.6〜
0.95の範囲で2価金属塩の中から選ばれた付加反
応に効果的な触媒Aと縮合反応に効果的な触媒Bとを反
応開始時から併用して反応させることを特徴とする速硬
化性フエノール樹脂の製造方法であり、使用する触媒A
は酢酸マンガン、酢酸亜鉛、酢酸バリウム等の中から選
ばれ、又触媒Bは酸化亜鉛、硝酸亜鉛、塩化亜鉛等の中
から選択される。又、両触媒の併用比率は、触媒A/触
媒Bのモル比で0.02〜 4とし、前記2種の触媒の
合計使用量は仕込フエノールに対し0.1〜3wt%に
規定することにより特に優れた効果を有するものである
。この発明の製造方法を実施する場合には、還流一 反
応を行つた後常圧若しくは減圧下で脱水縮合により樹脂
化する方法でも、又還流を行わず、常圧脱水で徐々に昇
温しながら樹脂化する方法でも良い。
When the reaction is carried out using only one type of weakly acidic catalyst, it is difficult to proceed with methylolation and methylenation in a well-balanced manner. When a catalyst excellent in methylation is used, gelation may occur during condensation. Further, if a catalyst with suppressed methylolation is used for safety reasons, there is an unavoidable problem that the yield and the ortho-para bond ratio, that is, the rapid curing property decreases. Therefore, methods have been considered in which methylolation is carried out using a weakly acidic or basic catalyst, and then methylenation is carried out by adding an acidic catalyst. However, these methods have problems such as heat generation control during acid injection and exothermic reaction control of rapid methylenation using an acid catalyst. For this reason, a production method has been considered in which the reflux reaction is carried out twice before and after addition of the acid catalyst. Such two reflux reactions not only lead to increased costs due to longer reaction times, but also, according to experiments conducted by the present inventors, the high ortho properties of the resin decrease during the reflux reaction, resulting in faster curing. It turned out to be lost. Furthermore, an industrially suitable manufacturing method for fast-curing high-ortho-novolaks has not been established due to the complexity of adding a catalyst twice and separately during the same manufacturing process. The present invention has solved all of the above-mentioned problems, and the purpose of this invention is to use two types of divalent metal salts with different functions, that is, to have an excellent effect on addition reaction (methylolation). 2 with
By using a valent metal salt and a divalent metal salt that has an excellent effect on the condensation reaction (methyleneation), both the addition and condensation reactions can proceed in a well-balanced manner, and a fast-curing novolak can be produced safely and at low cost. This is what we discovered.
The gist of the present invention is that the molar ratio (hereinafter referred to as F/P) of phenols and formaldehyde is 0.6 to
0.95 from divalent metal salts, and a catalyst A effective for addition reactions and a catalyst B effective for condensation reactions are used in combination from the start of the reaction. A method for producing a curable phenolic resin, in which the catalyst A used is
is selected from manganese acetate, zinc acetate, barium acetate, etc., and catalyst B is selected from zinc oxide, zinc nitrate, zinc chloride, etc. In addition, the combined ratio of both catalysts is set at a molar ratio of catalyst A/catalyst B of 0.02 to 4, and the total usage amount of the two types of catalysts is set to 0.1 to 3 wt% based on the charged phenol. It has particularly excellent effects. When carrying out the production method of this invention, it is possible to carry out the reflux reaction and then form a resin by dehydration condensation under normal pressure or reduced pressure. A method of making it into resin may also be used.

本発明に用いるホルムアルデヒド源としてパラホルムを
用いた場合には、反応時間を短縮でき、更に仕込総量に
対する収率が高くなるという利点も有している。又、触
媒の併用比率を変えることにより、オルトパラ比(以下
α↑比と表す。
When paraform is used as the formaldehyde source used in the present invention, it has the advantage that the reaction time can be shortened and the yield relative to the total amount charged can be increased. In addition, by changing the ratio of catalysts used in combination, the ortho-para ratio (hereinafter referred to as α↑ ratio) can be determined.

)1.0〜3.0の範囲で所望のレジンを得ることがで
きました。〔Q/P比は核磁気共鳴スペクトルにより求
めたもので、Q/P比={ 2,2’−メチレンプロト
ン+1/2(2,4−メチレンプロトン)}/{4,4
’−メチレンプロトン十1/2(2,4−メチレンプロ
トン)}〕又本発明に用いる樹脂の分子量としては、フ
リーフエノール類を除いた数平均分子量で600〜11
00であり、特に700〜900が好ましい。ここで言
う分子量は、蒸気圧平衡法より求めた数平均分子量をフ
リーフエノール量で補正算出して求めたものである。前
記のように触媒の併用比率を、触媒A/触媒Bのモル比
で0.02〜4としたのは、0.02以下では収率が極
端に低下すること、一方4以上ではゲル化の危険性を有
するからである。本発明により得られるフエノール樹脂
の0/ P比は、通常のランダムノボラツクの範囲(0
/P=0.7〜0.8)より高くなり、そのため、この
樹脂を用いた成形材料の成形材料の成形特性のうち特に
速硬化性が優れ且つ流動性、溶融性にも優れたものが得
られるという特徴を有している。
) We were able to obtain the desired resin in the range of 1.0 to 3.0. [Q/P ratio was determined by nuclear magnetic resonance spectrum, Q/P ratio = {2,2'-methylene proton + 1/2 (2,4-methylene proton)}/{4,4
'-Methylene proton 11/2 (2,4-methylene proton)}] Also, the molecular weight of the resin used in the present invention is 600 to 11 in number average molecular weight excluding free phenols.
00, particularly preferably 700 to 900. The molecular weight referred to here is calculated by correcting the number average molecular weight determined by the vapor pressure equilibrium method with the amount of free phenol. As mentioned above, the molar ratio of catalyst A/catalyst B is set at 0.02 to 4.The reason for this is that if it is less than 0.02, the yield will be extremely reduced, while if it is more than 4, it will cause gelation. This is because it is dangerous. The 0/P ratio of the phenolic resin obtained by the present invention is within the range of ordinary random novolac (0
/P = 0.7 to 0.8), and therefore, among the molding properties of the molding material of the molding material using this resin, one with particularly excellent fast curing properties and excellent fluidity and meltability is It has the characteristic that it can be obtained.

従つて、この樹脂を成形材料に適用した場合、樹脂が低
温で融けるため、射出シリンダー内での熱安定性に優れ
金型内での流動性が良く且つ硬化が速い等の特徴を有す
る。従つて大容量成形の成形時間短縮(ハイサイクル成
形)等も可能となる。又流動性、溶融性に優れるため、
可塑剤を配合する必要がなく、型ぐもりや成形品のくも
り等の問題が解消される゜次に本発明の製造方法につい
て以下実施例で説明する。
Therefore, when this resin is applied to a molding material, since the resin melts at a low temperature, it has characteristics such as excellent thermal stability in the injection cylinder, good fluidity in the mold, and quick curing. Therefore, it becomes possible to shorten the molding time for large-volume molding (high-cycle molding). Also, because it has excellent fluidity and meltability,
There is no need to incorporate a plasticizer, and problems such as mold cloudiness and cloudiness of the molded product are eliminated.Next, the manufacturing method of the present invention will be explained below with reference to Examples.

実施例 1 先ず、フエノール2829と37%ホルマリン2079
(F/P=0.85)を塩化亜鉛1.969と酢酸マン
ガン0.11gの存在下3時間還流反応を行う。
Example 1 First, phenol 2829 and 37% formalin 2079
(F/P=0.85) is refluxed for 3 hours in the presence of 1.969 g of zinc chloride and 0.11 g of manganese acetate.

次に減圧下ホルマリンに含まれる水を除去する。その後
再び常圧に戻し段階的に150℃まで3時間で昇温せし
め樹脂285g(仕込フエノールに対し101%)を得
た。この樹脂のフリーフエノールは7.0’%.0A)
比は1.1であつた。又、この樹脂100部に対しヘキ
ナメチレンテトラミン15部を加え150℃の熱板上で
測定したゲルタイム(以下ゲルタイムと表わす)は43
秒であつた゜さらにこの樹脂100部に対しヘキサメチ
レンテトラミン18部、木粉65部、炭酸カルシウム2
5部、ステアリン酸3部を配合し100℃の熱ロールで
5分間混練し成形材料を得た。
Next, water contained in formalin is removed under reduced pressure. Thereafter, the pressure was returned to normal and the temperature was raised stepwise to 150° C. over 3 hours to obtain 285 g of resin (101% based on the charged phenol). The free phenol content of this resin is 7.0'%. 0A)
The ratio was 1.1. In addition, 15 parts of hequinamethylenetetramine was added to 100 parts of this resin, and the gel time (hereinafter referred to as gel time) measured on a hot plate at 150°C was 43.
In addition, for 100 parts of this resin, 18 parts of hexamethylenetetramine, 65 parts of wood flour, and 2 parts of calcium carbonate were added.
5 parts of stearic acid and 3 parts of stearic acid were blended and kneaded for 5 minutes with heated rolls at 100°C to obtain a molding material.

この材料の成形品のバーコール硬度は52であつた。The Barcol hardness of a molded article made of this material was 52.

通常の酸触媒によるランダムノボラツクを使用した場合
のバーコール硬度は同一配合で25である。実施例 2
フエノール2829と88%パラホルム81B9(F/
P=0.80)を塩化亜鉛1.6gと酢酸亜鉛0.66
gの存在下で常温より100℃までを30分で次いで1
00℃より150℃まで1時間で徐々に昇温すシこの後
20分間減圧(80翼?IElg)を保ちバツト上に取
り出した。
When a conventional acid-catalyzed random novolak is used, the Barcol hardness is 25 for the same formulation. Example 2
Phenol 2829 and 88% paraform 81B9 (F/
P=0.80) with 1.6 g of zinc chloride and 0.66 g of zinc acetate.
g in the presence of 100℃ from room temperature for 30 minutes.
The temperature was gradually raised from 00° C. to 150° C. over 1 hour, and then the pressure was maintained at reduced pressure (80 blades? IELg) for 20 minutes and taken out onto a vat.

フリーフエノール7.69、α予比1.5、ゲルタイム
37秒の樹脂が289g得られた。さらに、実施例1と
同様に成形材料化したところバーコール硬度は55であ
つz実施例 3 フエノール2821と37%ホルマリン1871(F/
P−0.77)を硝酸マンガン0.8gと酢酸亜鉛1.
9,9の存在下で実施例1と同様に反応せしめ樹脂28
69を得た。
289 g of resin with free phenol of 7.69, α pre-ratio of 1.5, and gel time of 37 seconds was obtained. Further, when made into a molding material in the same manner as in Example 1, the barcol hardness was 55.Example 3 Phenol 2821 and 37% formalin 1871 (F/
P-0.77) with 0.8 g of manganese nitrate and 1.0 g of zinc acetate.
Resin 28 was reacted in the same manner as in Example 1 in the presence of 9,9.
I got 69.

この樹脂のフリーフエノールは6.0%、O/P比2.
0)ゲルタイムは23秒であつた。実施例1と同様に成
形材料化したところバーコール硬度は60であつz次に
、本発明の製造方法の効果を立証するために、比較例1
〜3を述べる。
This resin has a free phenol content of 6.0% and an O/P ratio of 2.0%.
0) Gel time was 23 seconds. When made into a molding material in the same manner as in Example 1, the Barcol hardness was 60.Next, in order to prove the effect of the manufacturing method of the present invention, Comparative Example 1 was prepared.
〜3 will be described.

比較例 1 フエノール2829と3770ホルマリン2249(F
/P=0.92)を塩化亜鉛2.1gの存在下で実施例
1と同様に反応せしめ150℃まで昇温した。
Comparative Example 1 Phenol 2829 and 3770 Formalin 2249 (F
/P=0.92) in the presence of 2.1 g of zinc chloride in the same manner as in Example 1, and the temperature was raised to 150°C.

この後45分間減圧下(80m77!Hg)で未反応フ
エノールを除去し取り出した。フリーフエノール7.8
%、O/P比1.2、ゲルタイム45秒の樹脂が260
g得られた。この樹脂は実施例1と同等であるが低収率
(仕込フエノールに対し92%)である。
Thereafter, unreacted phenol was removed under reduced pressure (80 m77!Hg) for 45 minutes and taken out. Free phenol 7.8
%, O/P ratio 1.2, gel time 45 seconds resin is 260
g was obtained. This resin is equivalent to Example 1, but the yield is low (92% based on the phenol charged).

又、実施例2,3に比べO/P比が低く速硬化性で劣る
Moreover, compared to Examples 2 and 3, the O/P ratio was low and the fast curing property was inferior.

比較例 2 フエノール282gと3770ホルマリン1709(F
/P=0.70)を酢酸亜鉛3.3f1の存在下で実施
例1と同様に反応せしめたところ、内温145℃で急激
な反応を起こしゲル化した。
Comparative Example 2 282 g of phenol and 3770 formalin 1709 (F
/P=0.70) was reacted in the same manner as in Example 1 in the presence of 3.3 f1 of zinc acetate, and a rapid reaction occurred at an internal temperature of 145° C., resulting in gelation.

比較例 3フエノール2829と37%ホルマリン19
41(F/P=0.80)を酢酸亜鉛1.99の存在下
で4時間還流せしめ蓚酸1.19を投入した。
Comparative example 3 Phenol 2829 and 37% formalin 19
41 (F/P=0.80) was refluxed for 4 hours in the presence of 1.99 g of zinc acetate, and 1.19 g of oxalic acid was added.

そして、2時間還流を続けた後減圧下ホルマリンに含ま
れる水を除きさらに常圧下150℃まで焚き上げ、樹脂
2749を得た。この樹脂のフリーフエノールは7.2
%、O/P比1.1、ゲルタイム49秒であつた。この
樹脂は実施例1同様であるが、反応時間は2時間長く要
した。
After refluxing for 2 hours, the water contained in formalin was removed under reduced pressure, and the mixture was heated to 150° C. under normal pressure to obtain resin 2749. Free phenol of this resin is 7.2
%, O/P ratio 1.1, and gel time 49 seconds. This resin was the same as Example 1, but the reaction time was 2 hours longer.

Claims (1)

【特許請求の範囲】[Claims] 1 フェノール類とホルムアルデヒドとをモル比0.6
〜0.95の範囲で、2価金属の中から選ばれた付加反
応に効果的な触媒Aとして酢酸マンガン、酢酸亜鉛又は
酢酸バリウム、縮合反応に効果的な触媒Bとして酸化亜
鉛、硝酸マンガン又は塩化亜鉛の中からそれぞれ1種選
択し併用して反応させることを特徴とする速硬化フェノ
ール樹脂の製造方法。
1 Molar ratio of phenols and formaldehyde is 0.6
Manganese acetate, zinc acetate or barium acetate as catalyst A effective for addition reaction selected from divalent metals in the range of ~0.95; catalyst B effective for condensation reaction as zinc oxide, manganese nitrate or A method for producing a fast-curing phenol resin, which comprises selecting one type of zinc chloride and reacting them in combination.
JP53161059A 1978-12-28 1978-12-28 Method for producing fast-curing phenolic resin Expired JPS5948049B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53161059A JPS5948049B2 (en) 1978-12-28 1978-12-28 Method for producing fast-curing phenolic resin
DE19803022326 DE3022326A1 (en) 1978-12-28 1980-06-13 Quick-setting phenol! resin prodn. - by reacting phenolic cpd. and formaldehyde in presence of mixed catalyst for catalysing addn. and condensn. reactions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP53161059A JPS5948049B2 (en) 1978-12-28 1978-12-28 Method for producing fast-curing phenolic resin
DE19803022326 DE3022326A1 (en) 1978-12-28 1980-06-13 Quick-setting phenol! resin prodn. - by reacting phenolic cpd. and formaldehyde in presence of mixed catalyst for catalysing addn. and condensn. reactions

Publications (2)

Publication Number Publication Date
JPS5590524A JPS5590524A (en) 1980-07-09
JPS5948049B2 true JPS5948049B2 (en) 1984-11-24

Family

ID=25786004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53161059A Expired JPS5948049B2 (en) 1978-12-28 1978-12-28 Method for producing fast-curing phenolic resin

Country Status (2)

Country Link
JP (1) JPS5948049B2 (en)
DE (1) DE3022326A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2475587A (en) * 1945-02-27 1949-07-12 Bakelite Corp Phenolic resins
FR1115410A (en) * 1953-06-16 1956-04-24 Distillers Co Yeast Ltd Preparation of phenolic resins
US4097463A (en) * 1977-01-10 1978-06-27 Monsanto Company Process for preparing high ortho novolac resins
US4113700A (en) * 1977-01-10 1978-09-12 Monsanto Company Process for preparing high ortho novolac resins
US4140845A (en) * 1977-03-21 1979-02-20 Cor Tech Research Ltd. Control of procedures for formation of water-immiscible thermosetting phenol-formaldehyde resins

Also Published As

Publication number Publication date
DE3022326C2 (en) 1988-07-21
JPS5590524A (en) 1980-07-09
DE3022326A1 (en) 1981-12-24

Similar Documents

Publication Publication Date Title
US3332911A (en) Production of fast-curing phenol-aldehyde novolac resins employing a boric acid or borate salt catalyst
CN103597001B (en) The manufacture method of urea-modified novolak phenolics and the urea-modified novolak phenolics obtained by the method and the coated sand obtained with it
US4297473A (en) Quick-curing phenolic resin and process for preparing same
JPS5948049B2 (en) Method for producing fast-curing phenolic resin
US4299947A (en) Process for producing quick-curing phenolic resin
CN111909332B (en) Solid thermosetting phenolic resin and preparation method thereof
JPH04142324A (en) Production of modified phenol/aralkyl resin
JPH032169B2 (en)
JP4661087B2 (en) Method for producing solid resol type phenolic resin
JPS6023769B2 (en) Method for producing self-curing phenolic resin
JPS5948048B2 (en) Fast-curing phenolic resin and its manufacturing method
JPH0670114B2 (en) Method for producing self-curing phenolic resin
JPH06184405A (en) Phenol resin composition
GB2079298A (en) Quick-curing phenolic resin
JPH0735427B2 (en) Fast curing novolak type phenol resin and method for producing the same
JP4206909B2 (en) Method for producing triazine-modified novolac-type phenolic resin
JPH04149221A (en) Production of self-curable solid phenolic resin
JPS6034567B2 (en) Manufacturing method of phenolic resin
JPH03103417A (en) Production of self-curing phenolic resin
JP2001106752A (en) Method for producing high ortho novolak resin
JPH02247213A (en) Production of self-curable solid phenolic resin
JP3972712B2 (en) Acid curable resol resin composition
JPS6026491B2 (en) Production method of solid phenol-melamine cocondensation resin
WO2000009579A1 (en) Phenol/triazine derivative co-condensate resin and process for producing the same
JP2003119233A (en) Novolac phenolic resin and its production method