JPS5947999B2 - thermal pen - Google Patents

thermal pen

Info

Publication number
JPS5947999B2
JPS5947999B2 JP54037341A JP3734179A JPS5947999B2 JP S5947999 B2 JPS5947999 B2 JP S5947999B2 JP 54037341 A JP54037341 A JP 54037341A JP 3734179 A JP3734179 A JP 3734179A JP S5947999 B2 JPS5947999 B2 JP S5947999B2
Authority
JP
Japan
Prior art keywords
thermal
resistant layer
wear
filler
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54037341A
Other languages
Japanese (ja)
Other versions
JPS55128476A (en
Inventor
一成 安藤
博和 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORITAKE KANPANII RIMITEDO KK
Original Assignee
NORITAKE KANPANII RIMITEDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORITAKE KANPANII RIMITEDO KK filed Critical NORITAKE KANPANII RIMITEDO KK
Priority to JP54037341A priority Critical patent/JPS5947999B2/en
Publication of JPS55128476A publication Critical patent/JPS55128476A/en
Publication of JPS5947999B2 publication Critical patent/JPS5947999B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Landscapes

  • Electronic Switches (AREA)
  • Recording Measured Values (AREA)

Description

【発明の詳細な説明】 本発明は、熱ペンに関するものであり、特に、厚膜熱ペ
ンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to thermal pens, and more particularly to thick film thermal pens.

この種の熱ペンは、添付図面の第1図および第2図に断
面図で示すように、絶縁基材1上に厚膜手法により電力
供給用電気導体2、2’、感熱記録用発熱抵抗体3およ
び耐摩耗層4を積層した構造とするのが一般的であり、
その耐摩耗層4は、感熱記録用発熱抵抗体3を覆うよう
にして設けられ、感熱記録紙との摺動接触による発熱抵
抗体の摩耗を保護するものである。
As shown in cross-sectional views in FIGS. 1 and 2 of the accompanying drawings, this type of thermal pen includes electric conductors 2, 2' for power supply and a heat-generating resistor for thermal recording using a thick film technique on an insulating base material 1. It is common to have a structure in which the body 3 and the wear-resistant layer 4 are laminated,
The wear-resistant layer 4 is provided to cover the heat-generating resistor 3 for thermal recording, and protects the heat-generating resistor from abrasion due to sliding contact with the heat-sensitive recording paper.

第1図は発熱抵抗体3をドット状に形成した熱ペンの例
を示し、第2図はセグメント状に形成した棒状熱ペンの
例を示している。従来、この耐摩耗層は、材料として主
として抵触または高融ガラスを用いて所定厚みに被覆し
て形成している。
FIG. 1 shows an example of a thermal pen in which the heating resistor 3 is formed in a dot shape, and FIG. 2 shows an example of a rod-shaped thermal pen in which the heating resistor 3 is formed in a segment shape. Conventionally, this wear-resistant layer has been formed by coating it to a predetermined thickness using a material such as glass or high-temperature glass.

この種の厚膜型熱ペンでは、発熱抵抗体の寿命および耐
摩耗層によつてその寿命がほとんど決まるが、特に耐摩
耗層によつて抵抗変化率、画描性、消費電力が大きく影
響され寿命が左右される。熱ペンの寿命としては、所定
の電力を連続印加しアナログ記録させ500Km程走行
させた後抵抗値変化として約20%以下で画描性が良好
であることが最低限必要とされ、これがインク式に代る
大きな特徴の1つとして熱ペンに要求されていることで
ある。従来の厚膜型熱ペンで高速アナログ記録を連続試
験で調べてみると、いくつかの問題点があることがわか
る。
The lifespan of this type of thick-film thermal pen is mostly determined by the lifespan of the heating resistor and the wear-resistant layer, but the rate of change in resistance, drawing performance, and power consumption are greatly affected by the wear-resistant layer. Lifespan is affected. The minimum lifespan of a thermal pen is that it has good drawing performance with a change in resistance of about 20% or less after running for about 500 km by continuously applying a certain amount of power and recording analog data. One of the major features required for thermal pens is that Continuous testing of high-speed analog recording with conventional thick-film thermal pens reveals several problems.

例えば、青発色紙を用い、周波数60H2、振巾30T
m、圧力20V、記録紙スピード10mn/分から50
0Tvn/秒で速熱記録を行うと、抵抗変化率として5
00Km程度で10%程度(製造バラツキを含めると1
0%を超えて20%に達するものもある)となり、一定
電圧で使用する場合発色がうすくなつてしまい、特に、
画描性から見てみると低速から標準速度即ち通常速度(
具体的には熱ペンの速度として約1.5m/秒未満)で
は若干画描性は劣化するが実用的使用として500Km
程まで特に問題はないが、高速時約1.5m/秒以上の
高速記録をとると100Km前後使用した熱ペンでは画
描性が悪化、すなわち、目視的にみてコントラストがな
くなり、ぼけてみえ、線が太くなり、拡大鏡(×10)
で記録跡をみると線が点の集合体として観察され、退色
が早くなり、輸送中に記録が消える等保存性に欠ける。
退色しにくい黒発色紙にかえて同様の確認をすると、退
色性は若干改良されるものの画描性の劣化が更に早くあ
られれ、抵抗変化率は約100K01の時点で4倍、5
00Kmの時点で7倍にも達する。それと同時に画描性
も高速時4倍程度早く前記したような画描性の劣化があ
られれ、高速記録には適さなくなり、ペンの変換が必要
となり、総運転費の増加となる。これらの原因について
更に追究したところ、各種試験結果からペン走行距離(
&l)と画描性および発熱抵抗体の抵抗変化率(ΔR=
(R−RO)/RO×100%、但し、RO:初期抵抗
値、R:走行後の抵抗値)との関係が、概略第3図のよ
うになることがわかつた。
For example, use blue colored paper, frequency 60H2, amplitude 30T.
m, pressure 20V, recording paper speed 10m/min to 50
When rapid thermal recording is performed at 0 Tvn/sec, the resistance change rate is 5
Approximately 10% at approximately 00km (including manufacturing variations)
(In some cases, it exceeds 0% and reaches 20%), and when used at a constant voltage, the color becomes pale, especially,
From the viewpoint of drawing quality, the speed ranges from low speed to standard speed (or normal speed).
Specifically, if the speed of the thermal pen is less than about 1.5 m/sec), the drawing quality will deteriorate slightly, but for practical use it can reach up to 500 km.
There are no particular problems up to this point, but when recording at high speeds of about 1.5 m/sec or higher, the drawing performance of a thermal pen that has been used for around 100 km deteriorates, in other words, the visual contrast disappears and the image appears blurry. The line becomes thicker, magnifying glass (x10)
When looking at the traces of records, the lines are observed as a collection of dots, the color fades quickly, and the records disappear during transportation, resulting in poor preservation.
When similar checks were performed using black colored paper that is less likely to fade, the fading resistance was slightly improved, but the deterioration of the drawing quality was even faster, and the resistance change rate was 4 times higher at about 100K01, and the resistance change was 5 times higher at about 100K01.
At 00 km, it reaches 7 times. At the same time, the drawing performance deteriorates about four times faster than at high speeds, making it unsuitable for high-speed recording, requiring the pen to be replaced, and increasing the total operating cost. When we further investigated these causes, we found that the pen travel distance (
&l), drawing quality and resistance change rate of heating resistor (ΔR=
It was found that the relationship between (R-RO)/RO×100% (RO: initial resistance value, R: resistance value after running) is approximately as shown in FIG.

第3図において、実線はベン走行距離と抵抗変化率との
関係を示し、点線はベン走行距離と画描性良好度との関
係を示している。第3図において、A点は、耐摩耗層が
ほとんどなくなる、あるいはなくなりはじめて記録紙と
接触している抵抗体表面の1部または全部が露出して
一くる時点である。そのA部近傍から、ΔRの増加率(
ΔR/Km)も増加する傾向にあり、前述した特に高速
時の画描性の劣化も顕著になりはじめる。また、抵抗変
化(抵抗値が増加)しても消費電力が一定になるように
制御しうる制御回路を用いて J試験しても同様の結果
が得られた。本発明の目的は、上述した従来技術の欠点
にかんがみて、長寿命で画描性のよい熱ベンを提供する
ことである。
In FIG. 3, the solid line shows the relationship between the Benn travel distance and the rate of change in resistance, and the dotted line shows the relationship between the Benn travel distance and the drawing quality. In Figure 3, point A is the point where the wear-resistant layer has almost completely disappeared or has begun to disappear and a portion or all of the resistor surface that is in contact with the recording paper is exposed.
It's time to reach the end. From the vicinity of part A, the increasing rate of ΔR (
ΔR/Km) also tends to increase, and the aforementioned deterioration in drawing performance, especially at high speeds, begins to become noticeable. Similar results were also obtained by conducting a J test using a control circuit that can control power consumption to remain constant even when resistance changes (resistance increases). SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a thermal vent with long life and good drawing properties.

次に、添付図面に基づいて本発明の実施例につ といて
本発明を詳細に説明する。
Next, the present invention will be described in detail with reference to embodiments of the present invention based on the accompanying drawings.

第1図に示したような断面構造を有する熱ペンに本発明
を適用した場合について詳述する。
A case in which the present invention is applied to a thermal pen having a cross-sectional structure as shown in FIG. 1 will be described in detail.

第1図において、絶縁基材1は、例えば通常使用される
アルミナ磁器、フオルステライト磁器、ステア 4タイ
ト磁器等のような絶縁性材料で形成され、形状は図例に
限ることなく自由である。電力供給用電気導体2、2’
は、材料、構造について特に制約はないが、例えば、金
あるいは銀−パラジウムで形成され、感熱記録用発熱抵
抗体3についても、材料、構造について特に制約はなく
、発熱体となる材料であればよく、例えば、RuO2系
等の厚膜印刷に使用されるようなものでよい。図中には
示していないが、絶縁基材1には予めペースト吸収部材
兼熱絶縁層を形成しておいてもよい。発熱抵抗体3を覆
うように形成される耐摩耗層4の検討を各種行つてみた
。まず、この耐摩耗層4を、耐摩耗ガラスの中に耐熱、
耐摩耗性のあるガラスより熱伝導の良いフイラ一を入れ
たもので形成する実施例について述べる。
In FIG. 1, an insulating base material 1 is formed of an insulating material such as commonly used alumina porcelain, forsterite porcelain, steer 4-tight porcelain, etc., and its shape is not limited to that shown in the illustration and may be freely selected. Electrical conductor 2, 2' for power supply
There are no particular restrictions on the material or structure, but for example, it is made of gold or silver-palladium, and there are no particular restrictions on the material or structure of the heat-sensitive recording heating resistor 3, as long as it is a material that serves as a heating element. For example, the material used in thick film printing such as RuO2 may be used. Although not shown in the figure, a paste absorbing member and heat insulating layer may be formed on the insulating base material 1 in advance. Various studies were conducted on the wear-resistant layer 4 formed to cover the heating resistor 3. First, this wear-resistant layer 4 is placed inside the wear-resistant glass.
An example will be described in which a filler is used which has better heat conduction than glass which is more wear resistant.

第1に、混入するフイラー成分の量の研究をしてみた。
アルミナ粉末をフイラ一として例にとり示すと、ガラス
成分とフイラー成分との重量比を10:0)9:1、8
:2、7:3、6:4、5:5、4:6の比率に調合後
、所定量のビヒクル、希釈剤を加えてぺースト化し、ス
クリーン印刷により所定厚みに耐摩耗層を形成し、熱ベ
ンとして特性試験を行つた。その試験項目は次のようで
ある。囚 耐摩耗および画描性テスト 接触圧20V/チツプ、周波数60Hz、振巾30−、
記録紙スピード100−/M,消費電力1.IW、連続
45時間にて耐摩耗性(抵抗変化率)を調査。
First, we conducted research on the amount of filler components mixed in.
Taking alumina powder as a filler as an example, the weight ratio of the glass component and the filler component is 10:0)9:1, 8
:2, 7:3, 6:4, 5:5, 4:6 ratios, add a predetermined amount of vehicle and diluent to make a paste, and form a wear-resistant layer to a predetermined thickness by screen printing. , the characteristics were tested as a heat vent. The test items are as follows. Abrasion resistance and drawing test Contact pressure 20V/chip, frequency 60Hz, amplitude 30-,
Recording paper speed 100-/M, power consumption 1. IW, abrasion resistance (resistance change rate) was investigated for 45 hours continuously.

高速画描性確認時のみ記録紙スピードを500−/秒と
速くした。03)ステツプストレスによる耐パワー性テ
スト接触圧20t/チツプ、周波数60Hz、振巾10
−、記録紙スピード10−/分、消費電力1.3W〜
2.0W(各0.IWずつ増加し、各電力にて5分テス
ト)で抵抗値の変化を調査(最終の2.0W時の抵抗変
化率)o 消費電力テスト 目視的に同一記録濃度を得るのに必要な消費電力? 接
着力テスト 顕微鏡にてピンセツトで接着状態の確認゜これらのテス
ト結果を次表にまとめて示す。
The recording paper speed was increased to 500-/sec only when high-speed drawing performance was confirmed. 03) Power resistance test using step stress Contact pressure 20t/chip, frequency 60Hz, amplitude 10
-, recording paper speed 10-/min, power consumption 1.3W~
Examine the change in resistance value at 2.0W (increase by 0.IW each, test for 5 minutes at each power) (resistance change rate at final 2.0W) Power consumption test Visually maintain the same recording density How much power do you need to get it? Adhesive strength test Confirm the adhesion state using tweezers under a microscope.The results of these tests are summarized in the table below.

次表から明らかなように、フイラー重量が30チから5
0%のものは他のものに比較し、抵抗変化率ΔRが少な
く、画描性もA点に達する記録走行距離も長くなる。フ
イラー重量が50チより多くなると耐摩耗層のガラス成
分の含有量が少なくなるため、フイラー間の接着強度、
発熱抵抗体との接着強度が弱く、外観的には耐摩耗層の
表面のつやもほとんどなくなり、簡単にはがれる状態と
なる。逆に、フイラ一重量が30(F6より少なくなる
とA点到達走行距離は極めて早くなり、耐摩耗層が摩耗
され抵抗体露出が早く抵抗変化率の増大が大きい。消費
電力比較では、フイラ一重量30%以上のもの、特に、
40〜5001)のものは、感熱記録用発熱抵抗体への
供給電力を遮断して熱ペンを振らせた場合でもうつすら
と画描がえがかれる程であつた。また、消費電力を0.
2W、0.4W、0.6W、0.8W、1.0Wと増加
させて記録した記録紙を比較した。記録紙の呈色記録状
態を目視観察すると、耐摩耗層のフイラ一含有量30%
以上のものの方が、これより含有量の少ないものより虞
膚μ皆+ユ?り八ー ご八I,ll↓−ノ′一謳一ン一
〉11中1−1つた。青発色紙使用についての記録の保
存テスト(60℃環境中、66時間保存)ではフイラ一
含有量30(F6以下のものではコピーできない程に薄
く記録が退色してしまい、特に、高速記録におけるデー
タでは顕著であつたが、フイラ一含有量30〜50%の
範囲内のものではコピーが可能な程度の退色度であつた
。この理由として次の点が考えられる。ガラス(熱伝導
率0.002c0!/Cm・Sec・℃、モース硬度4
前後)に比較して、フイラ一は、(1)硬度が大(モー
ス硬度で9前後)で耐摩耗性が大である、(2)熱伝導
率が良く(0.07(o(1/Cm−Sec・℃)記録
紙への熱放散がよい、(3)ガラスに30%以上のフイ
ラ一を入れた耐摩耗層は耐摩耗層形成条件、例えば、フ
イラ一量、焼成温度により若干異なるが、表面状態の平
滑性がフイラー重量30Cf6以下のものより悪くなる
が、かえつてこれが感熱紙の発色剤との接触を良くして
いること等である。上記の(3)項の点について更に詳
細に説明する第4図Aは、ガラス成分4Aに対してフイ
ラー成分4Bを重量%で30%含む耐摩耗層4を550
℃の焼成温度にて形成した場合の断面の状態を模型的に
示しており、第4図Bは、同様のものを570℃の焼成
温度にて形成した場合の断面の状態を模型的に示してい
る。第4図Aと第4図Bとを比較すると明らかなように
、550℃の焼成温度ではフイラー成分4Bがある程度
ガラス成分4Aの上部にも分散していて耐摩耗層4の表
面に微細な凹凸を与えているが、570℃の焼成温度に
するとフイラー成分4Bがガラス成分4Aの下層部へ入
り込んでしまい耐摩耗層4の表面は比較的平滑なまゝと
なつてしまう。従つて、フイラー重量が30%程度のも
のでは、耐摩耗層の焼成温度をいかにするかによつて、
フイラー成分が耐摩耗層の表面の状態に与える影響度が
大きく変化することがわかる。同様に、第5図Aは、ガ
ラス成分4Aに対してフイラー成分4Bを重量%で40
%含む耐摩耗層4を550℃の焼成温度にて形成した場
合の断面の状態を模型的に示しており、第5図Bは、同
様のものを570℃の焼成温度にて形成した場合の断面
の状態を模型的に示している。更に、第6図Aは、ガラ
ス成分4Aに対してフイラー成分4Bを重量%で509
6含む耐摩耗層4を550℃の焼成温度にて形成した場
合の断面の状態を模型的に示しており、第6図Bは、同
様のものを570℃の焼成温度にて形成した場合の断面
の状態を模型的に示している。第5図Aと第5図Bとの
比較および第6図Aと第6図Bとの比較から明らかなよ
うに、フイラー重量が40%および50%のものでは、
焼成温度にあまり影響されず、耐摩耗層の表面にフイラ
ー成分によつて微細な凹凸が与えられる。このように耐
摩耗層4の表面に微細な凹凸の与えられた第4図A、第
5図AおよびBおよび第6図AおよびBに示したような
熱ベンによれば、上述したように、感熱記録用発熱抵抗
体3に電流を流さない状態で、感熱記録紙に対して接触
させて高速( 1.5m/秒以上)移動させると熱ペン
の動いた跡がうつすらと記録される。これは、摩擦熱と
耐摩耗層表面の微細な凹凸の効果と考えられ、これが通
常の電力を加えた状態での記録時の記録濃度の増大とな
つてあられれるものであると考えられる。このような効
果を発揮するものと考えられる耐摩耗層表面の微細な凹
凸状態と感熱記録紙の表面状態との関係を更に詳細に検
討する。
As is clear from the table below, the filler weight ranges from 30 inches to 5 inches.
0% has a smaller resistance change rate ΔR and a longer recording distance to reach point A than others. When the filler weight exceeds 50 inches, the content of the glass component in the wear-resistant layer decreases, so the adhesive strength between the fillers decreases.
The adhesive strength with the heating resistor is weak, and the surface of the wear-resistant layer has almost no luster in appearance, making it easy to peel off. On the other hand, if the weight per filler is less than 30 (F6), the mileage to reach point A will be extremely short, the wear-resistant layer will be worn out, the resistor will be exposed quickly, and the rate of change in resistance will increase greatly.In comparing the power consumption, the weight per filler 30% or more, especially
40 to 5001), even when the power supply to the heating resistor for heat-sensitive recording was cut off and the thermal pen was shaken, the drawing was still blank. Also, power consumption is reduced to 0.
Comparison was made between recording paper on which recording was performed with increasing power of 2W, 0.4W, 0.6W, 0.8W, and 1.0W. Visual observation of the color recording state of the recording paper reveals that the filler content of the wear-resistant layer is 30%.
Is it more likely that the above content is better than the one with a lower content? 1-1 out of 11. In a record preservation test (stored for 66 hours in a 60°C environment) using blue-colored paper, records with a filler content of 30 (F6 or lower) faded to such a thin level that they could not be copied, especially when recording data at high speeds. However, when the filler content was within the range of 30% to 50%, the degree of discoloration was to the extent that copying was possible.The reasons for this may be as follows:Glass (thermal conductivity 0. 002c0!/Cm・Sec・℃, Mohs hardness 4
Compared to the before and after), the filler has (1) high hardness (around 9 on the Mohs scale) and high wear resistance, and (2) good thermal conductivity (0.07 (o(1/1)). (Cm-Sec・℃) Good heat dissipation to the recording paper. (3) A wear-resistant layer made of glass containing 30% or more filler varies slightly depending on the wear-resistant layer formation conditions, such as the amount of filler and firing temperature. However, the smoothness of the surface condition is worse than that of filler weights of 30 Cf6 or less, but this actually improves the contact with the color former of the thermal paper, etc. Regarding the point (3) above, further FIG. 4A, which will be explained in detail, shows a wear-resistant layer 4 containing 30% by weight of filler component 4B with respect to glass component 4A.
Figure 4B schematically shows the state of the cross section when formed at a firing temperature of 570°C. ing. As is clear from a comparison between FIG. 4A and FIG. 4B, at a firing temperature of 550°C, the filler component 4B is dispersed to some extent on the top of the glass component 4A, resulting in fine irregularities on the surface of the wear-resistant layer 4. However, when the firing temperature is set to 570° C., the filler component 4B penetrates into the lower layer of the glass component 4A, and the surface of the wear-resistant layer 4 remains relatively smooth. Therefore, when the filler weight is about 30%, depending on the firing temperature of the wear-resistant layer,
It can be seen that the influence of the filler component on the surface condition of the wear-resistant layer changes greatly. Similarly, FIG. 5A shows 40% by weight of filler component 4B relative to glass component 4A.
Fig. 5B schematically shows the state of the cross section when the wear-resistant layer 4 containing % is formed at a firing temperature of 550°C. The cross-sectional state is schematically shown. Furthermore, FIG. 6A shows that the filler component 4B is 509% by weight relative to the glass component 4A.
Fig. 6B schematically shows the state of the cross section when the wear-resistant layer 4 containing 6 is formed at a firing temperature of 550°C, and Fig. The cross-sectional state is schematically shown. As is clear from the comparison between FIGS. 5A and 5B and between FIGS. 6A and 6B, when the filler weight is 40% and 50%,
The filler component provides fine irregularities on the surface of the wear-resistant layer without being affected by the firing temperature. According to the heat vents shown in FIG. 4A, FIG. 5A and B, and FIG. , When the heating resistor 3 for thermal recording is brought into contact with thermal recording paper and moved at high speed (1.5 m/sec or more) without passing any current, traces of the movement of the thermal pen will be recorded in a faint manner. . This is thought to be due to the effects of frictional heat and fine irregularities on the surface of the wear-resistant layer, and this is thought to result in an increase in recording density during recording with normal power applied. The relationship between the fine irregularities on the surface of the wear-resistant layer and the surface condition of the heat-sensitive recording paper, which are thought to exert such effects, will be examined in more detail.

第T図Aは、フイラー重量40%の場合の耐摩耗層の表
面の凹凸状態の一例を示しており、第T図Bは、フイラ
ー重量20%の場合の耐摩耗層の表面の凹凸状態の一例
を示している。一方、記録前の感熱記録紙の表面を走査
型電子顕微鏡等でミクロ的観察を行うと、記録紙面は発
色剤、繊維、台紙を構成する成分等による凹凸があるこ
とがわかり、表面粗さ計で表面の凹凸を測定すると、第
8図に例示するように、低いところから高いところの差
が2μ〜8μ程度あることがわかる。従つて、熱ペンの
場合には、記録紙に接触するチツプ先端がサーマルヘツ
ドのようにガラス鏡面の如き理想的表面状態を望むのと
は異なり、むしろ、第T図Bに示すように熱ペンの耐摩
耗層表面が平滑であると、高速記録時に記録紙の凹凸部
に十分熱が伝わりにくく(低速記録時には耐摩耗層表面
が平滑であつても十分熱が伝わりうる)、かえつて、第
7図Aに例示するように、熱ペンの耐摩耗層表面が微細
な凹凸を有していた方が、高速記録時にも記録紙の凹面
部に熱が伝わり易いと考えられる。実際に、記録の目視
的判断による画描濃度を比較してみると、第7図Aの場
合の熱ペンの方が、第T図Bの場合の熱ペンより、40
%程少ない電力で同一の記録濃度が得られることが判明
している。更に、この実施例の熱ペンにおいて、感熱紙
との接触圧の影響についても検討したところ、接触圧を
IOV)20V,30f7、40f,50V/ペンの如
く段階的に増大させても抵抗変化率は大差なく、画描性
についても十分で小さな接触圧(IOV/ペン以下)で
も十分な濃度が得られ、従つて、信号に対する熱ペンの
移動に対する応答性もよくなることがわかつた。
Figure TA shows an example of the unevenness of the surface of the wear-resistant layer when the filler weight is 40%, and Figure TB shows the unevenness of the surface of the wear-resistant layer when the filler weight is 20%. An example is shown. On the other hand, microscopic observation of the surface of thermal recording paper before recording using a scanning electron microscope reveals that the surface of the recording paper has irregularities due to color formers, fibers, components constituting the backing paper, etc. When the unevenness of the surface is measured, it is found that the difference from the lowest point to the highest point is about 2 to 8 microns, as illustrated in FIG. Therefore, in the case of a thermal pen, unlike a thermal head in which the tip of the tip that contacts the recording paper is desired to have an ideal surface condition such as a glass mirror surface, rather, the tip of the tip in contact with the recording paper is desired to have an ideal surface condition such as a glass mirror surface. If the surface of the abrasion-resistant layer of As illustrated in FIG. 7A, it is thought that if the surface of the wear-resistant layer of the thermal pen has fine irregularities, heat is more easily transmitted to the concave surface portion of the recording paper even during high-speed recording. In fact, when comparing the drawing density based on visual judgment of the recording, the thermal pen in the case of Figure 7A is 40% higher than the thermal pen in the case of Figure TB.
It has been found that the same recording density can be obtained with approximately % less power. Furthermore, in the thermal pen of this example, we investigated the influence of the contact pressure with the thermal paper, and found that even if the contact pressure was increased stepwise such as IOV) 20V, 30f7, 40f, and 50V/pen, the rate of resistance change was It was found that there was no significant difference in the drawing properties, sufficient density was obtained even with a small contact pressure (IOV/pen or less), and the responsiveness to the movement of the thermal pen in response to signals was also improved.

上述した理由から、本発明によつて施される耐摩耗層の
表面の凹凸度は、使用する記録紙の種類および用途によ
つて2μ〜8μ程度が好ましい。また、耐摩耗層の表面
の凹凸とは関係なく、この実施例によつてガラスにフイ
ラ一を混入させたことにより、耐摩耗層の耐摩耗性が改
善されていることは勿論である。次に、本発明のこの実
施例にて混入させるフイラ一の粒度について検討した結
果について説明する。JISR6OOl−1973にて
#600、#8001#1000、#2000、#40
00、#6000,#8000に相当する粒度の同一の
アルミナ質成分をフイラ一として選び、前述したように
各フイラ一を添加しフイラ一量を変えて耐摩耗層を所定
厚みに形成し熱ペンを作製し、60Hz、30m巾、1
0〜100Tm/分、207/ペン、電力1.1Wにて
耐摩耗試験を行い観察したところ、次の結果が得られた
。#800以下の粒度の大な場合、記録紙に傷を付け、
例えば、電力を加えることなくてもペンの走行跡に見苦
しい記録跡が出たり、記録紙のスピードを極力遅く(1
0Tm/分)し、ペンの周波数を例えば60Hz以上に
して振巾を小さくすると短時間のうちに記録紙より記録
紙面上の発色結着剤となる樹脂が溶融し、紙成分と同時
にとび出すなどガスが発生したり、極端な場合、記録紙
が破れたりする。逆に#8000以上の細かい粒度では
、フイラ一量をあまり増加すると発熱抵抗体との接着強
度が弱くなるし、適量添加しても粒度が細かすぎて上述
したような効果が出てこないことがわかつた。結局、粒
度としては、#1000から#6000の間が好ましい
ことがわかつた。更に、次に、本発明のこの実施例にて
混入させるフイラ一の種類について検討した結果につい
て説明する。
For the above-mentioned reasons, the surface roughness of the wear-resistant layer applied according to the present invention is preferably about 2 to 8 microns, depending on the type of recording paper used and the purpose. Moreover, it goes without saying that the abrasion resistance of the abrasion resistant layer is improved by mixing the filler into the glass in this example, regardless of the unevenness of the surface of the abrasion resistant layer. Next, the results of a study on the particle size of the filler mixed in this embodiment of the present invention will be explained. #600, #8001 #1000, #2000, #40 in JISR6OOl-1973
The same alumina component with a particle size corresponding to 00, #6000, and #8000 is selected as the filler, and as described above, each filler is added and the amount of filler is changed to form a wear-resistant layer to a predetermined thickness. 60Hz, 30m width, 1
A wear resistance test was conducted and observed at 0 to 100 Tm/min, 207/pen, and power of 1.1 W, and the following results were obtained. If the particle size is large (#800 or less), it may damage the recording paper.
For example, unsightly traces may appear when the pen is running even without applying electricity, or the speed of the recording paper may be reduced as much as possible (1
0 Tm/min), and if the frequency of the pen is set to 60 Hz or higher and the amplitude is reduced, the resin that serves as a coloring binder on the surface of the recording paper will melt in a short time and come out together with the paper components. Gas may be generated, and in extreme cases, the recording paper may tear. On the other hand, with fine particles of #8000 or more, if the amount of filler is increased too much, the adhesive strength with the heating resistor will be weakened, and even if an appropriate amount is added, the particle size is too fine and the above-mentioned effect may not be produced. I understand. In the end, it was found that the particle size is preferably between #1000 and #6000. Furthermore, next, the results of a study on the type of filler to be mixed in this embodiment of the present invention will be explained.

前述の粒度範囲のもので、モース硬度6以上で熱伝導率
が0.004d/Cln−Sec・℃以上のものの具体
例として前述のA!,203の他、純度を変えたA!2
03主成分のセラミツク粉末、SiC、ZrO2、Mg
O、ダイヤモンド粉末、BeO、フオルステライト等、
アルカリ分の極めて少ない天然または合成セラミツク粉
末または結晶化ガラスをフィラ一として選び、同様の調
査研究を繰り返したところ、それらの含有量が粉末によ
り若干異なるが、前述した範囲内のものであれば範囲外
のものに比較していずれも効果があることが判明した。
また、フイラ一量が30〜50%の中でも前記粉末の熱
膨脹が基材、発熱抵抗体、ガラス成分に近い程抵抗変化
率が少なく寿命は長い。参考のため前記粉末の物性値例
を次の表にまとめて示す。次に、本発明のこの実施例に
て使用するガラスの種類について検討した結果について
説明する。低融ガラス(焼成焼付け温度が450℃程度
)から高融ガラス(焼成焼付け温度が約1000℃)ま
でにつき実験したところ、焼成温度が高い程またその他
の材料との熱膨脹が異なる程、耐摩耗層焼成前後の抵抗
値に若干の変動(特性上問題はない)が生じやすい程度
で特に制約されないことがわかつた。次に、耐摩耗層の
構造としては、例えば、第9図に示すように、発熱抵抗
体3を覆う耐摩耗層を2つの層4’および4″からなる
ように形成してもよい。
As a specific example of a particle having a particle size within the above-mentioned range, a Mohs hardness of 6 or more and a thermal conductivity of 0.004 d/Cln-Sec・℃ or more, the above-mentioned A! , 203, and A with different purity! 2
03 Main ingredients ceramic powder, SiC, ZrO2, Mg
O, diamond powder, BeO, forsterite, etc.
We selected natural or synthetic ceramic powder or crystallized glass with extremely low alkali content as the filler, and repeated the same research.We found that the content differs slightly depending on the powder, but if it is within the range mentioned above, it is within the range. All of them were found to be more effective than other methods.
Further, even when the amount of filler is 30 to 50%, the closer the thermal expansion of the powder is to the base material, heating resistor, or glass component, the smaller the resistance change rate is and the longer the life is. For reference, examples of the physical properties of the powder are summarized in the following table. Next, the results of studies regarding the types of glass used in this embodiment of the present invention will be explained. Experiments conducted on glass ranging from low-melting glass (firing temperature of approximately 450°C) to high-melting glass (firing temperature of approximately 1000°C) found that the higher the firing temperature and the different thermal expansion from other materials, the more difficult the wear-resistant layer becomes. It has been found that there are no particular restrictions, as long as the resistance value before and after firing tends to slightly fluctuate (there is no problem in terms of characteristics). Next, as for the structure of the wear-resistant layer, for example, as shown in FIG. 9, the wear-resistant layer covering the heating resistor 3 may be formed to include two layers 4' and 4''.

この場合、発熱抵抗体3に近い側の層4’は粒度の粗い
フイラー成分4’Bを混入させ、外側の層4″は粒度の
細かいフイラー成分4’Bを混入させてもよいし、その
逆としてもよい。また、第10図に示すように、種類、
粒度の異なる、例えば、2種類のフイラー成分4″Bお
よび4″Cを混入させて耐摩耗層4″を形成してもよい
。更に、前述したように、これらフイラ一の他に特性を
改良するため発熱抵抗体に影響のない程の微小の添加物
、例えば金属、セラミツク質、サーメツト質の物質を添
加してもよい。前述したような効果を発揮する耐摩耗層
は、厚膜発熱抵抗体上に焼付け後所定の形状と構造を有
するようにされればよく、従つて、特別な形成法を必要
としない。
In this case, the layer 4' on the side closer to the heating resistor 3 may be mixed with a filler component 4'B with a coarse grain size, and the outer layer 4'' may be mixed with a filler component 4'B with a fine grain size. The reverse may also be used.Also, as shown in Figure 10, the type,
The wear-resistant layer 4'' may be formed by mixing, for example, two types of filler components 4''B and 4''C with different particle sizes.Furthermore, as described above, in addition to these filler components, properties may be improved. Therefore, it is possible to add a minute additive such as a metal, ceramic, or cermet material that does not affect the heating resistor.A wear-resistant layer that exhibits the above-mentioned effect is a thick film heating resistor. It only needs to have a predetermined shape and structure after being baked onto the body, and therefore does not require any special forming method.

例えば、スクリーン印刷、スプレー等による厚膜法また
は転写法等の公知の手段を利用することができる。また
、フイラ一の形状は、鋭角の多いフイラー程、記録紙ス
ピードが極めて遅く、接触圧が大の条件下ではガスが発
生しやすいため寸法の小さい粒度のものがよい傾向があ
り、鈍角のもの、すなわち、断面が多角形になり球に近
くなる程、ガスが出にくいため、寸法の大きい粒度に出
来る傾向がある。第11図は、耐摩耗層の焼付け温度が
700℃以下の硼硅酸鉛系ガラスを用いた時の熱ペンの
走行距離(Km)と抵抗変化率の関係例を示し、第12
図は、その走行距離と画描性良好度の関係例を示してい
る。
For example, known means such as a thick film method using screen printing, spraying, etc., or a transfer method can be used. Additionally, fillers with more acute angles tend to have smaller particle sizes because the recording paper speed is extremely slow and gas is more likely to be generated under conditions of high contact pressure. That is, the more polygonal the cross section becomes and the closer it is to a sphere, the more difficult it is for gas to come out, and therefore the particles tend to be larger in size. FIG. 11 shows an example of the relationship between the running distance (Km) of a hot pen and the rate of change in resistance when lead borosilicate glass whose wear-resistant layer is baked at a temperature of 700°C or less is used.
The figure shows an example of the relationship between mileage and drawing quality.

第11図および第12図において、曲線Aは、耐摩耗層
なしの場合、曲線Bはフイラー重量20%の場合、領域
Cは本発明の上述の実施例の如くフイラー重量30〜5
0%の場合であるが、その抵抗変化率は、ガラスの種類
、耐摩耗層の厚み、使用する記録紙およびそのメーカー
および発色する色により若干の相違がある。また、高融
点ガラス程耐摩耗性はよいが熱膨脹係数が小さくなりす
ぎる傾向にあり、他の構成成分との熱膨脹係数の差が大
きくなりやすいため、抵抗変化率は大きくなる傾向にあ
る。上述した本発明の実施例は、ガラスにフイラ一を入
れたもので耐摩耗層を形成したのであるが、本発明の別
の実施例として、耐摩耗層を結晶化ガラス(一部結晶化
およびほとんど結晶化)にて形成しても、同様の効果が
得られる。
11 and 12, curve A is for the case without the wear-resistant layer, curve B is for the filler weight of 20%, and region C is for the filler weight of 30-5% as in the above-described embodiment of the present invention.
In the case of 0%, the rate of change in resistance varies slightly depending on the type of glass, the thickness of the wear-resistant layer, the recording paper used and its manufacturer, and the color developed. Further, although higher melting point glasses have better abrasion resistance, they tend to have too small a coefficient of thermal expansion, and because the difference in coefficient of thermal expansion with other constituents tends to become large, the rate of change in resistance tends to increase. In the embodiment of the present invention described above, the wear-resistant layer was formed by inserting a filler into glass, but in another embodiment of the present invention, the wear-resistant layer was formed by using crystallized glass (partially crystallized and A similar effect can be obtained even if it is formed by crystallization (mostly crystallization).

この結晶化ガラスは、ガラスから結晶質を析出させて所
定厚みに形成させるもので、ガラス状態より結晶化後硬
度が大となるものであればよい。この場合には、前述の
実施例の如くフイラ一を付加してもよいし、全く付加し
なくてもよい。本発明の熱ペンは、上述したことから明
らかなように、長寿命で画描性がよく低消費電力のもの
とされ、その原理は広く適用されるものである。
This crystallized glass is formed to a predetermined thickness by precipitating crystalline matter from glass, and any glass ceramic may be used as long as the hardness after crystallization is greater than that of the glass state. In this case, a filler may be added as in the previous embodiment, or it may not be added at all. As is clear from the above, the thermal pen of the present invention has a long life, good drawing performance, and low power consumption, and its principle can be widely applied.

例えば、構造として各種部材の形状、寸法、位置が異な
つてもよく、製造上、使用上、及び信頼性等を考慮して
その全体構造を選らべばよく、感熱記録紙に点状に発熱
抵抗体が接触する第1図のようなドツトタイプの熱ペン
に限ることなく、セグメント状をした第2図のような棒
状熱ペンにも適用でき、記録器の種類は問わず、長寿命
を要求される単色感熱型の一般記録機、X−Yレコーダ
、作図機、プロツタの他、多色記録器にも好適であるし
、感熱記録紙に記録するのではなく、熱を加えて変形、
変色させるような紙以外のものに使用する熱ペンにも好
適である。
For example, the structure may have different shapes, dimensions, and positions of various members, and the overall structure may be selected by considering manufacturing, usage, reliability, etc., and heating resistors may be placed in dots on thermal recording paper. It can be applied not only to dot-type thermal pens that come into contact with the body as shown in Figure 1, but also to segment-shaped rod-shaped thermal pens as shown in Figure 2, and regardless of the type of recorder, long life is required. It is suitable for general single-color thermal recording machines, X-Y recorders, drawing machines, plotters, as well as multi-color recording machines.
It is also suitable for thermal pens used on materials other than paper that may cause discoloration.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面の第1図および第2図は本発明を適用する熱ペ
ンの構造例を略示する断面図、第3図は熱ペンのペン走
行距離と画描性及び発熱抵抗体の抵抗変化率との関係を
示す図、第4図から第6図はフイラー成分の量が異なり
且つ焼成温度を変えた場合の耐摩耗層の断面構造の相違
を対比的に示す図、第T図Aはフイラー重量40%の場
合の耐摩耗層の表面の凹凸状態の一例を示す図、第T図
Bはフイラー重量20%の場合の耐摩耗層の表面の凹凸
状態の一例を示す図、第8図は記録紙面の凹凸状態の一
例を示す図、第9図および第10図は本発明の一実施例
としての耐摩耗層の構造を示す断面図、第11図は種々
な熱ペンのペン走行距離と抵抗変化率の関係例を示す図
、第12図は種種な熱ペンのペン走行距離と画描性良好
度の関係例を示す図である。 1 ・・・・・・絶縁基材、2・・・・・・電力供給用
電気導体、・3・・・・・・感熱記録用発熱抵抗体、4
、4’、4’,4″・・・・・・耐摩耗層、4A・・・
・・・ガラス成分、4B、4’B、4’B、4″B、4
″C・・・・・ワイラー成分。
Figures 1 and 2 of the accompanying drawings are cross-sectional views schematically showing a structural example of a thermal pen to which the present invention is applied, and Figure 3 is a graph showing the pen travel distance and drawing performance of the thermal pen, and the rate of change in resistance of the heating resistor. Figures 4 to 6 are diagrams showing contrasting differences in the cross-sectional structure of the wear-resistant layer when the amount of filler components is different and the firing temperature is changed. Figure T A is a diagram showing the relationship between filler A diagram showing an example of the uneven state of the surface of the wear-resistant layer when the filler weight is 40%, FIG. 8 is a diagram showing an example of the uneven state of the surface of the wear-resistant layer when the filler weight is 20%, FIG. 9 and FIG. 10 are cross-sectional views showing the structure of the wear-resistant layer as an example of the present invention, and FIG. 11 is a diagram showing the pen travel distance of various thermal pens. FIG. 12 is a diagram showing an example of the relationship between the rate of change in resistance, and FIG. 12 is a diagram showing an example of the relationship between the pen travel distance and the drawing quality of various types of thermal pens. 1... Insulating base material, 2... Electric conductor for power supply, 3... Heat generating resistor for thermal recording, 4
, 4', 4', 4''...wear-resistant layer, 4A...
...Glass component, 4B, 4'B, 4'B, 4''B, 4
``C...Weiler component.

Claims (1)

【特許請求の範囲】 1 絶縁基材の端部に耐摩耗層で被覆した感熱記録用発
熱抵抗体を有した熱ペンにおいて、前記耐摩耗層は、2
から8μの表面あらさの粗面を有するように処理された
ガラス層からなることを特徴とする熱ペン。 2 前記ガラス層は、ガラス成分とフィラー成分とを含
み、そのガラス成分とフィラー成分との重量比が7対3
から5対5の範囲内である特許請求の範囲第1項記載の
熱ペン。 3 前記フィラー成分は、モース硬度6以上で熱伝導率
が0.004cal/cm・sec・℃以上で且つ粒度
がJISR6001−1973にて#1000から#6
000に想到する範囲にあるセラミック絶縁体粉末から
なる特許請求の範囲第2項記載の熱ペン。 4 前記ガラス層は、結晶化ガラスからなる特許請求の
範囲第1項記載の熱ペン。
[Scope of Claims] 1. A thermal pen having a heating resistor for heat-sensitive recording coated with an abrasion-resistant layer at the end of an insulating base material, the abrasion-resistant layer comprising: 2
A thermal pen comprising a glass layer treated to have a rough surface with a surface roughness of .about.8μ. 2 The glass layer includes a glass component and a filler component, and the weight ratio of the glass component and the filler component is 7:3.
The thermal pen according to claim 1, wherein the thermal pen is within a range of 5:5. 3 The filler component has a Mohs hardness of 6 or more, a thermal conductivity of 0.004 cal/cm・sec・℃ or more, and a particle size of #1000 to #6 according to JISR6001-1973.
3. A thermal pen according to claim 2, comprising a ceramic insulating powder in the range of 0.000 to 0.000. 4. The thermal pen according to claim 1, wherein the glass layer is made of crystallized glass.
JP54037341A 1979-03-29 1979-03-29 thermal pen Expired JPS5947999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54037341A JPS5947999B2 (en) 1979-03-29 1979-03-29 thermal pen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54037341A JPS5947999B2 (en) 1979-03-29 1979-03-29 thermal pen

Publications (2)

Publication Number Publication Date
JPS55128476A JPS55128476A (en) 1980-10-04
JPS5947999B2 true JPS5947999B2 (en) 1984-11-22

Family

ID=12494903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54037341A Expired JPS5947999B2 (en) 1979-03-29 1979-03-29 thermal pen

Country Status (1)

Country Link
JP (1) JPS5947999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549494U (en) * 1991-12-10 1993-06-29 市光工業株式会社 Illumination device for vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825778B2 (en) * 2010-12-10 2015-12-02 ローム株式会社 Thermal print head
JP6247674B2 (en) * 2015-10-13 2017-12-13 ローム株式会社 Thermal print head
JP7036692B2 (en) * 2018-08-29 2022-03-15 京セラ株式会社 Thermal head and thermal printer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433044A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Thermal head of thick film thermal printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433044A (en) * 1977-08-19 1979-03-10 Hitachi Ltd Thermal head of thick film thermal printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549494U (en) * 1991-12-10 1993-06-29 市光工業株式会社 Illumination device for vehicle

Also Published As

Publication number Publication date
JPS55128476A (en) 1980-10-04

Similar Documents

Publication Publication Date Title
US4146957A (en) Thick film resistance thermometer
CA1085237A (en) Ribbon for non-impact printing
US3813677A (en) Heat-sensitive record
GB2137532A (en) Magnetic recording medium
US5338566A (en) Method utilizing a ceramic for temperature measurement
JPH01258987A (en) Thermal transfer recording medium
US4343986A (en) Thermal printhead
EP0454233B1 (en) A film composite for electrostatic recording
JPS5947999B2 (en) thermal pen
JPH11154322A (en) Magnetic recording medium
US4849605A (en) Heating resistor and method for making same
EP0099227A2 (en) Electrosensitive transfer material
JP2702917B2 (en) Thermal recording head
EP0211331A2 (en) Heat-sensitive recording head and method of manufacturing same
US4241356A (en) Recording medium for thermographic recording of data items
JPS6259763B2 (en)
JP3548571B2 (en) Thermal head
JPS61100476A (en) Thermal head and manufacture thereof
JPS62177057A (en) Polyester film
JPS62167056A (en) Thermal head
JPS5821833B2 (en) Craze substrate for thermal head
DE69021842T2 (en) Heat transfer printing with resistance sheet and electrode heads.
JPH04357090A (en) Thermal transfer medium
JPH0343013Y2 (en)
JPS60178068A (en) Thermal head