JPS5947964A - Superconductive rotor - Google Patents
Superconductive rotorInfo
- Publication number
- JPS5947964A JPS5947964A JP57157029A JP15702982A JPS5947964A JP S5947964 A JPS5947964 A JP S5947964A JP 57157029 A JP57157029 A JP 57157029A JP 15702982 A JP15702982 A JP 15702982A JP S5947964 A JPS5947964 A JP S5947964A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- cooling medium
- coil
- winding
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K55/00—Dynamo-electric machines having windings operating at cryogenic temperatures
- H02K55/02—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
- H02K55/04—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は回転子巻線の冷却機能を改良した超電導回転子
に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting rotor with improved cooling function of rotor windings.
発電機あるいは電動機等の回転電機の回転子を超電導化
した所謂超電導回転子は、超電導回転子に設置された回
転子巻線を、液体ヘリウム等の冷却媒体で冷却して超電
導状態を保持させるようにしたものである。このような
超電導回転子においては、回転子巻線を冷却すると冷却
媒体は蒸発し、これと蒸発しない冷却媒体との間に比重
差が発生し、超電導回転子の回転による遠心力場で、前
記比重差を有した冷却媒体を回転子巻線間に自然循環さ
せる所謂サーモサイフオン効果による自然循環冷却方式
がある。A so-called superconducting rotor is a superconducting rotor of a rotating electric machine such as a generator or an electric motor.The rotor windings installed in the superconducting rotor are cooled with a cooling medium such as liquid helium to maintain the superconducting state. This is what I did. In such a superconducting rotor, when the rotor windings are cooled, the cooling medium evaporates, and a difference in specific gravity occurs between this and the cooling medium that does not evaporate. There is a natural circulation cooling method using the so-called thermosiphon effect, in which a cooling medium having a different specific gravity is naturally circulated between the rotor windings.
以下この自然循環冷却方式を採用した超電導回転子を第
1図を参照して説明する。A superconducting rotor employing this natural circulation cooling method will be explained below with reference to FIG.
第1図は例えば発電機の超電導回転子の断面構成を示す
もので、図中1は常温ロータ部で、これの長手方向両端
はシャフト2をなし、これは駆動機側シャツ)2mと反
駆動機側シャフト2bに構成され、回転子としての剛性
を保持している。更にこの常温ロータ部1の内部は空隙
ロータ部6の外周壁7が構成されている。Figure 1 shows the cross-sectional structure of a superconducting rotor of a generator, for example. In the figure, 1 is the normal temperature rotor part, and both longitudinal ends of this form a shaft 2, which is the drive side shirt) 2m and the drive side shaft 2m. It is constructed on the machine side shaft 2b and maintains rigidity as a rotor. Further, the inside of the normal temperature rotor section 1 constitutes an outer peripheral wall 7 of a gap rotor section 6.
また、前記空隙3,5は常温ロータ部1の周方向に閉空
間を成し、そしてこの空隙3,5は常温ロータ部1の熱
しゃへいのために真空とし、また放熱防止板4は空隙3
,5間の熱輻射防止を図っている。Further, the gaps 3 and 5 form a closed space in the circumferential direction of the room temperature rotor section 1, and these gaps 3 and 5 are made into a vacuum for heat shielding of the room temperature rotor section 1.
, 5 to prevent heat radiation.
また低温ロータ部6の外周壁7と、これと対向した内周
壁8とによって形成された巻線収納部9には回転子巻線
10が巻装され、更に前記内周壁8には、前記巻線収納
部9と軸心中空部1ノとを貫通する孔12が形成されて
いる。この孔12は中央部の流入孔121&及び左右端
部の流出孔12bからなシ、また前記軸心中空部ノ1に
は、冷却媒体供給管13により液体ヘリウム等の冷却媒
体か供給され、これは軸心中空部1ノにおける自由液面
14まで満たされている。尚、前述した内周壁8の孔1
2は前記自由液面14まで満たされた冷却媒体を前記回
転子′巻線10へ流通させるだめの流通路として機能さ
せているものである。Further, a rotor winding 10 is wound in a winding storage part 9 formed by an outer peripheral wall 7 of the low-temperature rotor part 6 and an inner peripheral wall 8 facing thereto, and further, a rotor winding 10 is wound on the inner peripheral wall 8. A hole 12 is formed to pass through the wire storage portion 9 and the axial hollow portion 1. This hole 12 has an inlet hole 121 in the center and an outlet hole 12b in the left and right ends, and a cooling medium such as liquid helium is supplied to the axial hollow part 1 through a cooling medium supply pipe 13. is filled up to the free liquid level 14 in the axial hollow part 1. Note that the hole 1 in the inner peripheral wall 8 described above
Reference numeral 2 functions as a flow path for allowing the cooling medium filled up to the free liquid level 14 to flow to the rotor' winding 10.
上記のように構成された超電導回転子では、これた回転
状態であれば軸心中空部1ノの冷却媒体は遠心力によっ
て軸心中空部11の内壁に張勺付いており、前記自由液
面14で蒸発して、この蒸発ガスは常温ロータ部1の外
部に排出される。また前記遠心力によって冷却媒体は、
前記流入孔12aを通って界磁巻線10の巻線離間部に
入り、回転子巻線10の上下面及び両側面の冷却通路を
流通しながら、回転子巻線10を冷却し、流出孔12b
から流出し、軸心中空部11に戻る。In the superconducting rotor configured as described above, in this rotating state, the cooling medium in the axial hollow part 1 is stretched against the inner wall of the axial hollow part 11 by centrifugal force, and the free liquid level 14, and this evaporated gas is discharged to the outside of the room temperature rotor section 1. Furthermore, the centrifugal force causes the cooling medium to
It enters the winding separation part of the field winding 10 through the inlet hole 12a, cools the rotor winding 10 while flowing through cooling passages on the upper and lower surfaces and both side surfaces of the rotor winding 10, and then flows through the outflow hole. 12b
and returns to the axial hollow part 11.
この冷却媒体の循環は、サーモサイフオン効果によるも
ので、これは流入孔12aから低温状態の冷却媒体か流
入し、回転子巻線10間で蒸発冷却し、その後、高温状
態になった冷却媒体は、流出孔12bから流出するもの
である。This circulation of the cooling medium is due to the thermosiphon effect, which means that the cooling medium in a low temperature state flows in from the inflow hole 12a, is evaporated and cooled between the rotor windings 10, and then the cooling medium becomes in a high temperature state. is what flows out from the outflow hole 12b.
上記超電導回転子における回転子巻線10の冷却におい
て、冷却効果を上げて良好な超電導状態を保持させるた
めには、冷却媒体の循環流量の増大と、回転子巻線10
と冷却媒体の接触面積を増大させることが重要である。In cooling the rotor winding 10 in the superconducting rotor, in order to increase the cooling effect and maintain a good superconducting state, it is necessary to increase the circulating flow rate of the cooling medium and to
It is important to increase the contact area between the cooling medium and the cooling medium.
この場合前者の冷却媒体の循環流量の増大を図るには冷
却媒体の温度差を大きくすること及び可能な範囲で低温
状態の冷却媒体の流通を良好にし、高温状態の冷却媒体
の流通を阻害するように、流入孔12hの大きさを調整
することが考えられている。しかしながら、上記構成の
超電導回転子においては、流入孔12aから入った冷却
媒体は内周壁80表面及び巻線離間部を通って、これか
ら左右に分流するとすぐに流出孔12bから流出される
ので、更に回転子巻線10は一体構成されて巻装されて
、その上、下面及び両側面を冷却媒体を流通させるよう
にしたものであるため、遠心力場のサーモサイフオン効
果は小さく、従って冷却媒体の自然循環が良好に行なわ
れず、その流量は少ない。また回転子巻線JOの冷却媒
体に対する接触面積は5−
小さく、従って冷却効果も小さく、良好な超電導状態は
得られず、結局この超電導回転子の単位面積当りの出力
が大きくとれない欠点があった。In this case, in order to increase the circulation flow rate of the cooling medium in the former case, it is necessary to increase the temperature difference between the cooling mediums, improve the circulation of the cooling medium in a low temperature state to the extent possible, and obstruct the circulation of the cooling medium in a high temperature state. Thus, it has been considered to adjust the size of the inlet hole 12h. However, in the superconducting rotor having the above configuration, the cooling medium that enters through the inflow hole 12a passes through the surface of the inner peripheral wall 80 and the winding separation part, and then flows left and right, and immediately flows out through the outflow hole 12b. Since the rotor winding 10 is integrally wound and has a cooling medium flowing through its top, bottom and both sides, the thermosiphon effect of the centrifugal force field is small, and therefore the cooling medium natural circulation is not carried out well, and the flow rate is low. In addition, the contact area of the rotor winding JO with the cooling medium is 5-small, so the cooling effect is also small, making it impossible to obtain a good superconducting state, which has the drawback that the output per unit area of this superconducting rotor cannot be large. Ta.
本発明は上記事情にかんがみてなされたもので、良好な
超電導特性が得られ、よって単位面積当りの出力が大き
い超電導回転子を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a superconducting rotor that can obtain good superconducting characteristics and thus has a large output per unit area.
本発明による超電導回転子は、回転子巻線を軸方向に複
数個に分割し、その分割面に各々距離を存して小片を配
設し、分割面間に冷却媒体の流通路を形成するとともに
、多数の冷却媒体の流通路を設けたことによシ上記目的
を達成させるようにしたものである。In the superconducting rotor according to the present invention, the rotor winding is divided into a plurality of pieces in the axial direction, and small pieces are arranged at a distance from each other on the divided surfaces, and a cooling medium flow path is formed between the divided surfaces. In addition, the above object is achieved by providing a large number of cooling medium flow passages.
以下本発明の実施例を図面を参照して説明する。第2図
乃至第4図は本発明による超電導回転子の一実施例を示
す構成図である。尚、この−6=
実施例では第1図における外周壁7と内周壁8間の巻線
収納部9の内部の構成のみを示している。Embodiments of the present invention will be described below with reference to the drawings. FIGS. 2 to 4 are configuration diagrams showing one embodiment of a superconducting rotor according to the present invention. In this -6= embodiment, only the internal structure of the winding storage portion 9 between the outer circumferential wall 7 and the inner circumferential wall 8 in FIG. 1 is shown.
第2図において15は円環状の巻線3個の相互面間に小
片16を介在させることにより巻線層間部に冷却媒体が
流通するダクト17を形成した回転子巻線であシ、これ
の円環内部には極つめ物18を設置している。これらは
外周壁7と内周壁8間に形成された巻線収納部9に収納
されている。また内周壁8の左右端部には、その詳細を
第4図に示すように、巻線収納部9側を止め金具19で
取付けて、また軸心中空部1ノ側の外周を熱絶縁20を
施した流出管21が設けられている。この流出管21は
冷却媒体が流通する際に温度変化の防止を図るために熱
絶縁20を施こしている。また回転子巻線15の最上層
の上面には、前記極つめ物18間に離間して回転子巻線
15の上面部寸法と同−寸法内となるスペーサ22を取
付けて内周側流通路23を形成している。更にその上部
には回転子巻線15及び前記極つめ物18を遠心力に対
して保持するだめのバインド24を取付けている。In FIG. 2, reference numeral 15 denotes a rotor winding in which a small piece 16 is interposed between the mutual surfaces of three annular windings to form a duct 17 through which a cooling medium flows between the winding layers. A pole clamp 18 is installed inside the ring. These are stored in a winding storage section 9 formed between the outer peripheral wall 7 and the inner peripheral wall 8. Further, as shown in FIG. 4 in detail, the left and right ends of the inner circumferential wall 8 are attached with fasteners 19 on the winding storage section 9 side, and thermally insulated 20 An outflow pipe 21 is provided. This outflow pipe 21 is thermally insulated 20 in order to prevent temperature changes when the cooling medium flows. Further, on the upper surface of the uppermost layer of the rotor winding 15, a spacer 22 is attached between the poles 18 and has the same dimensions as the upper surface of the rotor winding 15, and the spacer 22 is attached to the inner peripheral side flow passage. 23 is formed. Furthermore, a bind 24 for holding the rotor winding 15 and the pole piece 18 against centrifugal force is attached to the upper part thereof.
従ってこのバインド24と外周壁7との間には外周側流
通路25が形成され冷却媒体の流通を図っている。Therefore, an outer circumferential flow passage 25 is formed between the bind 24 and the outer circumferential wall 7 to allow the cooling medium to circulate.
また内周壁8の中央部位には、前記極つめ物18を貫通
し、軸心中空部11と前記内周側流通路23を連通ずる
流入管26が設けられ、またこの流入管26は、軸心中
空部11と前記内周側流通路23及び前記外周側流通路
25とを連通している。またこの流入管26は流出管2
1と同様に熱絶縁20を施してあり、これにより冷却媒
体の温度変化を防止している。また極つめ物18と回転
予巻a15とは離間して設けられ、これによシ前記ダク
ト17及び内周側流通路23と連通ずる側面流通路27
を形成している。Further, an inflow pipe 26 is provided at the center of the inner peripheral wall 8, passing through the pole piece 18 and communicating the axial center hollow part 11 with the inner peripheral side flow passage 23. The core hollow part 11 communicates with the inner circumference side flow passage 23 and the said outer circumference side flow passage 25. Also, this inflow pipe 26 is connected to the outflow pipe 2.
Similar to 1, thermal insulation 20 is provided to prevent temperature changes in the cooling medium. Further, the terminal block 18 and the rotating pre-winding a15 are provided apart from each other.
is formed.
上記のように構成された超電導回転子においては、回転
時には、液体ヘリウム等の冷却媒体は遠心力によって内
周壁8の軸心中空部11側面に張υ付き、そして流入管
26を通って、内周側流通路23及び外周側流通路25
の分岐点にて分流する。ここで内周側流通路23を通っ
て側面流通路27に至シ、ここで回転子巻線15の内周
面を冷却し、そして、回転子巻線15の巻線層間のダク
ト17を通って回転子巻線150眉間面を冷却して回転
子巻線15の外周部の外周側流通路25に至シ、流出管
21を通って軸心中空部1ノに流出される。In the superconducting rotor configured as described above, during rotation, a cooling medium such as liquid helium is stretched against the side surface of the axial hollow part 11 of the inner circumferential wall 8 due to centrifugal force, and passes through the inlet pipe 26 into the inner wall. Circumferential flow path 23 and outer circumferential flow path 25
The water is divided at the branch point. Here, it passes through the inner peripheral side flow passage 23 to the side flow passage 27, where the inner peripheral surface of the rotor winding 15 is cooled, and then passes through the duct 17 between the winding layers of the rotor winding 15. The glabellar surface of the rotor winding 150 is cooled to reach the outer peripheral side flow passage 25 at the outer peripheral part of the rotor winding 15, and then flows out through the outflow pipe 21 into the axial center hollow part 1.
一方、流入管26から外周側流通路25に至った冷却媒
体は、バインド24の上面を通って界磁巻線15の外周
部の外周側流通路25に至シ、流通管2ノを通って軸心
中空部1ノに流出される。On the other hand, the cooling medium that has reached the outer circumference side flow passage 25 from the inflow pipe 26 passes through the upper surface of the bind 24, reaches the outer circumference side flow passage 25 on the outer circumference of the field winding 15, and then passes through the flow pipe 2. It flows out into the shaft center hollow part 1.
以上述べた実施例によれば、熱絶縁20した流入管26
を回転子巻線15の最上層面近傍まで延ばし、さらに回
転予巻815をシャフト2の半径方向に複数個に分割し
、その間に小片16を介在して冷却媒体の通路としての
ダクト17を構成し、放熱面積を増加させてこれに有9
−
媒体の内周側流通路23を設けた。また流出管21は熱
絶縁20が施こされ、自由液面14近傍まで延ばしサー
モサイフオン効果を促進させた。これらのことによシ、
回転子巻線15の冷却性能を向上させることが可能とな
る。According to the embodiment described above, the inlet pipe 26 which is thermally insulated 20
is extended to the vicinity of the uppermost surface of the rotor winding 15, and the rotating pre-winding 815 is further divided into a plurality of pieces in the radial direction of the shaft 2, with a small piece 16 interposed between them to form a duct 17 as a passage for the cooling medium. This is achieved by increasing the heat dissipation area.9
- An inner peripheral side flow path 23 for the medium is provided. Further, the outflow pipe 21 was provided with thermal insulation 20 and extended to the vicinity of the free liquid level 14 to promote the thermosiphon effect. For these things,
It becomes possible to improve the cooling performance of the rotor winding 15.
本発明は上記実施例に限定されるものではなく、例えば
、流入管26はバインド24を貫通しているが、外周側
流通路25への冷却媒体の流量調整のためにバインド2
4の貫通部の孔の大きさを制限するかこれを閉塞したも
のでも良く、この他に本発明の要旨を変えない範囲で種
種変形して実施できることは言うまでもない。The present invention is not limited to the above-mentioned embodiment. For example, the inflow pipe 26 passes through the bind 24, but the bind 24
It goes without saying that the size of the hole in the through-hole 4 may be limited or it may be closed, and that various other modifications can be made without departing from the gist of the present invention.
以上述べた本発明によれば、回転子巻線を冷却する冷却
媒体のサーモサイフオン効果による自然循環を促進させ
ないことができるので、回転子巻線は良好な超電導特性
が得られ、よって単位容積轟シの出力が大きい超電導回
転子が提供できる。According to the present invention described above, it is possible to prevent the promotion of natural circulation due to the thermosiphon effect of the cooling medium that cools the rotor winding, so that the rotor winding can obtain good superconducting properties, and therefore A superconducting rotor with high output power can be provided.
10−10-
第1図は従来の超電導回転子を示す部分断面図、第2図
は本発明による超電導回転子の一実施例を示す部分断面
図、第3図は第2図におけるx−x′方向に見た構成図
、第4図は第2図における一部を詳細に示す構成図であ
る。
低温ロータ部、7・・・外周壁、8・・・内周壁、9・
・・巻線収納部、10・・・回転子巻線、11・・・軸
心中空部、12・・・孔、13・・・冷却媒体供給管、
14・・・自由表面、15・・・回転子巻線、16・・
・711片、17・・・ダクト、18・・・極つめ物、
19・・・止め金具、20・・・熱絶縁、21・・・流
出管、22・・・ス被−サ、23・・・内周側流通路、
24・・・バインド、25・・・外周側流通路、26・
・・流入管、27・・・側面流通路。
出願人代理人 弁理士 鈴 江 武 彦11−
第
第1図
第2図
3図FIG. 1 is a partial sectional view showing a conventional superconducting rotor, FIG. 2 is a partial sectional view showing an embodiment of a superconducting rotor according to the present invention, and FIG. 3 is a partial sectional view showing an embodiment of a superconducting rotor according to the present invention. FIG. 4 is a block diagram showing a part of FIG. 2 in detail. Low temperature rotor part, 7... Outer peripheral wall, 8... Inner peripheral wall, 9.
... Winding storage section, 10 ... Rotor winding, 11 ... Axial center hollow part, 12 ... Hole, 13 ... Cooling medium supply pipe,
14...Free surface, 15...Rotor winding, 16...
・711 pieces, 17... duct, 18... extra stuff,
19... Fastener, 20... Thermal insulation, 21... Outflow pipe, 22... Cover, 23... Inner peripheral side flow path,
24... Bind, 25... Outer peripheral side flow path, 26...
...Inflow pipe, 27...Side flow passage. Applicant's agent Patent attorney Takehiko Suzue 11- Figure 1 Figure 2 Figure 3
Claims (1)
前記軸心中空部の内壁に張シ着けて、前記内壁と放熱防
止板との間に形成された巻線収納部に前記冷却媒体を流
通させることによシ、この巻線収納部に収納された回転
子巻線を冷却して超電導状態を保持させる超電導回転子
において、前記回転子巻線を軸方向に複数個に分割し、
この分割面間に各々距離を存して小片を配設するととも
に前記巻線収納部に前記冷却媒体を流通させるための流
通路を多数設けたことを特徴とする超電導回転子。The cooling medium contained in the axial center hollow part is stretched onto the inner wall of the axial center hollow part by centrifugal force during rotation, and the cooling medium is applied to the winding storage part formed between the inner wall and the heat radiation prevention plate. In the superconducting rotor, the rotor winding stored in the winding storage part is cooled and maintained in a superconducting state by circulating a cooling medium, and the rotor winding is divided into a plurality of pieces in the axial direction. death,
A superconducting rotor characterized in that small pieces are arranged with a distance between the divided surfaces, and a large number of flow passages for circulating the cooling medium are provided in the winding storage section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57157029A JPS5947964A (en) | 1982-09-09 | 1982-09-09 | Superconductive rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57157029A JPS5947964A (en) | 1982-09-09 | 1982-09-09 | Superconductive rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5947964A true JPS5947964A (en) | 1984-03-17 |
Family
ID=15640622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57157029A Pending JPS5947964A (en) | 1982-09-09 | 1982-09-09 | Superconductive rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5947964A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01164262A (en) * | 1987-12-18 | 1989-06-28 | Hitachi Ltd | Superconductive rotor |
-
1982
- 1982-09-09 JP JP57157029A patent/JPS5947964A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01164262A (en) * | 1987-12-18 | 1989-06-28 | Hitachi Ltd | Superconductive rotor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3157806A (en) | Synchronous machine with salient poles | |
US5140204A (en) | Heat pipes for cooling pole windings of salient pole machines | |
JP6302736B2 (en) | Rotating electric machine | |
US3715610A (en) | Dynamoelectric machine cooled by a rotating heat pipe | |
WO2015188672A1 (en) | Stator used for motor, motor and ventilation cooling method for motor | |
US2406704A (en) | Multiphase alternating current transformer | |
US10910920B2 (en) | Magnetic shield for a superconducting generator | |
US20010054852A1 (en) | Cooling arrangement of vehicle rotary electric machine | |
JPS6329501B2 (en) | ||
CN108429402A (en) | A kind of motor cooling based on coolant liquid | |
JPH0591696A (en) | Rotating machine | |
JPS5947964A (en) | Superconductive rotor | |
CN108448818A (en) | A kind of brushless dual-feed motor cooling structure based on coolant liquid | |
US20180103559A1 (en) | Heat sink assembly | |
US20220376566A1 (en) | Two phase cooling for electric machine | |
CN208797768U (en) | A kind of brushless dual-feed motor cooling structure based on coolant liquid | |
JPS596135B2 (en) | Salient pole rotating electric machine | |
US3665230A (en) | Device for increasing the intensity of gas cooling of electrical machines with highspeed rotor | |
RU96123591A (en) | STABILIZED SYNCHRONOUS GENERATOR | |
JPS6341814Y2 (en) | ||
JPH10285906A (en) | Rotor of superconductive dynamoelectric machine | |
CN108667218B (en) | Brushless doubly-fed motor self-driven cooling structure based on cooling liquid | |
JP3465661B2 (en) | Rotating electric machine | |
JPS5822940B2 (en) | Kaiten Denki | |
JPS5989569A (en) | Armature for superconductive rotary electric machine |