JPS5947714A - Electromagnetic solenoid drive circuit for sewing machine drive unit, etc. - Google Patents
Electromagnetic solenoid drive circuit for sewing machine drive unit, etc.Info
- Publication number
- JPS5947714A JPS5947714A JP15832482A JP15832482A JPS5947714A JP S5947714 A JPS5947714 A JP S5947714A JP 15832482 A JP15832482 A JP 15832482A JP 15832482 A JP15832482 A JP 15832482A JP S5947714 A JPS5947714 A JP S5947714A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- electromagnetic solenoid
- switching element
- transistor
- solenoid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H47/00—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
- H01H47/22—Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
- H01H47/32—Energising current supplied by semiconductor device
- H01H47/325—Energising current supplied by semiconductor device by switching regulator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
- H03K17/62—Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Sewing Machines And Sewing (AREA)
Abstract
Description
【発明の詳細な説明】
ρ°r−業−1の刊111分野
本発明は電動機により駆動されるミシンへノー−゛に装
着され、返し縫い川に利用される電磁ソレノイFを自す
るミシン駆動装置等における重任ソレノイド駆動回路に
係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sewing machine drive device equipped with an electromagnetic solenoid F that is mounted on a sewing machine driven by an electric motor and used for backstitching. Related to the important solenoid drive circuit in etc.
従来例の構成とその問題点
一般にミシン制御、特にf業用ミシンの制御は、電動機
により、運釧速度、釧イ)冒1/1”の制御を行なうと
同時に、それらに関連づけてミシンへツーパに装着され
た電磁ソレノイドを動作させることで行なっている。制
御技術は論B、41技術の進歩に伴ない年々向」二して
いる。しかしながら、それと裏腹に駆動部である電磁ソ
レノイドには進歩の余地がほとんどなく、高精度なミシ
ン駆動システムを111)成する」二で、この電磁ソレ
ノイドの応答遅れ及びその不均一さが一つのネックにな
っている。例えば、返し縫い用の電磁ソレノイドを例に
とれば゛、その応答遅れはそのまま返し縫いの縫いI」
形成に現われるだめ致命的な問題になりがちである1、
そして、電磁ソレノイドの応答遅れは、機械的要素と電
気的遅れについて考えられるが、後者のみについて注目
すれば次のことが言える。Conventional configuration and its problems In general, sewing machine control, and in particular control of industrial sewing machines, uses an electric motor to control the sewing speed, the sewing speed, and the speed of the sewing machine. This is done by operating an electromagnetic solenoid attached to the controller.The control technology is improving year by year as technology advances. However, on the other hand, there is little room for improvement in the electromagnetic solenoid, which is the driving part, and the delay in response and unevenness of the electromagnetic solenoid are one of the bottlenecks in creating a highly accurate sewing machine drive system. It has become. For example, if we take an electromagnetic solenoid for reverse stitching, the response delay is the same as when sewing reverse stitches.
1, which tends to be a fatal problem when it comes to formation.
The response delay of an electromagnetic solenoid can be considered to be due to mechanical factors and electrical delays, but if we focus only on the latter, the following can be said.
先ず駆動信号人力時の応答時間は、当然のことながら印
加電圧の関数となる。より早い応答を得るだめには印加
電圧を出来るだけ高くし、いわゆる過電圧印加の状態で
使用することが望ましい。First, the response time when the drive signal is manually operated is naturally a function of the applied voltage. In order to obtain a faster response, it is desirable to increase the applied voltage as high as possible and use it in a so-called overvoltage condition.
しかし、このようにすると温度上昇の問題があり長時間
の連続使用には酎えなくなる。この問題の解決策として
電磁ソレノイドの吸引終了後、オン。However, in this case, there is a problem of temperature rise, and it cannot be used continuously for a long time. As a solution to this problem, turn on the electromagnetic solenoid after suction ends.
オフの断続電圧を与え、いわゆるチョソビンク制御する
ことは従来より一般に採用されている技(4・■である
。その具体的な回路例を第1図、第3図に、寸だその動
作波形図をそれぞれ第2図、第4図に示す。Applying an intermittent OFF voltage to perform so-called Choso Bink control is a commonly used technique (4. are shown in Figures 2 and 4, respectively.
第1図において、1は直流電源、21d−、電磁ソレノ
イド、3は1〜ランシスタ、4はフライホイ ル用のタ
イオー1−をそれぞれ示す。第2図においてBはトラン
ジスタ3の入力端イb−の人力信じ波形、Cは電磁ソレ
ノイド2を流れる電流波形、Dは電磁ソレノイド2の動
作時間を示す。そして、入力端子すに第2図Bに示すイ
モ号が人力されると1−ランシスタ3はオン、オフし、
オン11hにハ電磁ソレノイ1〜2.1−ランシフ・夕
3、直流電源1の回路と、オフ時に電磁ソレノイ1−2
、ダイオ−1−4の回路と電流が流れ第2図Gのように
なり電磁ソレノイド2が動作する。こ!でダイオード4
に直列インピーダンスが接続されていないので、トラン
ジスタ3のオフ時の放電時定数は大きく、第3図Cに示
すように、比較的リップルの少ない電流波形が得られる
。従ってチョッピンク動作中は電磁ソレノイドのうなり
音等も比較的少なく、良好な結果が得られる。一方時刻
t4に到り、電磁ソレノイ1−゛を復帰さぜるべく信号
を句−えた場合、当然のことながら電流はゆるやかに減
少し、その結果電磁ソレノイド゛のオフ応答時間t5−
t4は遅く々ることに々る。In FIG. 1, 1 is a DC power supply, 21d- is an electromagnetic solenoid, 3 is 1 to run sister, and 4 is a flywheel tie-off 1-. In FIG. 2, B shows the human input waveform of the input terminal ib of the transistor 3, C shows the waveform of the current flowing through the electromagnetic solenoid 2, and D shows the operating time of the electromagnetic solenoid 2. When the input terminal shown in FIG. 2B is input manually, the 1-run sister 3 turns on and off.
When on 11h, electromagnetic solenoid 1 to 2.1-run shift/evening 3, DC power supply 1 circuit, and when off, electromagnetic solenoid 1-2
, the current flows through the circuit of diodes 1-4 as shown in FIG. 2G, and the electromagnetic solenoid 2 operates. child! diode 4
Since no series impedance is connected to the transistor 3, the discharge time constant when the transistor 3 is off is large, and a current waveform with relatively few ripples can be obtained as shown in FIG. 3C. Therefore, during the chopping operation, there is relatively little buzzing noise from the electromagnetic solenoid, and good results can be obtained. On the other hand, at time t4, when a signal is issued to reset the electromagnetic solenoid 1-'', the current naturally decreases slowly, resulting in an off response time t5-'' of the electromagnetic solenoid 1-''.
t4 comes late.
一方@3図は、ダイオード14に直列にインピーダンス
5を挿入した点以外は第1図の例と同じで、同′一部分
には同一番号を附して説明を省略する。このようにイン
ピーダンス5が存在すると、放電時定数は小さくなり、
電磁ソレノイド2に流れる電流波形は第4図C′に示す
ように比較的リップルが大きく、電磁ソレノイド゛2よ
りうな9音を発する危険性が増すと共に、インピーダン
ス5での電力損失も無視できない看〆1になるという欠
点を有する。しかし、一方時刻t4で電磁ソレノイド2
を復帰させるべく信号を与えた場合、第4図D″に示す
ようにそのオフ応答時間の遅れ時間15−14は当然小
さい値になシ、第1図に比べより良好な応答特性が得ら
れる。第1図、第3図のこれら相反する問題の解決策と
して、電磁ソレノイド゛チョッピング時とオフ時で、そ
のフフィホイ)V回路(第3図のダイオ−1−4、イン
ピータンス5の回路)のインピーダンスを変化させるノ
)’ 7Aが提案された。従来イ1なわれてきた回路例
を第6図に、またその動作波形を第7図に示す。On the other hand, FIG. 3 is the same as the example in FIG. 1 except that an impedance 5 is inserted in series with the diode 14, and the same parts are given the same numbers and their explanation will be omitted. If impedance 5 exists in this way, the discharge time constant becomes small,
The current waveform flowing through the electromagnetic solenoid 2 has a relatively large ripple as shown in Fig. 4 C', which increases the risk of the electromagnetic solenoid 2 emitting a loud noise, and the power loss at the impedance 5 cannot be ignored. It has the disadvantage that it becomes 1. However, on the other hand, at time t4, the electromagnetic solenoid 2
When a signal is given to restore the OFF response time, the delay time 15-14 of the OFF response time should naturally be a small value, as shown in FIG. 4D'', and better response characteristics can be obtained than in FIG. .As a solution to these conflicting problems in Figures 1 and 3, we have developed an electromagnetic solenoid (both during chopping and when off) V circuit (diodes 1-4 and impedance 5 circuit in Figure 3). An example of a circuit that has been conventionally used is shown in FIG. 6, and its operating waveforms are shown in FIG. 7.
第5図において、21は直流電源、22は電磁ソレノイ
ド、23は該電磁ソレノイドをル1ス動するだメの1−
ツンシスク、24はフライホイル用のタイオード、25
は抵抗等のインピータンス素r126は前記インピーダ
ンヌ素了25をショー1〜するプζめのトランジスタを
表わす1、
z7’nにおいて、人はトランジスタ260入力端イa
への人力(言号波形、D″i: l・ランジスタ23の
入力端イb″への人力波形、C1/は電磁ソし・ノイド
22に流れる電流波形、D″は?I:磁ツレ、ノイ12
2の動作をそれぞれ示す。In FIG. 5, 21 is a DC power source, 22 is an electromagnetic solenoid, and 23 is a mechanism for moving the electromagnetic solenoid.
Tunshisk, 24 is a diode for flywheel, 25
is an impedance element such as a resistor r126 represents the transistor 1 to ζ which shows the impedance element 25.
Human power (verbal waveform, D″i: human power waveform to the input terminal Ib″ of l/transistor 23, C1/ is the current waveform flowing through the electromagnetic solenoid 22, D″ is? I: Magnetic strain, Noi 12
2 operations are shown respectively.
今、人カ端イb〃に第7図B“に示す信写が印加され、
時刻t1″に1−ライジスタ23がオンするとそJ″L
−に同期してl−ランジヌタ26がオンする。トランジ
スタ26がオンするとインピーダンス素子25は短絡状
態になり、結果的に回路は第1図と等価な状態になる。Now, the copy shown in Figure 7B is applied to the human end A,
When the 1-rise register 23 is turned on at time t1'', then J''L
- The l-range nut 26 is turned on in synchronization with -. When transistor 26 is turned on, impedance element 25 becomes short-circuited, resulting in a circuit equivalent to that shown in FIG.
時刻t3“からトランジメタ23はチヨノピンク動作を
始めるが、この時回路は前述したように第1図と等価な
状態にな−っているだめ、電磁ソレノイド22に流れる
電流は第7図C“の如くリップルの少ない良好−なもの
になる。一方時刻1.//に到り、電磁ソレノイドを復
帰させるべく借上・が入力されると、トランジスタ26
はオフ状態になシ、結果的に回路は第3図の状態になる
。From time t3'', the transistor 23 starts to perform pink operation, but at this time the circuit is in a state equivalent to that shown in Figure 1 as described above, so the current flowing through the electromagnetic solenoid 22 is as shown in Figure 7 C''. The result is a good one with less ripple. On the other hand, time 1. When // is reached and a signal is input to restore the electromagnetic solenoid, the transistor 26
is not in the off state, resulting in the circuit being in the state shown in FIG.
従って電磁ソレノイドの電流は速やかに減少し、遅れの
少ない良好な応答特性が得られる。Therefore, the current of the electromagnetic solenoid is quickly reduced, and good response characteristics with little delay can be obtained.
以上述べたように、第5図の回路を用いれば、前述した
第1図、第3図、それぞれの回路の欠点をカバーし、良
好な電磁ソレノイに゛動作が得られるのであるが、反面
、次に示すような欠点を有する。As mentioned above, if the circuit shown in Fig. 5 is used, the shortcomings of the respective circuits of Figs. 1 and 3 described above can be covered and good operation of the electromagnetic solenoid can be obtained. It has the following drawbacks.
■、l・ランジスタ26をトランジスタ23に同期させ
る必要性から、そのだめの同期回路を必要とする。(2) Since it is necessary to synchronize the transistor 26 with the transistor 23, an additional synchronization circuit is required.
(fi)、l−ランシスタ26とトランジスタ23とが
1苅で回路を構成しているだめ、複数個の′電磁ソレノ
イドを駆動しようとしだJJ、5今、そノ1−それに2
個づつ1−ラ7シスタを必安とする。(fi), Since the l-run transistor 26 and the transistor 23 constitute a circuit, I am trying to drive multiple 'electromagnetic solenoids.
One by one, 1-La 7 sister is a must-have.
以上の欠点は、主に駆動する電磁ソレノイドの数が増え
れば増えるほど問題になってくる。The above drawbacks become more of a problem as the number of electromagnetic solenoids to be driven increases.
なお第6図は、第5図におけるトランジスタ26をSC
R等のスイソチンク素子2アに置き換えた例を示しだも
ので、それ以外の点は同一である。Note that in FIG. 6, the transistor 26 in FIG.
This figure shows an example in which the Swiss tinc element 2a such as R is replaced, and other points are the same.
発明の目的
本発明は−1−記従来例における同期回路の除去、スイ
ッチング素イの増加をおさえて簡単な回路購成でもって
電磁ソレノイドを応答させ、より望ましいミシン駆動装
置等を提供しようとするものである。OBJECTS OF THE INVENTION The present invention aims to provide a more desirable sewing machine drive device, etc. by eliminating the synchronous circuit and suppressing the increase in switching elements in the conventional example described in -1- and making an electromagnetic solenoid respond with a simple circuit purchase. It is something.
発明の構成
本発明は電磁ソレノイドを駆動する第2メイノチング素
子を第1フライホイル回路と並列結線し、かつチョッピ
ング用の第1ヌイソチング素イを介して直流電源に接続
し、さらに電磁ソレノイ1゛と並列結線した第2フライ
ホイル回路を第2ヌイソチング素子に接続したものであ
る。Structure of the Invention The present invention connects a second main notching element for driving an electromagnetic solenoid in parallel with the first flywheel circuit, connects it to a DC power source via a first notching element for chopping, and further connects the electromagnetic solenoid 1 and A second flywheel circuit connected in parallel is connected to a second neutralizing element.
実施例の説明
本発明による回路の構成と作用を以下実施例をもとに説
明する。DESCRIPTION OF EMBODIMENTS The structure and operation of a circuit according to the present invention will be explained below based on embodiments.
第8図は本発明による回路の一例であり、その動作波形
を第9図に示す。また、第10図は第8図のより具体的
な回路例を示したものである。FIG. 8 shows an example of a circuit according to the present invention, and FIG. 9 shows its operating waveforms. Further, FIG. 10 shows a more specific example of the circuit shown in FIG. 8.
第8図において、41は直流電源、42はチョッピング
用の第1スイツチング素子(ここではトランジスタで代
表する)、43はスイ・ノチング素イ42に直列接続し
た第1フライホイル用のダイオード、44及び48は電
磁ソレノイド、46及び49は該電磁ソレノイド44.
48をそれぞれ駆動するだめの第2スイツチング素子(
ここではトランジスタで代表する)、46及び50はイ
ンピーダンス素子、47及び51は第2フライホイル用
のダイオードで、インピーダンス素子46と60に直列
接続して各電磁ソレノイド44・ 48に並列結線して
いる3、第9図Eは第1スイツチング素子42の入力端
子eへの入力端子波形、Fは第2メイノチング素子45
0入力端−rfへの入力端子波形、Gは71磁ソレノイ
ド440″11L流波形、Hは第2スイツチング素子4
9の入力端子りへの入力端子波形、■は電磁ソレノイド
48の電流波形を示す。In FIG. 8, 41 is a DC power supply, 42 is a first switching element for chopping (represented by a transistor here), 43 is a diode for the first flywheel connected in series with the switching element 42, 44 and 48 is an electromagnetic solenoid, 46 and 49 are the electromagnetic solenoids 44.
48 respectively, a second switching element (
46 and 50 are impedance elements, and 47 and 51 are diodes for the second flywheel, which are connected in series to the impedance elements 46 and 60 and in parallel to each electromagnetic solenoid 44 and 48. 3. FIG. 9 E is the input terminal waveform to the input terminal e of the first switching element 42, F is the second main switching element 45
0 input terminal - input terminal waveform to rf, G is 71 magnetic solenoid 440'' 11L flow waveform, H is second switching element 4
The input terminal waveform to the input terminal 9 is shown, and ■ indicates the current waveform of the electromagnetic solenoid 48.
分時刻tloに、電磁ソレノイド44を動作させるべく
第9図Fに示す波形の信号を入力端一1’ fに印加し
トランジスタ45をオン状態にすると、それに同期して
入力端子eに第9図Eに示す波形の信号を印加し、1−
ランジスタ42が時刻1++まで導通状態になった後チ
ヨノピンク動作を始める。At minute time tlo, in order to operate the electromagnetic solenoid 44, a signal having the waveform shown in FIG. Applying a signal with the waveform shown in E, 1-
After the transistor 42 becomes conductive until time 1++, the pink operation begins.
この時チョッピング動作中の電磁ソレノイド44のフラ
イホイ/lif流は第1フライホイル用のダイオード4
3を介して流れるため、リップルの少ない良好な電流波
形を得る。−力11r刻t12に到り、電磁ソレノイド
44を復帰させるべく入力端(、fに信号が入力される
と、l・ランジスタ45がオフ状態になり、電磁ソレノ
イド44への通電が停止1すると共に電磁ソレノイド4
4のフライホイル回路は、必然的にダイオード47とイ
ンビータ゛ンス素子46との直列回路からなる第2フラ
イボイル回路に切り替わる。その結果、電磁ソレノイド
に流れる″直流は速やかに減少し、良好な応答特性を得
る。At this time, the flywheel/lif flow of the electromagnetic solenoid 44 during the chopping operation is caused by the diode 4 for the first flywheel.
3, a good current waveform with less ripple is obtained. -When the force 11r reaches time t12 and a signal is input to the input terminal (f) to return the electromagnetic solenoid 44, the l transistor 45 turns off, and the energization to the electromagnetic solenoid 44 stops 1. Electromagnetic solenoid 4
The flywheel circuit No. 4 is inevitably switched to a second flyboil circuit consisting of a series circuit of a diode 47 and an interference element 46. As a result, the direct current flowing through the electromagnetic solenoid quickly decreases, resulting in good response characteristics.
以上電磁ソレノイド44の動作について説明をしたが、
電磁ソレノイド48の動作についても同じことが言える
。同様にしてより多くの電磁ソレノイドが接続されたと
しても、そわぞわの71j:磁ソレノイドについて前述
の動作が成り立つ。ただしこの時、それぞれの電磁ソレ
ノイド動作は、時間的に重ならないことが必要である。The operation of the electromagnetic solenoid 44 has been explained above, but
The same can be said for the operation of the electromagnetic solenoid 48. Even if more electromagnetic solenoids are connected in the same way, the above-described operation holds true for the fidget 71j: magnetic solenoid. However, at this time, it is necessary that the respective electromagnetic solenoid operations do not overlap in time.
以上本発明について簡単に説明を行なったが、以下、よ
シ具体的な回路構成及び動作について、第10図をもと
に説明する。The present invention has been briefly explained above, and below, a more specific circuit configuration and operation will be explained based on FIG. 10.
第10図において、101は直流電源、102はチョッ
ピング信号を発生するだめの発振手段、103は該発振
手段と後述するパルス回路とのOuを取るだめのORゲ
ート、104,104’及び105は第1ヌイノチンク
素イ106を駆動する、だめ駆動手段であり、当回路例
ではそれぞれ抵抗。In FIG. 10, 101 is a DC power supply, 102 is an oscillation means for generating a chopping signal, 103 is an OR gate for taking O of the oscillation means and a pulse circuit to be described later, and 104, 104' and 105 are 1 is a drive means for driving the 106 element, and in this circuit example, each resistor.
JJHji及び1−ランシスク、106 ij、チョッ
ピンク用の第1メイノチンク素イ(ここではトランジス
タで代表する)、10アは第1フライホイル用のクイオ
ート゛、108及び114はベース抵抗、109及び1
15は電磁ソレノイド駆動用の第2スイノチンク素−r
(ここではトランジスタで代表する)、110及び11
6は7F磁ソレノイド′、111及び117はインピー
タンヌ素イ、112及び118は第2フライホイル用の
タイオード、113及び119は一定幅のΦ金的パルス
を発生するパルス回路を表わす。JJHji and 1-Ransisk, 106 ij, the first main node element for chopping (represented by a transistor here), 10A is the quarto element for the first flywheel, 108 and 114 are the base resistors, 109 and 1
15 is a second suinotinku element-r for driving an electromagnetic solenoid.
(represented here by transistors), 110 and 11
Reference numeral 6 represents a 7F magnetic solenoid, 111 and 117 represent impedance elements, 112 and 118 represent diodes for the second flywheel, and 113 and 119 represent pulse circuits that generate Φ metal pulses of a constant width.
今電磁ソレノイド110を動作させるべく、l−ランン
ヌタ109の入力端イjに曲流信号を人力すると1−ラ
ンンスク109がオンになる。この11、Iノパルス回
路113にも同時に前記直流信号が人力されるだめ、単
発パルスがORゲート103に人力される。Now, in order to operate the electromagnetic solenoid 110, when a bending signal is manually applied to the input terminal Ij of the l-run nut 109, the l-run nut 109 is turned on. At the same time, the DC signal is also input to the I-no pulse circuit 113, and a single pulse is input to the OR gate 103.
その結果、トランジスタ105、抵抗104 、104
’の回路を介して1−ランジヌタ106は前記中介パル
スが出力されている間、発振手段102から倍力に関係
なく連続導通状態になり、電磁ソレノイド110が通電
され完全なる動作をイラなう。1)1■記中光パルス終
了後は、発振手段102の出力により、1−ランシヌタ
106はオン、オフヲくす返シ、電磁ソレノイド110
にはチョッピングされた電圧が印加される。この時フラ
イホイル回路流はフライホイル用のダイオ−1−107
を介して流れ、’NU磁ソシソレノイドリップルの少な
い良好な電流が流れる。As a result, the transistor 105, the resistors 104, 104
While the intermediate pulse is being outputted, the 1-range nut 106 becomes continuously conductive through the circuit ', regardless of the boost from the oscillation means 102, and the electromagnetic solenoid 110 is energized, preventing complete operation. 1) After the completion of the optical pulse during writing 1), the output of the oscillation means 102 turns the 1-run signal generator 106 on and off, and the electromagnetic solenoid 110
A chopped voltage is applied to. At this time, the flywheel circuit flow is the diode 1-107 for the flywheel.
A good current flows through the 'NU magnetic solenoid with less ripple.
一方電磁ソレノイド110を復帰させるべく信号を入力
端イjに入力すると、トランジスタ109がオフし、同
時にフライホイル回路がインピーダンス素イ111とフ
ライホイル用のダイオード112の直列回路に切り替わ
り、電流が速やかに減少するため良好な応答性を得る。On the other hand, when a signal is input to the input terminal Ij to restore the electromagnetic solenoid 110, the transistor 109 is turned off, and at the same time, the flywheel circuit is switched to a series circuit of the impedance element 111 and the flywheel diode 112, and the current immediately increases. Good responsiveness is obtained due to the decrease in
電磁ソレノイド116の動作は、前記電磁ソレノイド1
10の動作で説明される。The operation of the electromagnetic solenoid 116 is similar to that of the electromagnetic solenoid 1.
This is explained in 10 operations.
なお、第10図に示す回路において、発振手段102を
発振周期のI可変出来る発振回路で構成すれば、電磁ソ
レノイドに適応し7だチヨノピンク周期が得られる。In the circuit shown in FIG. 10, if the oscillation means 102 is constituted by an oscillation circuit whose oscillation period can be varied, a 7-day pink period can be obtained that is suitable for an electromagnetic solenoid.
発明の効果
本発明は次の特?1夕を71する、
(1) チヨノピンク用の第1スイノチンク素rと?
IJ:磁ソレメソレノイド駆動用スイツチング素了を分
離しているので、回路を簡略化できる。Effects of the Invention Does the present invention have the following features? 1st evening 71, (1) What is the first Suinochinku base for Chiyono Pink?
IJ: Magnetic solenoid Since the switching element for driving the solenoid is separated, the circuit can be simplified.
(2)”H磁ソノノイド駆動用の第2ヌイノチンク素子
が、ノライホイル回路切りPIFえ川のスイッチンク素
イの機能を兼ねており、その結果ス2イノヂング素了の
数を減らずことができる1、シ/)−がって、電磁ソレ
ノイド゛の数が増えるほど効用か久きい。(2) The second switching element for driving the H-magnetic sononoid also functions as a switching element for the Norai foil circuit cut-off PIF river, and as a result, it is possible to avoid reducing the number of switching operations. , /) - Therefore, the greater the number of electromagnetic solenoids, the longer the effectiveness.
【図面の簡単な説明】
第1図は従来例のミシン!し1×動1j、、、置におけ
る711:fBソレノイド駆動回路の第1例の回路図、
第21i21 &:l:その動作波形図、第3図は同(
7く第2例の回路Iメ1、第4図はその動作波形図、第
5図(d、第11ズ1.>)′;2図に示す回路の欠点
を改善した従来例の第3例の回路図、第6図は第6図に
おけるトランジスタ26をSCR等の素子36で置き換
えた従来例の第4例の回路図、第7図は第6図の回路の
動作波形図、第8図は本発明ミシン駆動装置等における
電磁ソレノイド駆動の一実施例の回路図、第9図はその
動作波形図、第10図は第8図のより具体的な回路図で
ある。。
44.48,110,116・ ・電磁1ぢソレノイド
、42,106・・・・・第1スイノチンク素イ、46
.49,109,115・・・・・第2スイノチンク素
子、43,107・・・第1フライホイル回路(ダイオ
ード)、47,51,112,118・・・・・・第2
フライホイル回路(ダイオード’) 、46゜50.1
11,117・・・・・インビーダへハ。
代理人の氏名 弁理士 中 尾 散 リ3 ほか1名第
1図 第2図
第3図 第4図
第 5 図
第[Brief explanation of the drawings] Figure 1 shows a conventional sewing machine! A circuit diagram of the first example of the 711:fB solenoid drive circuit at
21i21 &:l: Its operating waveform diagram, Figure 3 is the same (
7. The circuit I of the second example 1, FIG. 4 is its operating waveform diagram, and FIG. 6 is a circuit diagram of a fourth example of the conventional example in which the transistor 26 in FIG. 6 is replaced with an element 36 such as an SCR, FIG. 7 is an operating waveform diagram of the circuit in FIG. 6, and FIG. The figure is a circuit diagram of an embodiment of an electromagnetic solenoid drive in a sewing machine drive device or the like of the present invention, FIG. 9 is an operating waveform diagram thereof, and FIG. 10 is a more specific circuit diagram of FIG. 8. . 44.48,110,116・・Electromagnetic 1st solenoid, 42,106・・・1st switch solenoid, 46
.. 49,109,115...Second sinotinck element, 43,107...First flywheel circuit (diode), 47,51,112,118...Second
Flywheel circuit (diode'), 46°50.1
11,117...To Invida. Name of agent: Patent attorney San Nakao Ri3 and 1 other person Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 5
Claims (4)
−′を駆動し、かつ周期的にオン、オフを繰返すよう制
御される第1スイツチング素イと、この第1スイツチン
グ素イに接続された第1フライホイル回路と、この第1
フライホイル回路と並列1妾続され/ζ第1スイッチン
グ素イに11!1列接続し7、かつ電磁ソレノイドを駆
動する第2スイツチツク(・、了と、この第2スイノチ
ンク素子に直列接λも1.シ、かつ電磁ソレノイドに並
列国続しだ第2フライホイル回路とを備えたミシン駆動
装置等の市、磁ソレノイド駆動回路。(1) 'lIf magnetic solenoid 1- and this solenoid 1
-' and is controlled to repeatedly turn on and off periodically; a first flywheel circuit connected to the first switching element I;
A second switching element is connected in parallel with the flywheel circuit, and a second switching element is connected in series to the second switching element. 1. A magnetic solenoid drive circuit for a sewing machine drive device, etc., which is equipped with a magnetic solenoid and a second flywheel circuit connected in parallel to the electromagnetic solenoid.
を、前記第2フライホイル回路のインピータンスより小
さくなるよう定数設定した特許請求の範囲第1項記載の
ミシン駆動装置1′1等の電磁ソレノイド駆動回路。(2) An electromagnetic solenoid drive of the sewing machine drive device 1'1 or the like according to claim 1, wherein a constant is set so that the impedance of the first flywheel circuit is smaller than the impedance of the second flywheel circuit. circuit.
゛旬に複数個並列に接続した特、f1請求の範囲第1項
記載のミシン駆動装置等の電磁ソレノイ1−駆動回路。(3) Connect the second switch element to each electromagnetic solenoid 1-
An electromagnetic solenoid 1 drive circuit for a sewing machine drive device or the like according to claim 1, in which a plurality of electromagnetic solenoids are connected in parallel.
Jν]の用度できる発振回路と前記第2メイノチンク素
イの動作に同期して中定バルヌをイdノ1するパルヌ回
路とのOR回路で制作1する4”+1’j’l’ :j
l’l求の肋゛J囲第1名 項記載のミシン駆動装置、の電磁ソレノイド駆動回路。(4) 1) An oscillation circuit capable of using the first switching element -r described in iJ as an oscillation layer Jν] and a Parnu circuit that generates a neutral voltage in synchronization with the operation of the second main switching element A. 4"+1'j'l' produced by OR circuit 1:j
An electromagnetic solenoid drive circuit for the sewing machine drive device according to the first item of the request.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15832482A JPS5947714A (en) | 1982-09-10 | 1982-09-10 | Electromagnetic solenoid drive circuit for sewing machine drive unit, etc. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15832482A JPS5947714A (en) | 1982-09-10 | 1982-09-10 | Electromagnetic solenoid drive circuit for sewing machine drive unit, etc. |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5947714A true JPS5947714A (en) | 1984-03-17 |
JPH0358162B2 JPH0358162B2 (en) | 1991-09-04 |
Family
ID=15669146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15832482A Granted JPS5947714A (en) | 1982-09-10 | 1982-09-10 | Electromagnetic solenoid drive circuit for sewing machine drive unit, etc. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5947714A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471891A2 (en) * | 1990-08-21 | 1992-02-26 | Siemens Aktiengesellschaft | Circuit arrangement for controlling a group of relays |
DE19526038A1 (en) * | 1994-07-15 | 1996-01-25 | Mitsubishi Electric Corp | Electromagnetic switch-fuse and control method |
KR20010084941A (en) * | 2001-05-22 | 2001-09-07 | 송승섭 | Driving a Way of Solenoid |
KR100437664B1 (en) * | 2002-02-16 | 2004-06-25 | 썬스타 산업봉제기계 주식회사 | Apparatus for controlling solenoid in sewing machine |
JPWO2006035938A1 (en) * | 2004-09-30 | 2008-05-15 | 富士レビオ株式会社 | Oscillating magnetic field generator, electromagnet drive circuit, and parts feeder using them |
-
1982
- 1982-09-10 JP JP15832482A patent/JPS5947714A/en active Granted
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471891A2 (en) * | 1990-08-21 | 1992-02-26 | Siemens Aktiengesellschaft | Circuit arrangement for controlling a group of relays |
DE19526038A1 (en) * | 1994-07-15 | 1996-01-25 | Mitsubishi Electric Corp | Electromagnetic switch-fuse and control method |
US5737172A (en) * | 1994-07-15 | 1998-04-07 | Mitsubishi Denki Kabushiki Kaisha | Electromagnetic contactor and a method of controlling the same |
DE19526038B4 (en) * | 1994-07-15 | 2005-02-03 | Mitsubishi Denki K.K. | Electromagnetic circuit arrangement and control method |
KR20010084941A (en) * | 2001-05-22 | 2001-09-07 | 송승섭 | Driving a Way of Solenoid |
KR100437664B1 (en) * | 2002-02-16 | 2004-06-25 | 썬스타 산업봉제기계 주식회사 | Apparatus for controlling solenoid in sewing machine |
JPWO2006035938A1 (en) * | 2004-09-30 | 2008-05-15 | 富士レビオ株式会社 | Oscillating magnetic field generator, electromagnet drive circuit, and parts feeder using them |
JP4682984B2 (en) * | 2004-09-30 | 2011-05-11 | 富士レビオ株式会社 | Oscillating magnetic field generator, electromagnet drive circuit, and parts feeder using them |
Also Published As
Publication number | Publication date |
---|---|
JPH0358162B2 (en) | 1991-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5947714A (en) | Electromagnetic solenoid drive circuit for sewing machine drive unit, etc. | |
JPS6293913A (en) | Dc control circuit for dc driven electromagnetic solenoid | |
JPH0379809B2 (en) | ||
JPS593892A (en) | Power source for load of low voltage incandescent bulb or the like | |
JPS6249967B2 (en) | ||
JPS6122560B2 (en) | ||
JPH04229099A (en) | Controller for stepping motor | |
JPS5852655Y2 (en) | Plunger drive circuit | |
JPS59104761A (en) | Floppy disk device | |
JP2808797B2 (en) | Drive device for brushless motor | |
JPS5864077A (en) | Electrostrictive element driving circuit | |
US7109609B2 (en) | Method and pulse-control circuit for a power component | |
JP2002238249A (en) | Switching power supply unit | |
JP2005073454A (en) | Power supply circuit | |
JPS5833793B2 (en) | Transistor drive device for transistor inverter | |
JPS61142963A (en) | Power source | |
SU390505A1 (en) | DEVICE FOR CONTROLLING STEP ENGINE | |
JPS60131072A (en) | Power control circuit | |
JPS609473B2 (en) | sewing machine drive device | |
JPH04364398A (en) | Current controller for inductive load | |
JPS62178195A (en) | Control circuit for load current of various induction apparatus | |
JPH07107738A (en) | Chopper circuit | |
JPS58195495A (en) | Transistor chopper | |
JPH03273899A (en) | Drive control circuit of pulse motor | |
JPH0365052A (en) | Voltage conversion device |