JPS5947609A - Process controller - Google Patents

Process controller

Info

Publication number
JPS5947609A
JPS5947609A JP57159203A JP15920382A JPS5947609A JP S5947609 A JPS5947609 A JP S5947609A JP 57159203 A JP57159203 A JP 57159203A JP 15920382 A JP15920382 A JP 15920382A JP S5947609 A JPS5947609 A JP S5947609A
Authority
JP
Japan
Prior art keywords
deviation
value
output
control device
manipulated variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57159203A
Other languages
Japanese (ja)
Inventor
Akira Kamoto
明 加本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57159203A priority Critical patent/JPS5947609A/en
Publication of JPS5947609A publication Critical patent/JPS5947609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Abstract

PURPOSE:To ensure good process control even through the static gain of a controlled system is nonliner, by obtaining a manipulated variable of a complement feedback controller. CONSTITUTION:A deviation arithmetic means 5 calculates the deviation value between the target value (r) and a manipulated variable (c), and this deviation value is applied to a coefficient element 3. The element 3 divides the deviation value by a static gain Kc which simulates the static characteristic of a controlled system 20 and delivers (r-c)/Kc. While a simulation deviation arithmetic means is provided within a process device 10 to simulate the dynamic characteristics of the controlled system 20. A differential amount arithmetic means 6 calculates the output of the element 3 and the output of the simulation deviation arithmetic means and delivers the differential amount between both outputs. This differential amount is integrated by an integration means 7 with the prescribed timing, and this output value controls the controlled syste 20 in the form of a manipulated variable (m). In such a way, the process control is satisfactorily performed even if the static gain of a controlled system is nonlinear.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はプロセス制御装置に係り、特に補完フィード
バックループを持つ制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] This invention relates to process control devices, and more particularly to control devices with complementary feedback loops.

〔従来技術〕[Prior art]

補完フィードバックループを持つ従来技術による制御装
置のttjl′I成図を第1図に示す。
A ttjl'I diagram of a prior art control device with a complementary feedback loop is shown in FIG.

プロセス制御装置lOは制御対象20に対して操作量m
を出力してこれを制御する。制御対象叱はその静特性と
動特性とをそれぞれ静態ゲインKpおよび動態ゲインG
p (s+)として把握されている。
The process control device lO has a manipulated variable m for the controlled object 20.
Control this by outputting . The static characteristics and dynamic characteristics of the controlled object are expressed as static gain Kp and dynamic gain G, respectively.
p (s+).

−力制御装置10内にもこの制御対象20の静態ゲイン
Kpと動態ゲインGp(s)とを模擬する静態ゲインK
cおよび動態ゲインGc (s)とが設定され、制御対
象20の静特性と動特性とを模擬するように構成されて
いる。静態ゲインKcは静特性部3として係数要素を構
成し、動態ゲインGc (s)は動特性部Vとして模擬
偏差演算手段を構成している0一方操作量mを受けて動
作する制御対象コOの出力である制御量Cは制御装置1
0の入力端にフィードバックされ、その目標値rとの間
の偏差を算出するように構成されている。偏差は係数要
素3に入力され、係数要素3の出力と模擬偏差演算手段
弘の出力とは加算され、これが操作量mとなるようにf
lt制御装置IOは構成される。
- A static gain K that simulates the static gain Kp and the dynamic gain Gp(s) of the controlled object 20 also in the force control device 10.
c and dynamic gain Gc (s), and are configured to simulate the static characteristics and dynamic characteristics of the controlled object 20. The static gain Kc constitutes a coefficient element as a static characteristic part 3, and the dynamic gain Gc (s) constitutes a simulated deviation calculation means as a dynamic characteristic part V. The control amount C which is the output of the control device 1
It is configured to be fed back to the input terminal of 0 and calculate the deviation between it and the target value r. The deviation is input to the coefficient element 3, the output of the coefficient element 3 and the output of the simulated deviation calculation means are added, and f is set so that this becomes the manipulated variable m.
lt controller IO is configured.

目標値rと制御量Cとの間に偏差があると、その偏差が
なくなるように操作量mがm = (r−c)/kCと
して出力される。ここでKc = Kp 、 Gc (
s) = Gp (s)と設定されている場合には操作
量mVcより制御量Cが変化して偏差r−eが減少して
もその減少分だけ模擬偏差演算手段μの出力が増加して
いるため操作量mは不変に保たれる。
If there is a deviation between the target value r and the controlled variable C, the manipulated variable m is outputted as m = (rc)/kC so that the deviation disappears. Here, Kc = Kp, Gc (
s) = Gp (s), even if the controlled variable C changes from the manipulated variable mVc and the deviation r-e decreases, the output of the simulated deviation calculation means μ increases by the amount of the decrease. Therefore, the manipulated variable m is kept unchanged.

このように制御装置IO内の静態ゲインKcおよび動態
ゲインGc (s)が臨界制動条件を満足するように設
定されている場合には制御量0として開回路の制御のよ
うな応答が得られるため無駄時間を含む制御対象に対し
ても有効な制御装置として動作する。
In this way, if the static gain Kc and dynamic gain Gc (s) in the control device IO are set to satisfy the critical braking condition, a response similar to open circuit control can be obtained with the control amount being 0. It operates as an effective control device even for control objects that include dead time.

〔従来技術の問題点〕[Problems with conventional technology]

このようブよ従来のプロセス制御装置ではプロセスの静
態ゲインKpが非線形な場合に、それ(((応じて?f
f制御装置内の静態ゲインKcを非6形設定すると、そ
の静態ゲインKcが変化しL分に対応し゛C操作16m
も変化してしf、b適性値からずれてし甘う。
In this conventional process control device, when the static gain Kp of the process is nonlinear, it is
When the static gain Kc in the f control device is set to a non-6 type, the static gain Kc changes and corresponds to the L minute.
Also changes, and f and b deviate from the appropriate values.

したがって操作量mが適性価に修正さ2する寸でに一定
時間を要する1こめiu!制御性が悪くなってし′まう
という欠点を有していた。
Therefore, it takes a certain amount of time for the manipulated variable m to be corrected to the appropriate value. This has the disadvantage of poor controllability.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、制御対象の静態ゲインKpが偏差r
 −c vCJ:り増減する非線形制御系に対しても良
好なftj制御性を有するプロセス<i制御装置を提供
するにある。
An object of the present invention is to set the static gain Kp of the controlled object to a deviation r
-c vCJ: It is an object of the present invention to provide a process<i control device that has good ftj controllability even in a nonlinear control system where the number of changes increases or decreases.

〔発明の概要〕[Summary of the invention]

この発明では上記目的を達成するたd)に、従来の操作
量mの算出に当って制御装置内の俣挺プOセスの出力に
偏差により導かれる一眼を加算する方式を改め、偏差に
より導かれる邦とfu制御装置i¥内の模擬プロセスに
よる模擬偏差によυ導かれる田との差分量を積3vする
方法を採用した○さらに詳しくは、71i制御対象から
フィードバックされる制御量と前記制御対象の制御目標
値との偏差値を前記’dil]御対象の静特性と動11
−!+’性を模擬する静態ゲインと動態ゲインとで演算
処扉して前記制御対象に対する操作量を出力するプロセ
ス制御装置において、前記偏差値を演算する偏差値演算
手段と、この偏差値演算手段に結合し前記偏差値を前記
静態ゲインKcで除算して偏差により導かれる量を演算
する係数要素と、この係数要素からの出力値とこの出力
値に前記動態ゲインGc (s)を乗算した出力値とか
ら模擬偏差を演算する模擬偏差演算手段と、前記偏差に
よ〃導かれる量と前記模擬偏差との差分量を演算する手
段と、この差分量を所定のタイミングで積算する積算手
段とを具備し、前記積算手段の出力を前記操作量とする
よう構成した。
In this invention, in order to achieve the above object, in order to calculate the manipulated variable m, the conventional method of adding the single lens guided by the deviation to the output of the machining process in the control device is changed, and the A method was adopted in which the difference amount between the amount of output and the value of υ derived from the simulated deviation by the simulated process in the fu control device i was multiplied by 3v. The deviation value from the control target value of the target is calculated from the static characteristics and dynamic characteristics of the target.
-! In a process control device that outputs a manipulated variable for the controlled object by using a static gain and a dynamic gain that simulate a a coefficient element that is combined and divides the deviation value by the static gain Kc to calculate a quantity derived from the deviation; an output value from this coefficient element; and an output value obtained by multiplying this output value by the dynamic gain Gc (s). and a means for calculating a difference between the amount guided by the deviation and the simulated deviation, and an integrating means for integrating the difference at a predetermined timing. The output of the integration means is configured to be the manipulated variable.

以下この発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例を示す(1゛q成図である
FIG. 2 shows an embodiment of the present invention (1゛q diagram).

なお第1図に示したと同一部分には同一符号を付してそ
の説明を省略する。
Note that the same parts as shown in FIG. 1 are given the same reference numerals and their explanations will be omitted.

目標値rと制御数Cとは偏差値演算手段、5に人力され
偏差値が演算される。この偏差<+(i、It」、この
偏差値演算手段jに結合する係数要素3に人力される。
The target value r and the control number C are manually input to the deviation value calculating means 5 to calculate the deviation value. This deviation <+(i, It") is manually entered into the coefficient element 3 coupled to this deviation value calculating means j.

係数要素3は?Iil制御対象、20の静特性な拐擬す
る静態ゲインKcでこの偏差値を除檜して偏差により導
かれる量(r −c )/Kcを出力する。
What about coefficient element 3? This deviation value is divided by a static gain Kc that simulates the static characteristics of the Iil controlled object, and a quantity (r - c )/Kc derived from the deviation is output.

一方このプロセス制御装置10内[は!fi制御対象2
0の動特性を模擬する模擬偏差演算手段が設けられてい
る0差分量演算手段6は係数要素3の出力とこの模擬偏
差演算手段との出力を演算してその差分量を出力する。
On the other hand, inside this process control device 10 [ha! fi controlled object 2
The zero difference calculation means 6, which is provided with a simulated deviation calculation means for simulating zero dynamic characteristics, calculates the output of the coefficient element 3 and the output of the simulated deviation calculation means, and outputs the difference amount.

・ この差分量は所定のタイミングで積a手段7にニジ積算
され、その出力値が操作l mとし7て制御対象ユOを
制御するようになっている。模JZi:偏差演算手段は
第2図の実施例では静態ゲイン(Kc、 )設定部r、
積算手段り、QJ特性部弘、係数要素/7とから構成さ
れて込る。係数要素3からの出方値は静態ゲイン設定部
Kにより静態ゲインKcを乗算され積算手段りを介して
動特性部≠と偏差演算手段/lとに入力される。偏差演
算手段//−績算手段りの出力と動特性部μを介した出
力との偏差を演算して係数要素/7に人力する。この係
数安水/7は係数要素3と同様な構成となっている。係
数要素3の出力と係数要素17の出力とは差分量演算手
段乙に人力されるように構成されている。
- This amount of difference is accumulated in the product a means 7 at a predetermined timing, and the output value is used as the operation lm7 to control the controlled object unit O. Model JZi: In the embodiment shown in FIG. 2, the deviation calculation means are static gain (Kc, ) setting section r,
It consists of an integrating means, a QJ characteristic section, and a coefficient element/7. The output value from the coefficient element 3 is multiplied by the static gain Kc by the static gain setting section K and inputted to the dynamic characteristic section ≠ and the deviation calculation means /l via the integrating means. Deviation calculation means//- Calculates the deviation between the output of the calculation means and the output via the dynamic characteristic section μ and inputs it manually to the coefficient element /7. This coefficient ammonium water/7 has the same structure as coefficient element 3. The output of the coefficient element 3 and the output of the coefficient element 17 are configured to be manually input to the difference calculation means B.

次に第2図に示した制御装置の動作を目標値rと制御量
cとが一致して安定している状態から目標値rがΔrだ
け変化した場合を例にとって説明する。目標値rがr+
Δrになると偏差値演算手段jの出力はΔrとなる。
Next, the operation of the control device shown in FIG. 2 will be explained by taking as an example a case where the target value r changes by Δr from a stable state where the target value r and the control amount c coincide with each other. Target value r is r+
When Δr is reached, the output of the deviation value calculation means j becomes Δr.

したがって係数要素3の出力はΔr / Kcとなる。Therefore, the output of coefficient element 3 is Δr/Kc.

偏差演算手段l/の出力はr = cで安定していたの
であるからこの時は菫だ0である。
Since the output of the deviation calculation means l/ was stable at r=c, it is violet 0 at this time.

したがって係数要素/7の出力も0である。差分°裂演
算手段tの出力はしたがってΔr / Kcとなる。
Therefore, the output of coefficient element /7 is also 0. The output of the differential degree calculation means t is therefore Δr/Kc.

この値は積算手段7に与えられ前回の積分値に積算され
て操作量mとして出力される。この操作量mにより制御
量Cは徐々に変化していく。差分(11演丑手段乙の出
力はさらに静態ゲイン設定手段gでKc倍されてΔrと
なり積算手段りに力えられるQ積算手段りの出力は制御
装置70内に設けられた模擬プロセスの設定値であり、
一方励時ゼ[部グの出力は模擬プロセスの応答値である
This value is given to the integrating means 7, integrated with the previous integrated value, and output as the manipulated variable m. The control amount C gradually changes according to this operation amount m. Difference (11) The output of the operation means B is further multiplied by Kc by the static gain setting means g to become Δr, and the output of the Q integration means is input to the integration means. and
On the other hand, the output of the excited section is the response value of the simulated process.

したがって偏差値演算手段jの出力は偏差であるのに対
して偏差演算手段//の出力が模擬偏差である。
Therefore, the output of the deviation value calculation means j is the deviation, whereas the output of the deviation calculation means // is the simulated deviation.

このようにして制御装置i¥10は以上の動作を所定の
タイミングでくり返す。制御演算をディジタル式で、あ
る周期毎におこなう場合には動特性部弘の出力はその演
算時点の値ではなく1つ先の演算時点の値にすれば演算
誤差は減少する。
In this way, the control device i\10 repeats the above operations at predetermined timing. When control calculations are performed digitally at certain intervals, calculation errors can be reduced by setting the output of the dynamic characteristic section not to the value at the time of the calculation but to the value at the next calculation time.

係数要素3および17の//Kcが線形であれば第3図
に示すように静態ゲイン設定手段r、積算手段り、係数
要素17を省略することが可能となるOこのように従来
の補完フィードパ・ツク制御装置では操作量mを制御装
置内に設定した4M−11’rliプロセスの応答値と
その時の偏差にょシ決′iilされる量との加算で求め
ていたのを、この発明ではその積算により求めるように
したので制御対象の静態ゲインKpが非線形であっても
非線形性に影響されな−制御装置を構成することができ
る。
If //Kc of coefficient elements 3 and 17 is linear, it becomes possible to omit the static gain setting means r, the integrating means, and the coefficient element 17 as shown in FIG. - In the control device, the manipulated variable m was obtained by adding the response value of the 4M-11'rli process set in the control device and the amount determined by the deviation at that time. Since it is determined by integration, even if the static gain Kp of the controlled object is nonlinear, it is possible to construct a control device that is not affected by nonlinearity.

−例として流入原水(アルカリ性)を連続して中和する
プロセス制御装置を例にとって説明する。
- As an example, a process control device that continuously neutralizes inflow raw water (alkaline) will be explained.

このようなプロセス制御装置では薬品注入流以=原水流
量×注入率の演算をおこなって薬品注入流量を制御する
方法がとられるが、注入率を決定するたd)にこの発明
に係る制御装置を適用する。目標水質(pH7)を目標
値rとし、プロセスの水質(pH)を制御量Cとし、注
入率を操作量mとする。
In such a process control device, a method is used to control the chemical injection flow rate by calculating the chemical injection flow rate = raw water flow rate x injection rate, but the control device according to the present invention is used to determine the injection rate (d) Apply. Let the target water quality (pH 7) be the target value r, the process water quality (pH) be the controlled variable C, and the injection rate be the manipulated variable m.

原水の水質(pH)に対してそれを中和するのに必要な
注入率の関係を第μ図に示した。
The relationship between the water quality (pH) of raw water and the injection rate necessary to neutralize it is shown in Figure μ.

従来の補完フィードバック制御装置ではたとえば制御開
始時にpHがAで注入率がA′と決定されても制御効果
が表われてpHがBになった時には注入率B′が、pH
であるAがBになった割合以上に小さくなっているので
必要な注入率A′が確保されなくなり、目標の水質pi
(7へ近づく速さはにぶってくる。
In a conventional complementary feedback control device, for example, even if the pH is determined to be A and the injection rate is determined to be A' at the start of control, when the control effect appears and the pH becomes B, the injection rate B' becomes the pH value.
Since A is smaller than the ratio of B, the necessary injection rate A' cannot be secured, and the target water quality pi
(The speed at which it approaches 7 is slowing down.

これに対しこの発明による制(ii恒裟14では、1間
御開始時にはpHがAで注入率がA′と決定されればそ
の後は装置内に設けられプこ模擬プロセスと実1)贋の
プロセスとの間に近似誤差が無い限り、注入率はA′に
保たれるので目標の水質(pH7)&こjKlJ達する
速さが従来の補完フィードバック制御11装置よシも速
くなる。
On the other hand, in the control according to the present invention (ii), if the pH is determined to be A and the injection rate is determined to be A' at the start of the 1-period control, from then on, the system is set up in the device to simulate the process and to prevent counterfeiting. As long as there is no approximation error between the injection rate and the process, the injection rate is maintained at A', so the speed at which the target water quality (pH 7) is reached is faster than that of the conventional complementary feedback control device.

第3図はこの発明の他の実施例を示しfこ4′II成図
である。第2図に示した実施例との相違点は、第2図が
偏差および予測偏差に対して/ / Kcの係数要素を
用いて操作量mの補正量を求め“Cいたのに対して、第
3図の二翳合には目標値rと’+(i制御r′#、cお
よび動特性部弘の目標値と出力値のそれぞれに対して1
種類の折れ線要素を用いて操作量mの補正量を求めてい
る点である。折れ線要素/ユ、 13. /4’。
FIG. 3 shows another embodiment of the present invention and is a diagram 4'II. The difference from the embodiment shown in Fig. 2 is that Fig. 2 calculates the correction amount of the manipulated variable m using the coefficient element of / / Kc for the deviation and predicted deviation. The two combinations in Fig. 3 include the target value r and '+(i control r'#, c, and 1 for each of the target value and output value of the dynamic characteristic section Hiroshi.
The point is that the correction amount of the manipulated variable m is obtained using the different types of polygonal line elements. Polyline element/Yu, 13. /4'.

lSはたとえば第μ図に示した原水の水質(pH)とそ
の中和に必要な注入率との関係を与えるものである。逆
折れ線要素/Aはこれとは逆に注入率に対して原水の水
質(pH)を与えるものである。
lS gives the relationship between the water quality (pH) of raw water and the injection rate necessary for its neutralization, as shown in Figure μ, for example. On the contrary, the reverse polygonal line element /A gives the water quality (pH) of the raw water to the injection rate.

第2図に示した/ /Kcの係数要素はこの折れ線要素
と同様の変換要素であるが、係数要素/ / Kcは偏
差に対するものであるから回じイし、i差であっても目
標仙rが変わればその値を変えなければならない。
The coefficient element / /Kc shown in Fig. 2 is a conversion element similar to this polygonal line element, but since the coefficient element / /Kc is for deviation, it can be changed even if it is i difference. If r changes, its value must be changed.

これに対して第3図に示す実施例では目標値rが変って
も同一の折れ線要素が適用できる。なお祈れ線要素は第
弘図に示した縦軸と横軸との関係を折れ線で近似したも
のであるが、このような近似式を用いずに数式で置き換
えることも可能である。
In contrast, in the embodiment shown in FIG. 3, the same polygonal line element can be applied even if the target value r changes. Note that the prayer line element is an approximation of the relationship between the vertical axis and the horizontal axis shown in Figure 1 using a polygonal line, but it is also possible to replace it with a mathematical formula without using such an approximation formula.

〔発明の効果〕〔Effect of the invention〕

以上実施例に基づいて詳細に説明したように、この発明
では目標値と制御量との偏差を0にするための操作量と
制御装置内に組み込んだ模擬プロセスにおける模擬偏差
をOにする1こめの操作量とを演磐してその差分値を積
算したものを制御対象の操作指、とじて出力するように
したので、制御対象の静態ゲインKpが非線形な場合に
も制御応答の連込良好な制御性を持ったプロセス制御1
ノニ置を措′成することができると層う利点がある。
As described above in detail based on the embodiments, the present invention uses the operation amount to make the deviation between the target value and the controlled amount zero, and the one-time effort to make the simulated deviation in the simulated process built into the control device O. Since the operation finger of the controlled object is combined with the operation finger of the controlled object and the difference value is integrated and outputted, the control response is well linked even when the static gain Kp of the controlled object is non-linear. Process control with controllability 1
There is an added advantage of being able to arrange a noni storage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の補完フィードバック制御装置を示し1こ
構成図、第2図はこの発明の一′−Jイがj6″IIを
示す構成図、第3図はこの発明の他の実施例で、制御対
象の静態ゲインが線形の場合の実施例、第φ図は原水の
水質とその中和に必り、Qな注入率との(34係を示し
Tこ特性図、第S図はこの発明の他の実施例を示す構成
図である。 3・・・係数要素、弘・・・動特性部、j・・・偏差値
演釣手段、t・・・差分量演算手段、7.り・・・積算
手段。 g・・・静態ゲイン設定手段、/7・・・係数要素、/
/・・・イ1ml差演算手段、10・・・プロセス制御
装置、20・・・制御対象、r・・・目標値、C・・・
制御量、m・・・操作4B、。
FIG. 1 is a block diagram showing a conventional complementary feedback control device, FIG. 2 is a block diagram showing a conventional complementary feedback control device, FIG. , an example in which the static gain of the controlled object is linear, Fig. It is a block diagram showing another example of the invention. 3... Coefficient element, Hiroshi... Dynamic characteristic section, j... Deviation value calculation means, t... Difference amount calculation means, 7. ...Integration means.g...Static gain setting means, /7...Coefficient element, /
/... A 1 ml difference calculation means, 10... Process control device, 20... Controlled object, r... Target value, C...
Control amount, m...operation 4B.

Claims (1)

【特許請求の範囲】[Claims] 制御対象からフィードバックされる制御量と前記制御対
象の制御目標値との偏差値を前記制御対象の静特性と動
特性を模擬する静態ゲインKcと動態ゲインGc (s
)とで演算処理して前記制御対象に対する操作量を出力
するプロセス制御装置におして、前記偏差値を演算する
偏差値演算手段と、この偏差値演算手段に結合し前記偏
差値を前記静態ゲインKcで除算して偏差により導びか
れる量を演算する係数要素と、この係数要素からの出力
値とこの出力値に前記動態ゲインGc (s)を乗算し
た出力値とから模擬偏差を演算する模擬偏差演算手段と
、前記偏差により導ひかれる量と前記模擬偏差との差分
量を演算する手段と、この差分量を所定のタイミングで
積算する積算手段とを具備し、前記積算手段の出力を前
記操作量とすることを特徴とするプロセス制御装置。
The deviation value between the control amount fed back from the controlled object and the control target value of the controlled object is determined by a static gain Kc and a dynamic gain Gc (s
), the process control device outputs a manipulated variable for the controlled object, and includes a deviation value calculation means for calculating the deviation value, and a deviation value calculation means coupled to the deviation value calculation means to calculate the deviation value to the static gain Kc. a coefficient element for calculating a quantity derived by the deviation by dividing by , and a simulated deviation for calculating a simulated deviation from an output value from this coefficient element and an output value obtained by multiplying this output value by the dynamic gain Gc (s). comprising a calculating means, a means for calculating a difference amount between the amount derived by the deviation and the simulated deviation, and an integrating means for integrating the difference amount at a predetermined timing; A process control device characterized by:
JP57159203A 1982-09-13 1982-09-13 Process controller Pending JPS5947609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57159203A JPS5947609A (en) 1982-09-13 1982-09-13 Process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57159203A JPS5947609A (en) 1982-09-13 1982-09-13 Process controller

Publications (1)

Publication Number Publication Date
JPS5947609A true JPS5947609A (en) 1984-03-17

Family

ID=15688571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57159203A Pending JPS5947609A (en) 1982-09-13 1982-09-13 Process controller

Country Status (1)

Country Link
JP (1) JPS5947609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076392A (en) * 2015-10-12 2017-04-20 フィッシャー−ローズマウント システムズ,インコーポレイテッド Control based on speed in controller to be updated non-periodically, method for controlling process, and process controller
US11199824B2 (en) 2012-01-17 2021-12-14 Fisher-Rosemount Systems, Inc. Reducing controller updates in a control loop

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199824B2 (en) 2012-01-17 2021-12-14 Fisher-Rosemount Systems, Inc. Reducing controller updates in a control loop
JP2017076392A (en) * 2015-10-12 2017-04-20 フィッシャー−ローズマウント システムズ,インコーポレイテッド Control based on speed in controller to be updated non-periodically, method for controlling process, and process controller
JP2021073629A (en) * 2015-10-12 2021-05-13 フィッシャー−ローズマウント システムズ,インコーポレイテッド Control based on speed in controller to be updated non-periodically, method for controlling process, and process controller

Similar Documents

Publication Publication Date Title
Khalil Adaptive output feedback control of nonlinear systems represented by input-output models
DE69515323D1 (en) MODEL-BASED PREDICTIVE CONTROL DEVICE AND METHOD
CN113128018A (en) Friction force calculation method and device, robot and readable storage medium
CN1036086A (en) Senior PID controller
JPS5947609A (en) Process controller
JPH0196701A (en) Control system using internal model cooperative type feedforward method
JPS59223803A (en) Controller
Hauksdóttir et al. A pole placing PID type controller
Kim et al. Control of systems with deadzones using PD controllers with fuzzy precompensation
JPH0363704A (en) Model norm type adaptive controller
JPS5762406A (en) Process control system
SU1718245A1 (en) Linear interpolar
JPS55131803A (en) Digital controller
SU1242913A1 (en) Device for generating control signal with optimum feedback coefficient
SU1108388A1 (en) Relay control system
SU1640670A1 (en) Binary control system
JP2001202103A5 (en)
JPS55131801A (en) Digital controller
JPS6214843B2 (en)
JP2683543B2 (en) Automatic control method
Eveleigh A Comparison of Two Approaches to Extrema Searching Adaptive Systems
JPS56153406A (en) State estimating system for plant
Heck A Digital Computer Technique for the Optimal Control of Pollutants in a Cascaded Input Estuary
JPS61210401A (en) Process control device
JP2677742B2 (en) Automatic control device