JPS5947380A - Ion-plating apparatus for high melting point metal with electron acceleration type plasma - Google Patents

Ion-plating apparatus for high melting point metal with electron acceleration type plasma

Info

Publication number
JPS5947380A
JPS5947380A JP15862482A JP15862482A JPS5947380A JP S5947380 A JPS5947380 A JP S5947380A JP 15862482 A JP15862482 A JP 15862482A JP 15862482 A JP15862482 A JP 15862482A JP S5947380 A JPS5947380 A JP S5947380A
Authority
JP
Japan
Prior art keywords
ion
plasma
melting point
high melting
acceleration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15862482A
Other languages
Japanese (ja)
Inventor
Joshin Uramoto
上進 浦本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15862482A priority Critical patent/JPS5947380A/en
Publication of JPS5947380A publication Critical patent/JPS5947380A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Abstract

PURPOSE:To enable the ion plating of a high m.p. metal, by utilizing electron acceleration type plasma electron beams to satisfy conditions necessary for the concentration of electric power on a hearth and the formation of plasma. CONSTITUTION:Electrons are accelerated in the space between a plasma source anode 14 and a plasma electron accelerating anode 15. Conditions necessary for the concentration of electric power on a hearth 18 and the formation of plasma are satisfied by utilizing voltage generated from an electric current flowing through a load resistor R1. The ion-plating of a high m.p. metal such as Mo, Ta or W is enabled in said apparatus, so the surface strength of stainless steel, Al or the like can be remarkably increased.

Description

【発明の詳細な説明】 T1金属を利用したイオンプレーテングによってステン
レスやアルミ等の表面強度が飛躍的に増大することは最
近よく知られている。この発展としてTHより更に融点
の高いMo、 Ta、 W等をイオノプレーテングに利
用すれば、更に表面強度が丘がることが期待される。T
iの場合には通常の低電圧ガス放電(〜40V、〜20
OA )プラズマを利用して、溶融、蒸気化、イオン化
を行いイオンプレーテングを実用化して゛いる。しかし
W等の場合には融点が約3600°にでTiの約2倍−
r、j−。
DETAILED DESCRIPTION OF THE INVENTION It is recently well known that the surface strength of stainless steel, aluminum, etc. can be dramatically increased by ion plating using T1 metal. As a further development of this, if Mo, Ta, W, etc., which have a higher melting point than TH, are used for ionoplating, it is expected that the surface strength will further increase. T
In case i, normal low voltage gas discharge (~40V, ~20
OA) Plasma is used to perform melting, vaporization, and ionization, and ion plating has been put into practical use. However, in the case of W etc., the melting point is about 3600°, which is about twice that of Ti.
r, j-.

す、大きj4電力(数倍以f: ) 4−放電陽極に集
中しなければ充分なイオン化かて〜/1い。即t′、。
The large j4 power (several times more than f: ) 4-If the discharge is not concentrated at the anode, sufficient ionization will not be possible. Immediately t'.

′1゛iの場合と同様な低電圧カス放電を利用するとす
れば大きな放電々流(1000Δ以1−)が必要になり
2陰極の能力や経済性も千人問題となる。
If a low-voltage gas discharge similar to the case of '1'i is used, a large discharge current (1000Δ or more) will be required, and the capacity and economic efficiency of the two cathodes will be a problem.

この原因は低電圧放電の電力か陽極()飄  ス兼用9
に集中する割合が少< (’j以下)大部分カス電離に
よるツうスマ生成に消費されるからCある。一方高エネ
ルキー(lOKeV以1″、)の電子ビームの利用を考
えるとハースに集中オる電力効率は充分であるが、カス
の電離能率か極端に低トし、イオン−1”レーテノクに
必9 % j−7スー・密度(> In”/c+・)を
得乏ことはてきj((、S。結局9陽極或いはハース・
\の電力集中と一ノラスー//I: Ijlの両方をバ
ランスさせるには、中間工不ルキ型の電子ヒームが必要
であり、 300+・V程度で数10Aの電子ヒームが
陰極の能力、電力効率、安全性等の面から最適である。
The cause of this is the low voltage discharge power or the anode ().
C exists because the proportion concentrated in is small <('j or less) and most of it is consumed in the production of dust due to gas ionization. On the other hand, considering the use of a high-energy electron beam (1" below lOKeV), the power efficiency of concentrating on the Haas is sufficient, but the ionization efficiency of the dregs is extremely low, and it is necessary to It is difficult to obtain a % j−7 sous density (> In”/c+・).
In order to balance both the power concentration of , which is optimal in terms of safety, etc.

しかしlLが区゛2.この中間型の人箪:流の電子銃を
−)くることは空間電荷制限で一般には不ijJ能であ
る1、そこて、ゾうスマ4−・利珪1して実現しtコの
が出願名”の論文(真空?μ、 14177、17(1
頁)−Cある。我/Zは、この加a 型−fう−1、マ
電須ヒ ムを利用し−Cハ ス・\の電力集中と一ノ゛
ラズマ生成の条件を両)’fさQ fl高融点金属のた
めのイオノーノ[、・  テンク装置を考案した1、電
子加速は図面のA、、 A2.間で行い。
However, LL is 2. Since it is generally impossible to use this intermediate type of electron gun due to space charge limitations, we realized it by using Zosuma 4- and Rikei 1. Application name” paper (vacuum? μ, 14177, 17 (1
Page)-C. I/Z will utilize this a-type-f-1 and the power source to set the conditions for power concentration and one-nolasma generation for C-Has\)'f-Q fl high melting point. Ionono devised the Tenku device for metals 1, electron acceleration is shown in drawings A, A2. Do it between.

負荷抵抗11.+に流1[る電流に、t: j1発生す
る電圧(こA1を〜300 Vに調節するうを利用して
いる。
Load resistance 11. The voltage generated at t: j1 is adjusted to ~300 V by the current flowing to +.

この点が論文より少し発展しているか、原理的には同様
てJ)ろ。
This point is a little more developed than the paper, but the principle is the same J).

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明装置の構成図てJ)イ)1,1は放電用
カス、2は陰極、3は環状永久磁石、/lは電磁コイル
、5は拡散ポツプ、6は真空容器。 7は放電用カスと同種のガス、8は反応用カス。 9は補助拡散ポツプ、10は・イオン−fレ−テノグ用
試ネ1.I+と12は中間電極の〔′1イ::1抵抗、
13f、j力11速電圧発生用負荷抵抗、 14 i;
t−1−・ス、・河11易(1(Jζ。 15は一ノラスマ電1′加速陽極、16fJ友′1五流
宙: H’ l−ム、  17は1.’f1辺 ] −
ラ ス−,−,18f、l  ・ ア ノ1.″屯 1
′+111速1鴇極兼ハノ1,19ハ集中用71<久磁
イ、 、 2+)tr li’:j硬物質(例えば・)
/り、・・\11+ 11411でj・)、21は第1
中間電極、22は第2中間市、極、281rで1ノ化金
j萬スクラ、ノ。
The drawing shows the configuration of the device according to the invention.J) A) 1, 1 is a discharge scum, 2 is a cathode, 3 is an annular permanent magnet, /l is an electromagnetic coil, 5 is a diffusion pop, and 6 is a vacuum vessel. 7 is the same type of gas as the discharge dregs, and 8 is the reaction dregs. 9 is an auxiliary diffusion pop, 10 is an ion-f rate nog tester 1. I+ and 12 are the intermediate electrode ['1 I::1 resistance,
13f, j Load resistance for 11th speed voltage generation, 14 i;
t-1-・Su、・川11い(1(Jζ. 15 is one nolasma electric 1' accelerating anode, 16fJ friend'1 five-stream space: H' l-m, 17 is 1.'f1 side] -
Las-,-,18f,l・Ano1. ″Tun 1
' + 111 speed 1 Tokoku and Hano 1, 19 Ha concentration 71 < Kumagai, , 2+) tr li': j Hard material (for example)
/ri,...\11+ 11411 j・), 21 is the first
The intermediate electrode, 22, is the second intermediate electrode, 281r, and the metal is 1,000 yen.

Claims (1)

【特許請求の範囲】[Claims] 公知(真空20.1977、 170頁プの竜r加速型
プラズマを利用しtこ高融点金属イオンプレーテング装
置。
A high melting point metal ion plating apparatus using accelerated plasma as described in Vacuum 20.1977, p. 170.
JP15862482A 1982-09-10 1982-09-10 Ion-plating apparatus for high melting point metal with electron acceleration type plasma Pending JPS5947380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15862482A JPS5947380A (en) 1982-09-10 1982-09-10 Ion-plating apparatus for high melting point metal with electron acceleration type plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15862482A JPS5947380A (en) 1982-09-10 1982-09-10 Ion-plating apparatus for high melting point metal with electron acceleration type plasma

Publications (1)

Publication Number Publication Date
JPS5947380A true JPS5947380A (en) 1984-03-17

Family

ID=15675771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15862482A Pending JPS5947380A (en) 1982-09-10 1982-09-10 Ion-plating apparatus for high melting point metal with electron acceleration type plasma

Country Status (1)

Country Link
JP (1) JPS5947380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002260A1 (en) * 1992-07-17 1994-02-03 Grumman Aerospace Corporation Corrosion prevention of honeycomb core panel construction using ion beam enhanced deposition
US5445689A (en) * 1994-08-23 1995-08-29 Northrop Grumman Corporation Pulsed ion beam surface treatment process for aluminum honeycomb panels to improve corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002260A1 (en) * 1992-07-17 1994-02-03 Grumman Aerospace Corporation Corrosion prevention of honeycomb core panel construction using ion beam enhanced deposition
US5520966A (en) * 1992-07-17 1996-05-28 Northrop Grumman Corporation Corrosion prevention of honeycomb core panel construction using ion beam enhanced deposition
US5445689A (en) * 1994-08-23 1995-08-29 Northrop Grumman Corporation Pulsed ion beam surface treatment process for aluminum honeycomb panels to improve corrosion resistance

Similar Documents

Publication Publication Date Title
US3621310A (en) Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
Eder et al. Search for projectile charge dependence of kinetic electron emission from clean polycrystalline gold
JPS5947380A (en) Ion-plating apparatus for high melting point metal with electron acceleration type plasma
GB1101293A (en) High output duoplasmatron-type ion source
Tsai et al. Plasma studies on a duoPIGatron ion source
Walko et al. A high output neutron tube using an occluded gas ion source
PATTERSON Performance characteristics of ring-cusp thrusters with xenon propellant
JPH07142020A (en) Electron beam exciting negative ion source and negative ion generating method
Wolf Duopigatron metal ion source
JPH01189838A (en) Ion source
Yu et al. A universal pocket PIG ion source with a permanent magnet
Nürnberg et al. Cathode erosion in vacuum arcs and unipolar arcs
JPH0160890B2 (en)
JP2769506B2 (en) Ion source
JPS55141721A (en) Sputtering apparatus for magnetic body
Nikiforov et al. Ion sources for use in research and applied high voltage accelerators
JPS62103363A (en) Repeating discharge anode type ion plating apparatus
GB829783A (en) Apparatus for producing beams of ions of a given element
JP2909696B2 (en) Beam generating method and apparatus
Manzella et al. Magnetic circuit for hall effect plasma accelerator
Fujii et al. Electron beam and gas tungsten arc welding under microgravity
Sommerer et al. Cold cathode switching device and converter
Whealton et al. Increasing the space-charge limit and other effects of cesium seeding in hydrogen negative ion sources
Yu et al. A versatile pocket PIG ion source with permanent magnet
JPS60262334A (en) Multipactor ion source