JPS5946955A - Hard tissue replacing composite material having stress releasing function during living body motion - Google Patents

Hard tissue replacing composite material having stress releasing function during living body motion

Info

Publication number
JPS5946955A
JPS5946955A JP57158275A JP15827582A JPS5946955A JP S5946955 A JPS5946955 A JP S5946955A JP 57158275 A JP57158275 A JP 57158275A JP 15827582 A JP15827582 A JP 15827582A JP S5946955 A JPS5946955 A JP S5946955A
Authority
JP
Japan
Prior art keywords
hard tissue
composite material
function during
living body
body motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57158275A
Other languages
Japanese (ja)
Other versions
JPH0314453B2 (en
Inventor
木暮 山人
川原 春幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57158275A priority Critical patent/JPS5946955A/en
Publication of JPS5946955A publication Critical patent/JPS5946955A/en
Priority to JP2251832A priority patent/JPH03149059A/en
Publication of JPH0314453B2 publication Critical patent/JPH0314453B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明、は生体運動時の応力緩和機能を有する骨、歯牙
等の硬組織代替用複合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite material for replacing hard tissues such as bones and teeth, which has a stress relieving function during biological movement.

従来の人工骨及び人工歯根等硬組織の移植体材料は、単
に強度的に耐え、あるいは生体的環境において安定であ
るだけの物質例えば化ラミック等が用いられており、そ
のいずれも形態補修の域を出ないものであって、硬組織
の必要としている弾性率等の生体力学的新刊性を全く欠
いている。
Conventional graft materials for hard tissues such as artificial bones and artificial tooth roots use materials that only have strong strength or are stable in the biological environment, such as laminated lamic. However, it lacks biomechanical innovation such as elastic modulus, which is required for hard tissues.

したがって、歩行、咬合等の生体運動時の衝撃に対する
緩衝作用等に顕著な欠陥が在り、その欠陥による強い違
和感に甘しねばならず、同時に使用中に何等かの障碍を
被る虞も大きい。
Therefore, there is a noticeable defect in the shock absorbing effect during biological movements such as walking and chewing, and the user has to endure a strong sense of discomfort due to this defect, and at the same time, there is a great possibility that some kind of trouble may occur during use.

例えば第1図のように長管1にセラミック製人工膝蓋骨
2を埋込んだ場合、第Ω図のル11、カーひずみ曲線に
示すようにセラミックと骨質の弾性率に大差があるため
、生体運動時に11シしる長管1の動きにセラミック製
膝蓋骨2が応しられず生体力学的に障碍が生じ、そのた
め強い違和感があり、かつ激しい運動に小安があり、長
期使用に耐え得ない等の欠点を有している。
For example, when a ceramic artificial patella 2 is implanted in a long tube 1 as shown in Fig. 1, there is a large difference in the elastic modulus of ceramic and bone material as shown in Le 11 and Kerr strain curve in Fig. Sometimes the ceramic patella 2 cannot respond to the movement of the long tube 1, which causes a biomechanical failure, resulting in a strong sense of discomfort. It has its drawbacks.

本発明は上記欠陥を解消し得る(+すj組織代替用複合
材料を提供することを1■1的とず4)ものであり、そ
の特徴と1−るところは、それぞれの部分の硬組織のも
つ機械的性状に近い高分子樹脂化合物に、種々の所要力
学的性質を加えて、それえて、レントゲン線不透過性を
もたせて本発明複合材料により成形された移植体埋人後
のレントゲン検査を可能ならしめたことに在る。
The present invention can eliminate the above-mentioned defects (1) to provide a composite material for tissue replacement (4), and its characteristics (1) are that the hard tissue of each part is X-ray inspection after implantation of an implant molded from the composite material of the present invention by adding various necessary mechanical properties to a polymer resin compound with mechanical properties similar to those of The reason lies in the fact that we have made it possible.

次に上記特徴に基く一実施例を添イjJ図面により説明
する。
Next, an embodiment based on the above features will be described with reference to the accompanying drawings.

骨、歯牙等の硬組織代替用高分子複合44 r+であり
、それぞれの部分の硬組織のもつ機械的性状に近い高分
子樹脂化合物に、各種添加物を加えてその硬組織と調和
するための所要生体力学的物性をもたせ、加えてレント
ゲン線不透過性をもたせたものである。
Polymer Composite 44R+ is a polymer composite used to replace hard tissues such as bones and teeth, and is a polymer resin compound with mechanical properties similar to those of the hard tissues of each part, with various additives added to harmonize with the hard tissues. It has the required biomechanical properties and also has X-ray radiopacity.

例えば緻密骨組織のもつ弾性率は70〜70才において
長管(大腿骨、脛骨、尺骨等を云う)で/ ”50.0
00〜/gθ00θKg / crl 、歯牙は乙0,
00θ−200,000Kp / C1d、又lit 
f 、t(I mの弾性率は2汐θ〜汐00 Ky /
 cyrlの範囲内であり、その応力−ひすみ曲線は第
2図に示4−通りである。又その弾性率は]−記範囲内
において各部所あるいは年令によってそれぞれ異なって
いる。
For example, the elastic modulus of compact bone tissue is 50.0 in long bones (femur, tibia, ulna, etc.) at the age of 70 to 70.
00~/gθ00θKg/crl, teeth are Otsu 0,
00θ-200,000Kp/C1d, also lit
The elastic modulus of f, t (I m is 2 shio θ ~ shio 00 Ky /
cyrl, and its stress-strain curve is as shown in FIG. Moreover, the elastic modulus differs depending on each part or age within the above range.

従って、上記の骨、歯牙の曲線に近い応力〜ひすみ曲線
をもつ生体適合′11.の優れた1°1.′1分子化合
物、例えばポリャルポン樹脂、ポリエーテルサルポン樹
脂、ポリカーボネート樹脂、ボリアリレート樹脂、ポリ
アセタール樹脂等を1−コ成物とし、各種添加物例えば
チタン酸カリウム類およびその同系列類、ガラス類およ
びその同系列類、セラミック類およびその同系列類、フ
ッ素およびその同系列類等を繊維、れン子、粉末又は液
状等の状態で所要添加率で複合添付せしめて弾性率等の
生体力学的物性を硬組織と調和させる。その場合樹脂、
添加物の種類1、および添加物状態、割合等の種々の組
合せにより所要の物性が得られることになる。
Therefore, the biocompatible '11. Excellent 1°1. '1-molecule compounds such as polyalpone resin, polyether sulfone resin, polycarbonate resin, polyarylate resin, polyacetal resin, etc. are used as a 1-co composition, and various additives such as potassium titanates and their similar series, glasses, and Biomechanical physical properties such as elastic modulus are achieved by compounding the same series, ceramics and the same series, fluorine and the same series, etc. in the form of fibers, bricks, powders, or liquids at the required addition rate. harmonizes with hard tissue. In that case resin,
Required physical properties can be obtained by various combinations of additive types 1, additive states, proportions, etc.

このようにして、それぞれの硬組織に応した弾性率、耐
摩耗性、粘弾性率、せん断力、曲げモーメント等の生体
力学的物性に調和させる。
In this way, biomechanical properties such as elastic modulus, abrasion resistance, viscoelastic modulus, shear force, and bending moment are matched to each hard tissue.

第3図に、上記の通り構成された複合拐料11により成
形した人工膝蓋骨12が長管13に埋込まれた状態が示
されている。
FIG. 3 shows a state in which an artificial patella 12 formed from the composite material 11 configured as described above is embedded in a long tube 13.

又第7図に、複合材料11に金属材料14を補強体とし
て押入して人工長管15を成形したもの、第5図に人工
肩甲骨16を成形したものが示されている。
Further, FIG. 7 shows an artificial long tube 15 formed by injecting a metal material 14 as a reinforcing body into the composite material 11, and FIG. 5 shows an artificial scapula 16 formed.

ろ゛お、金属利眉14は?4・状、板状等でよく複数の
J刃孔14aを散在して、この凸化14aに充填4るi
′匂合拐イ:′1により結合を強化してもよし・。
Roo, what about metal eyebrows 14? 4-shaped, plate-shaped, etc., with a plurality of J blade holes 14a scattered therethrough, and this convex shape 14a filled with 4.
``Nio-agikai-i: You can strengthen the bond with ``1.''

Y相識親和性をもた一ピるために、−1ミ成分であるi
H’、i分−f−化合物にチタン酸カルシウム又はカル
7l/ j\を添加してもよい。
In order to have a Y-phase identification affinity, i, which is a -1mi component,
H', i min-f- Calcium titanate or Cal 7l/j\ may be added to the compound.

−・例ヲ述へるならば、ポリザルポン樹脂の1連1/1
.率1;12 g Ooo 〜、23.000 Ky 
/ cnjてあり、1述の硬組織のものの弾性率の範囲
に及ばないが、チタン酸カリウム、ガラスを微細な繊維
状態で添加1″ると/10,000+稽/dの4:記範
囲内である高弾性率が得られる。
-・To give an example, one series of polysarpone resin 1/1
.. Rate 1; 12 g Ooo ~, 23.000 Ky
/cnj, which does not reach the elastic modulus of the hard tissue described in 1, but if potassium titanate and glass are added in the form of fine fibers at 1", the elastic modulus of /10,000 + modulus/d is within the range described. A high elastic modulus is obtained.

このようにして、骨、歯牙の部所又は年令にbL、して
それぞれ異なる生体力学的物性と調和する力学的物性を
、樹脂および添加物の種類並び種々組合せて得ることが
出来る。加えて、レン) ’r’ ン9’A 不透過性
をもたせてレントゲン検査を可能にする。
In this way, mechanical properties that are compatible with the different biomechanical properties of bones, teeth, or age can be obtained by combining various types and combinations of resins and additives. In addition, it is made opaque to enable X-ray examination.

本発明は、骨、歯牙等の硬組織移植体の分野において、
単に生体的環境で安定する基本的条件を満たし、かつ、
ある程度の強度を有すればよいとする従来の形純補修の
範囲に止まらず、新しく生体力学的物性に着目し、それ
ぞれの硬組織部分の代替用としてその硬組織と調和する
だめの所要生体力学的物性をもたせて、生体運動時の応
力緩和機能を有する硬組織代替用複合材料を提供するか
ら、かかる材料により成形された移植体は子供から大人
まで自然な調和感が運動時にも得られ長期間にわたり障
碍の虞も無い汚れた移植体とt「す、医療面における効
果は多大/[ちのがある。
The present invention is in the field of hard tissue implants such as bones and teeth.
simply meet the basic conditions of being stable in the biological environment, and
We go beyond the scope of conventional simple repair, which only requires a certain level of strength, to focus on biomechanical physical properties and develop the necessary biomechanics of a replacement for each hard tissue that harmonizes with that hard tissue. Since we provide a composite material for hard tissue replacement that has physical properties and a stress-relieving function during living body movements, implants molded with such materials can provide a natural sense of harmony during movement, and can last for a long time. The medical effects of using a dirty transplant without any risk of injury over a period of time are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実111h例であり、第1図は従来σ何
イ)「面図、第、21fiは屈:力−ひずみ曲線、第3
図〜第S図心、1本発明の断面図である。 11・・複合イ′A利 14・・金属月利12.15.
16・・人工骨 !1、〒  17′1   出  願  人     
木   暮    山   人″l
The drawings show an actual 111h example of the present invention; FIG.
FIG. 1 is a cross-sectional view of the present invention. 11. Composite A'A interest rate 14. Monthly metal interest rate 12.15.
16...Artificial bone! 1. 17'1 Applicant
Kogure Yamato”l

Claims (1)

【特許請求の範囲】 / 骨、1゛4イ側′″hの映組識代暑用高分子・複合
相別てあり、それぞれの硬組織部分の代替用としてその
硬組織と調和するだめの所要の生体力学的物11をもた
せたことを特徴と1−る生体連動時のI+i;、力緩和
機能を有する硬組織代替用複合イ′、A オ゛1 。 a レントゲン線不i、S過性をもたせることを特徴と
−4−る特、7’l’ in’f求の範囲第1項記載の
4−(体運動時の応力緩和機能を有する硬組織代替用複
合材料。
[Scope of Claims] / There is a polymer/composite phase for heat treatment on the 1st and 4th sides of the bone, and a layer of material that harmonizes with the hard tissue as a substitute for each hard tissue part. I+i during biological interlocking, which is characterized by having the necessary biomechanical substances 11; 4- (Composite material for hard tissue replacement having stress relieving function during body movement) according to item 1.
JP57158275A 1982-09-10 1982-09-10 Hard tissue replacing composite material having stress releasing function during living body motion Granted JPS5946955A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57158275A JPS5946955A (en) 1982-09-10 1982-09-10 Hard tissue replacing composite material having stress releasing function during living body motion
JP2251832A JPH03149059A (en) 1982-09-10 1990-09-25 Composite high polymeric material for substitution for hard tissue which possesses stress relaxation function in motion of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158275A JPS5946955A (en) 1982-09-10 1982-09-10 Hard tissue replacing composite material having stress releasing function during living body motion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2251832A Division JPH03149059A (en) 1982-09-10 1990-09-25 Composite high polymeric material for substitution for hard tissue which possesses stress relaxation function in motion of living body

Publications (2)

Publication Number Publication Date
JPS5946955A true JPS5946955A (en) 1984-03-16
JPH0314453B2 JPH0314453B2 (en) 1991-02-26

Family

ID=15668038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158275A Granted JPS5946955A (en) 1982-09-10 1982-09-10 Hard tissue replacing composite material having stress releasing function during living body motion

Country Status (1)

Country Link
JP (1) JPS5946955A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153868A (en) * 1983-12-19 1985-08-13 サウザン・リサーチ・インスチチユート Biologically decomposable artificial accessory and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153868A (en) * 1983-12-19 1985-08-13 サウザン・リサーチ・インスチチユート Biologically decomposable artificial accessory and its production

Also Published As

Publication number Publication date
JPH0314453B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
Egbo A fundamental review on composite materials and some of their applications in biomedical engineering
Ramakrishna et al. Biomedical applications of polymer-composite materials: a review
Szczęsny et al. A review on biomaterials for orthopaedic surgery and traumatology: from past to present
Patel et al. A review on biomaterials: scope, applications & human anatomy significance
Black et al. Handbook of biomaterial properties
Vallittu Bioactive glass-containing cranial implants: an overview
Mahyudin et al. Biomaterials in orthopaedics
Pryor et al. Review of bone substitutes
Lu et al. Bioactive Bone Cement as a Principal Fixture for Spinal Burst Fracture: An: In Vitro: Biomechanical and Morphologic Study
Homsy et al. Materials for oral implantation—biological and functional criteria
Ritt et al. The early history of arthroplasty of the wrist from amputation to total wrist implant
Lakes Composite biomaterials
Nedoma et al. Mathematical and Computational Methods and Algorithms in Biomechanics: Human Skeletal Systems
Park et al. Biomechanical properties of calvarium prosthesis
Soleymani Eil Bakhtiari et al. Poly (methyl methacrylate) bone cement, its rise, growth, downfall and future
Khoo Silicone synovitis: the current role of silicone elastomer implants in joint reconstruction
Poitout Biomaterials used in orthopedics
Sukaryo et al. Structure and properties of biomaterials
Siraparapu et al. A review on recent applications of biomaterials
Endres et al. A new adhesive technique for internal fixation in midfacial surgery
JPS5946955A (en) Hard tissue replacing composite material having stress releasing function during living body motion
Szczesny et al. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. Materials. 2022. 15. 3622
Bertheussen Partial carpal arthrodesis as treatment of local degenerative changes in the wrist joints
Popescu et al. Some problems biocompatible materials used for making Endoprostheses Ankle
Katz et al. Mechanical and structural criteria for orthopaedic implants