JPS5946878A - Radiation measuring element - Google Patents

Radiation measuring element

Info

Publication number
JPS5946878A
JPS5946878A JP15756682A JP15756682A JPS5946878A JP S5946878 A JPS5946878 A JP S5946878A JP 15756682 A JP15756682 A JP 15756682A JP 15756682 A JP15756682 A JP 15756682A JP S5946878 A JPS5946878 A JP S5946878A
Authority
JP
Japan
Prior art keywords
core
optical fiber
fiber cable
refractive index
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15756682A
Other languages
Japanese (ja)
Inventor
Kenji Kasai
笠井 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15756682A priority Critical patent/JPS5946878A/en
Publication of JPS5946878A publication Critical patent/JPS5946878A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To eliminate electromagnetic induction and to provide an excellent insulation characteristic with respect to signal transmission and to prevent the radiation damage and deterioration of an image pickup tube and an image pickup element with respect to image processing for the space distribution of radiations, by adding a fluorescent material to the core part of an optical fiber cable and uniting a scintillator and the optical fiber cable to one body. CONSTITUTION:A material which emits fluorescent when exposed to radiations is added to a scintillator core 1 and therefore said core emits fluorescence by the mutual effect with the radiations. The fluorescence is scattered several times by the specular surface of a silver film coating 4 and is then propagated to a core 1' of an optical fiber cable after E-E'. The fluorescence emitted near the focus advances straightforward as the refractive index of the core 1 before C-C' is uniform in refractive index. This fluorescence is reflected by the specular surface of the coating 4. Since the specular surface is parabolic, the reflected light is parallel with the central axis. In other words, all the fluorescence emitted near the focus are the rays incident perpendicularly to the C-C' section in the part C-C'.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、シンチレーション発光を利用した放射線計測
素子(二関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation measuring element (2) that utilizes scintillation light emission.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

通常、光を利用した放射線検出では、シンチレータ(螢
光体)を用いて放射線を光として検出し、その光を光゛
亀子増倍管などで光電子に変換し、二次電子増倍するこ
とにより電気的な検出信号を得る方式が行なわれている
。この方式を応用した放射線の空間分布測定では、X線
の場合、シンチレータと撮像管とを組合わせて、空間的
な放射線を検出し、画像処理を行う。ところが、上記測
定法による放射線計測においては、電気信号で放射線の
情報を伝送するので、電磁誘導、電源ラインなどにより
装置のノイズ環境がわるければ、測定精度も低下すると
いう問題がある。この問題をさける方法として、光フア
イバケーブル(二よる光伝送があるが、その場合、電光
変換器、光電変換器が必要となり、情報処理が煩雑にな
る。とくに、放射線の空間分布の画像処理では、撮像管
、固体撮像素子が放射線によって損傷、劣化される問題
が残る。
Normally, radiation detection using light detects radiation as light using a scintillator (fluorescent material), converts the light into photoelectrons with a photomultiplier tube, etc., and multiplies the secondary electrons. A method of obtaining an electrical detection signal is used. In measuring the spatial distribution of radiation using this method, in the case of X-rays, a scintillator and an imaging tube are combined to detect spatial radiation and perform image processing. However, in radiation measurement using the above measurement method, radiation information is transmitted using electrical signals, so if the noise environment of the device deteriorates due to electromagnetic induction, power lines, etc., there is a problem that measurement accuracy will also decrease. One way to avoid this problem is to use optical fiber cables (two-way optical transmission), but in that case, an electro-optical converter and a photo-electric converter are required, making information processing complicated.Especially in image processing of the spatial distribution of radiation. However, there remains the problem that image pickup tubes and solid-state image sensors are damaged and deteriorated by radiation.

さらに、中性子の空間分布の画像処理では適当な測定方
法がない現況である。
Furthermore, there is currently no suitable measurement method for image processing of the spatial distribution of neutrons.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情にかんがみてなされたもので、信号伝
送に関して電磁誘導がなく、絶縁性C:Tぐれ、放射線
空間分布のIIIjI像処理などでは撮像管、撮像素子
などの放射線損傷、劣化がさけられ、更に中性子線空間
分布の画像処理にも適用できる放射線計測素子を提供す
ることにある。
The present invention has been made in view of the above circumstances, and there is no electromagnetic induction for signal transmission, and radiation damage and deterioration of the image pickup tube, image pickup element, etc. can be avoided in the case of insulation C:T leakage, IIIjI image processing of radiation spatial distribution, etc. The object of the present invention is to provide a radiation measuring element that can be applied to image processing of spatial distribution of neutron beams.

〔発明の概要〕[Summary of the invention]

本発明は光フアイバケーブルのコア部分に螢光物質を添
加してシンチレータと光フアイバケーブルとン一体化し
た放射線計測素子である。
The present invention is a radiation measuring element in which a scintillator and an optical fiber cable are integrated by adding a fluorescent substance to the core portion of the optical fiber cable.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例7図面を参照して具体的に説明
する。ここで示される光ファイバケーブルはその先端コ
アに特徴がある。第1図において、E−B’部以後は、
通常の光ファイバケーブルであり、コア1′の周囲7囲
んでクラッド2′があり、これらン被覆する被覆屑3′
がある。そして、g−g’部以前では、光フアイバコア
1′に相当する部分には、シンチレータ(螢光物質)¥
添加したシンチレータコア1かあり、その形状は、先端
に向かうに従って、直径が大きくなり、c−c’部以前
では反対に。
Hereinafter, a seventh embodiment of the present invention will be specifically described with reference to the drawings. The optical fiber cable shown here is distinctive in its tip core. In Figure 1, after section E-B',
It is a normal optical fiber cable, and has a cladding 2' surrounding the core 1', and sheathing scraps 3' covering these.
There is. Before the gg' part, the part corresponding to the optical fiber core 1' has a scintillator (fluorescent material).
There is an added scintillator core 1, and its shape is such that the diameter increases toward the tip, and the opposite is true before the c-c' portion.

その直径はAを頂点とする放物線を描いて小さくなるよ
うに形成されている。このコア1は、光ファイバのコア
乞通常構成する累月に対してシンチレータ(螢光物質)
Z添加して作られるものであり、光フアイバーケーブル
のクラッド2′に相当するクラッド2の外側には、鏡面
仕上げされた後、銀膜コーティング4が施される。
Its diameter is formed to become smaller as it draws a parabola with A as its apex. This core 1 is equipped with a scintillator (fluorescent material) for the moon that normally constitutes the core of the optical fiber.
The outer surface of the clad 2, which corresponds to the clad 2' of the optical fiber cable, is mirror-finished and then coated with a silver film 4.

そして、光フアイバケーブルと同じ被膜層3が被覆しで
ある。
It is covered with the same coating layer 3 as the optical fiber cable.

上記光フアイバケーブルの断面及び屈折率の分布は第2
図にみられる。光フアイバケーブルのコア1′の屈折率
分布がH−E’断面(第2図D)に示すようなものであ
るとすると、E−E′部からC−C’部の断面及びc−
c’郡部間屈折率分布は、第2図(Bl (B) ’に
示すように、シンチレータコア1の直径に対応した分布
となっており、この分布では元ファイバケーブルにおけ
るコア1′の中心とクラッド2′との屈折率の比、およ
びシンチレータコアノの中心とクラッド2との屈折率の
比が保存されるような屈折率分布となっている。このよ
うな屈折率分布の一例を第4図に示す。第4図では、屈
折率の等しい点7線で結ぶと直線となる状況がみられ、
先程述べた屈折率の比が保存されていることがわかる。
The cross section and refractive index distribution of the above optical fiber cable are
Seen in the figure. Assuming that the refractive index distribution of the core 1' of the optical fiber cable is as shown in the HE' cross section (Fig. 2D), the cross section from E-E' to C-C' and c-
As shown in Figure 2 (Bl (B)'), the refractive index distribution between the c' groups corresponds to the diameter of the scintillator core 1, and in this distribution, the center of the core 1' in the original fiber cable The refractive index distribution is such that the ratio of the refractive index with the cladding 2' and the ratio of the refractive index between the center of the scintillator core and the cladding 2 are preserved.An example of such a refractive index distribution is shown in the fourth example. This is shown in Figure 4. In Figure 4, there is a situation in which a straight line is formed when 7 points with equal refractive index are connected.
It can be seen that the refractive index ratio mentioned earlier is conserved.

また、第2図い)、(A′)はB−B断面及びその屈折
率、第2図(C)、(C′)はD−D’断面及びその屈
折率を示す。
2) and (A') show the BB section and its refractive index, and FIG. 2 (C) and (C') show the DD' section and its refractive index.

このように、本発明に係る放射線計測素子は、これを枚
数本来ねた構成にすることにより、第3図に示す状態と
し、空間分布測定に応用することができる。
In this manner, the radiation measuring element according to the present invention can be applied to spatial distribution measurement in the state shown in FIG. 3 by configuring it in a configuration in which the number of elements is reduced.

上記放射線計測素子は、放射線計測において、次のよう
に作用する。シンチレータコア1には放射線により螢光
を発する物質(螢光物質)が添加されているので、放射
線との相互作用により螢光7発する。この螢光は、銀膜
コーティング4の鏡面により何回か散乱した後、E−B
’以降の光フアイバケーブルのコア1′に伝播する。こ
こでは説明YM単(二するため、C−C’E+5以前の
放物線鏡面の焦点附近で発せられた螢光を対象として説
明する3、焦点附近で発せられた螢光はC−C’以前の
シンチレータコア1の屈折率が一様なため、直進し、銀
膜コーティング4の鏡面により、反射される。この鏡面
は放物線となっているため、反射光は中心軸に対して平
行な光となる。丁なわち、焦点附近で発せられた螢光は
丁べてC−C’部ではC−C’断面に垂直に入射する光
線となる。c−c’部から光フアイバケーブル(E−g
’部〕までは、第2図に示すような屈折率分布乞してい
るが、ここでは、その−例として第4図に示すように屈
折率の等しい点ン結んだ線が直線であることから、c−
c’断面に垂直に入射した螢光光線は第4図に示すよう
な光路Z経て光フアイバケーブルのコア4′に伝播する
ことになる。光ファイバケーブルにおける光の伝搬は一
般によく知られるところなので説明は惰′略するが、元
ファイバケーブルを伝播した螢光は適当な光電又換器を
用いて電気信号として検出され、放射線計測の機能を達
成する。
The radiation measurement element operates as follows in radiation measurement. Since the scintillator core 1 is doped with a substance that emits fluorescent light when exposed to radiation (fluorescent substance), the scintillator core 1 emits fluorescent light 7 due to interaction with the radiation. After this fluorescent light is scattered several times by the mirror surface of the silver film coating 4, the E-B
' propagates to the subsequent core 1' of the optical fiber cable. Here, in order to explain YM single (2), we will explain the fluorescence emitted near the focus of the parabolic mirror surface before C-C'E+5.3, the fluorescence emitted near the focus will be explained before C-C' Since the refractive index of the scintillator core 1 is uniform, it travels straight and is reflected by the mirror surface of the silver film coating 4. Since this mirror surface is a parabola, the reflected light becomes parallel to the central axis. In other words, the fluorescent light emitted near the focal point becomes a ray of light that is incident perpendicularly to the C-C' section at the C-C' section.From the c-c' section, the optical fiber cable (E-g
Up to part 1, the refractive index distribution is as shown in Figure 2, but here, as an example, as shown in Figure 4, a line connecting dots with equal refractive index is a straight line. From, c-
The fluorescent light beam incident perpendicularly to the cross section c' propagates to the core 4' of the optical fiber cable through an optical path Z as shown in FIG. The propagation of light in optical fiber cables is generally well known, so I will not explain it here, but the fluorescence that propagated through the original fiber cable is detected as an electrical signal using a suitable photoelectric converter, and is used for radiation measurement. Achieve.

なお、本発明の思想は、第1図に示される実施例に限ら
れるものではなく、シンチレータコア1と光フアイバケ
ーブルのコア1′との一体化には、第5図あるいは第6
図に示される変形なども含まれるものである。第5Nは
第1図のe−c’以降ン二つ結合した形状の例であり、
シンチレータコア1内で発せられた螢光は2本の光ファ
イバケーブルZ伝播し、検出される。
Note that the idea of the present invention is not limited to the embodiment shown in FIG.
This also includes the modifications shown in the figures. No. 5N is an example of a shape in which two parts from e-c' in Fig. 1 are combined,
Fluorescent light emitted within the scintillator core 1 propagates through two optical fiber cables Z and is detected.

この2つの検出信号は、コインシデンス(同時)d1測
などに利用できる。また、第6図は第5図の変形を極端
にした例であり、作用としては同様である。
These two detection signals can be used for coincidence (simultaneous) d1 measurement, etc. Moreover, FIG. 6 is an example in which the modification of FIG. 5 is extreme, and the operation is the same.

また、シンチレータコアの形状は一実施例に束縛される
ものではなく、屈折率の比が保存されるのであれば、任
意の形状を取り得ること勿論である。
Furthermore, the shape of the scintillator core is not limited to one embodiment, and can of course take any shape as long as the ratio of refractive index is maintained.

なお、光フアイバケーブルのコアは一般に石英がラスが
素材として用いられているがプラスチックを用いること
も可能であり、通常、シンチレータコアとしては、リジ
ウム−6、リジウム−7などのガラスシンチレータ、プ
ラスチックシンチレータが存在することから考えて、光
フアイバケーブルコアと同質の素材に螢光物質を添加し
て作ることは容易であると考える。また本願の一実施例
においてシンチレータは1種のみ添加するように記載し
ているがこれに限定されるものではなく、異核種検知の
ために特性の異なるシンチレータZ混合、複数の層ある
いは分布を異なるように疵加して実施されてもよい。
The core of an optical fiber cable is generally made of quartz lath, but it is also possible to use plastic, and the scintillator core is usually a glass scintillator made of lydium-6 or lydium-7, or a plastic scintillator. Considering the existence of fluorophore, it is thought that it would be easy to make it by adding a fluorescent substance to the same material as the optical fiber cable core. In addition, in one embodiment of the present application, it is described that only one type of scintillator is added, but the invention is not limited to this. For detection of different nuclides, scintillators Z with different characteristics, multiple layers, or different distributions may be added. It may be implemented with some modifications.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射線乞検出したシンチレーション発
光ン直接、光ファイバケーブル7用いて伝送できるため
、次のような効果が得られるのである。
According to the present invention, since the scintillation light emitted from radiation detection can be directly transmitted using the optical fiber cable 7, the following effects can be obtained.

(1)従来の電気信号の伝送方式に比べ、電磁誘専、7
1117Nラインなどのノイズ?うけない。
(1) Compared to conventional electrical signal transmission methods, electromagnetic induction
Noise from the 1117N line? I don't accept it.

(2)従来方式で光フアイバケーブルを用いた光伝送の
場合に必要とする光rに変換器が不要であり経済的であ
る。
(2) It is economical because it does not require a converter for the light r that is required in the case of optical transmission using an optical fiber cable in the conventional method.

(3)  放射線の空間分布測定のIIIjl像処理に
用いる場合、放射線?測定する場所と撮像装置との場所
乞離丁ことができ、撮像肯、固体撮像素子が放射線で損
傷、劣化されるのをさけられる。
(3) When used for IIIjl image processing for radiation spatial distribution measurement, radiation? The measurement location and the imaging device can be separated from each other, and damage and deterioration of the solid-state imaging device due to radiation can be avoided.

(4)  シンチレータは、その種類によって、X線、
中性子などの放射線と相互作用してシンチレーション発
光するので、例えば中性子の空間分布の画像処理など、
従来、不可能であった分野まで、適用が拡大される。
(4) Depending on the type, scintillators can emit X-rays,
Because it interacts with radiation such as neutrons and emits scintillation, it can be used for image processing of the spatial distribution of neutrons, etc.
Applications will be expanded to areas that were previously impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、A)および(B)は本発明の一実施例7示す
C−C’tlJr而、1)−1)Jly面、1;2−E
/断面およびそれらの屈折率の分布7示す図、第3図は
画像処理のために本発明に係る素子ン集束した構成7示
す側面図、第4図は螢光の伝播の状況を示す拡大側面図
、第5図(AJ (B)および第6図(AJ(B+はそ
れぞれ別の実施例〉示TY−Y’断面図、X−X/断面
図、w−w’断断面図上ヒv −v’’面図である。 1゛°゛シンチレータコア、1′・・・光フアイバケー
ブルのコア、2・・・クラッド 2 /−、、・クラッ
ド、3・・・被覆層、3′・・・被覆層、4・・・釧膜
コーティング。 出願人代理人  弁理士 鈴 江 武 彦第1図 (A)(B) 第3図 第2図 (A)    (A’) (B)        CB’) 昭和51°1肩28゛日 特許庁長官   若 杉 和 夫 殿 1、事件の表示 特願昭57−157566号 2、発明の名称 放射線計測素子 3、補正をする者 事件との関係 特許出願人 (307)  東京芝浦電気株式会社 4、代理人 住所 東京都港区虎ノ門1丁目26番°5号 第17森
ビル〒105   電話03 (502) 3181 
(大代!り昭和57年11月30日 6、補正の対象 正の内容 (1)明細書第4頁第1O行目の「図D」とあるを「図
G」と訂正する。 (2)明細書第4頁第12行目の「第2図(11)CB
)Jとあるを「第2図(oL(n) Jと訂正する。 (3)明細書第5頁第2行目の[第2図(A)。 (A′戸」とあるを「第2図(AL([3)Jと訂正す
る。 (4)  明細書第5頁第2行目の「第2図(C)。 (0’) Jとあるを「第2図(E) t (F) J
と訂正する。 (5)  明細書第9頁第9行目ないし同頁第12行目
の「第2図(A) t(A’ )・・・分布を示す図」
とあるを下記のように訂正する。 記 「第2図(A)、(B)は第1図(A)における13−
B′断面図およびその屈折率分布図、第2図(0) t
 (D)は第l因(A)におけるc−c’断面図および
その屈折率分布図、第2図(E)j(F)は第1図(A
)におけるD−D’断面図およびその屈折率分布図、第
2図(G) t (H)は第1図(A)におけるE−E
’断面図およびその屈折率分布図」 (5)  図面第2図を別紙のよう(二訂正する。
Figures 1 (, A) and (B) show one embodiment 7 of the present invention.
/ cross-sections and their refractive index distribution 7; FIG. 3 is a side view showing a focused arrangement 7 of the element according to the invention for image processing; FIG. 4 is an enlarged side view showing the propagation of fluorescence. Figure 5 (AJ (B) and Figure 6 (AJ (B+ are different embodiments) It is a -v'' side view. 1゛°Scintillator core, 1'... Core of optical fiber cable, 2... Clad 2/-,... Clad, 3... Covering layer, 3'... ...Covering layer, 4...Shimei coating. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (A) (B) Figure 3 Figure 2 (A) (A') (B) CB' ) Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1977, Patent Application No. 157566/1983, 2, Title of the invention: Radiation measuring device 3, Person making the amendment, Relationship with the case, Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4, Agent Address: 17th Mori Building, 1-26°5, Toranomon, Minato-ku, Tokyo Address: 105 Telephone: 03 (502) 3181
(Oshiro! November 30, 1981 6, Correct contents subject to amendment (1) "Diagram D" on page 4, line 1 O of the specification is corrected to "Diagram G." (2) ) "Figure 2 (11) CB" on page 4, line 12 of the specification
) J should be corrected as “Figure 2 (oL(n) J). (3) In the second line of page 5 of the specification, [Figure 2 (A). Figure 2 (AL([3)J). (4) In the second line of page 5 of the specification, "Figure 2 (C). (0') J" should be changed to "Figure 2 (E) t. (F)J
I am corrected. (5) "Figure 2 (A) t(A')... Diagram showing distribution" from line 9 of page 9 of the specification to line 12 of the same page
Correct the statement as follows. "Figure 2 (A) and (B) are 13- in Figure 1 (A)
B' cross-sectional view and its refractive index distribution diagram, Figure 2 (0) t
(D) is a c-c' cross-sectional view and its refractive index distribution diagram in factor l (A), and Figures 2 (E) and (F) are Figure 1 (A).
) and its refractive index distribution diagram, Figure 2 (G) t (H) is E-E in Figure 1 (A).
'Cross-sectional view and its refractive index distribution map' (5) Figure 2 of the drawing is as attached (with two corrections).

Claims (1)

【特許請求の範囲】[Claims] 光ファイ、バケーブルのコア部分に、螢光物質を添加し
て、シンチレータと光フアイバケーブルとを一体化した
ことt特徴とする放射線計測素子。
A radiation measuring element characterized in that a scintillator and an optical fiber cable are integrated by adding a fluorescent substance to the core portion of the optical fiber or optical fiber cable.
JP15756682A 1982-09-10 1982-09-10 Radiation measuring element Pending JPS5946878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15756682A JPS5946878A (en) 1982-09-10 1982-09-10 Radiation measuring element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15756682A JPS5946878A (en) 1982-09-10 1982-09-10 Radiation measuring element

Publications (1)

Publication Number Publication Date
JPS5946878A true JPS5946878A (en) 1984-03-16

Family

ID=15652478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15756682A Pending JPS5946878A (en) 1982-09-10 1982-09-10 Radiation measuring element

Country Status (1)

Country Link
JP (1) JPS5946878A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307382A (en) * 1987-06-08 1988-12-15 Japan Atom Energy Res Inst Radiation measuring method
JPH02206786A (en) * 1989-02-07 1990-08-16 Hamamatsu Photonics Kk Probe for in-vivo measurement and scintillation detector
JPH06201835A (en) * 1992-12-28 1994-07-22 Tohoku Electric Power Co Inc Transmission device for radiation ray detection light
JPH10160845A (en) * 1996-12-04 1998-06-19 Mitsubishi Electric Corp Apparatus and method for diagnosis of degradation of scintillation fiber bundle as well as calibration device for depth dose measuring apparatus for radiation
JP2002341041A (en) * 2002-04-05 2002-11-27 Tohoku Electric Power Co Inc Radiation detecting optical transmission device
WO2017221828A1 (en) * 2016-06-21 2017-12-28 株式会社クラレ Plastic scintillation fiber and manufacturing method for same
KR20210010106A (en) * 2019-07-19 2021-01-27 (주) 뉴케어 Apparatus and method for measuring radiation dose rate and corresponding position

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412882A (en) * 1977-06-30 1979-01-30 Aloka Co Ltd Strand and apparatus for detecting radiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307382A (en) * 1987-06-08 1988-12-15 Japan Atom Energy Res Inst Radiation measuring method
JPH02206786A (en) * 1989-02-07 1990-08-16 Hamamatsu Photonics Kk Probe for in-vivo measurement and scintillation detector
JPH06201835A (en) * 1992-12-28 1994-07-22 Tohoku Electric Power Co Inc Transmission device for radiation ray detection light
JPH10160845A (en) * 1996-12-04 1998-06-19 Mitsubishi Electric Corp Apparatus and method for diagnosis of degradation of scintillation fiber bundle as well as calibration device for depth dose measuring apparatus for radiation
JP2002341041A (en) * 2002-04-05 2002-11-27 Tohoku Electric Power Co Inc Radiation detecting optical transmission device
WO2017221828A1 (en) * 2016-06-21 2017-12-28 株式会社クラレ Plastic scintillation fiber and manufacturing method for same
JPWO2017221828A1 (en) * 2016-06-21 2019-04-11 株式会社クラレ Plastic scintillation fiber and manufacturing method thereof
US11226420B2 (en) 2016-06-21 2022-01-18 Kuraray Co., Ltd. Plastic scintillating fiber and method of manufacturing the same
KR20210010106A (en) * 2019-07-19 2021-01-27 (주) 뉴케어 Apparatus and method for measuring radiation dose rate and corresponding position

Similar Documents

Publication Publication Date Title
US8344335B2 (en) Fibre optic dosimeter
US6407392B1 (en) Radiation detector
US4629890A (en) Radiation image read-out apparatus
JPH11218577A (en) Scintillation detection
WO2018223918A1 (en) Detector and emission imaging device having same
WO2018223917A1 (en) Detector and emission imaging device having same
US5258145A (en) Method for manufacturing a high resolution structured x-ray detector
JPH05281362A (en) Radiation detector
US5483081A (en) Method for detecting light emitted by two surfaces of a stimulable phosphor sheet
JPS5946878A (en) Radiation measuring element
US5012103A (en) Radiation detector
US4739168A (en) X-ray detector and method for manufacturing the same
US4929835A (en) Position-sensitive radiation detector
US4692813A (en) Apparatus for converting radiation image information carried by a storage layer into a television signal sequence
JPH084635Y2 (en) Radiation detector
US4096381A (en) Electron image detection system
JPH09145845A (en) Radiation detector and radiation detecting device
JP2003240857A (en) Radiation detector
JP3463018B2 (en) Thin radiation surface contamination detector
JPH03267787A (en) X-ray fluorescent optical fiber and x-ray detector
US5530260A (en) Radiation image read-out method and apparatus
JPH0961533A (en) Scintillator and scintillation detector
JPH0571914B2 (en)
WO2022190473A1 (en) Light guide, electron ray detector, and charged particle device
JPS62200308A (en) Photodetector