JPS5946845A - Method for measuring polarization and dielectric breakdown of material - Google Patents

Method for measuring polarization and dielectric breakdown of material

Info

Publication number
JPS5946845A
JPS5946845A JP15853382A JP15853382A JPS5946845A JP S5946845 A JPS5946845 A JP S5946845A JP 15853382 A JP15853382 A JP 15853382A JP 15853382 A JP15853382 A JP 15853382A JP S5946845 A JPS5946845 A JP S5946845A
Authority
JP
Japan
Prior art keywords
voltage
sample
electrodes
current
phenomenon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15853382A
Other languages
Japanese (ja)
Other versions
JPH0244015B2 (en
Inventor
Kenji Nagata
永田 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15853382A priority Critical patent/JPS5946845A/en
Publication of JPS5946845A publication Critical patent/JPS5946845A/en
Publication of JPH0244015B2 publication Critical patent/JPH0244015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Abstract

PURPOSE:To observe the polarization characteristic of material and the dielectric breakdown characteristic of the material, by measuring the transient current induced by the energy absorption occuring in the phenomenon that the material structure when conducted with electricity is subjected to a polarization by a dielectric phenomenon and the phenomenon entailing the material breakdown caused by the application of voltage. CONSTITUTION:A pair of needle electrodes E1, E2 are brought into contact with the surface of a sample S, and the constant DC voltage from a constant DC voltage power source 2 is applied between both electrodes E1 and E2. Stationary current and transient current flow in a measurement circuit provided between the electrodes E1 and E2 through the sample S, and the voltage generated in proportion to the current at both terminals of a load resistor R is differentiated with a differentiator 2 and is recorded as the functions of the polarization and dielectric breakdown characteristics of the sample in a recorder 4. The application of the voltage on the electrodes E1, E2 is stopped upon ending of the transient phenomenon; at the same time, terminals 5, 6 are short- circuited and the voltage generated at both terminals of the load resistor R by the electric current flowing in said stage is differentiated by a differentiator and is recorded as the function of the polarization characteristic of the sample in the recorder 4.

Description

【発明の詳細な説明】 本発明は物質の分極性及び絶縁破壊性の測定方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring polarizability and dielectric breakdown properties of substances.

一対の電極の間に固体試料を接触させ、この両電極間に
測定回路を介して直流電圧を印加すると、試料を通して
測定回路に電流が流れる。このようにして測定回路に流
れる電流は、定常状態において流れる定常電流と、′電
圧を印加してから定常状態に達する間に流れる過渡電流
とから成立っている。
When a solid sample is brought into contact between a pair of electrodes and a DC voltage is applied between the two electrodes via a measurement circuit, a current flows through the sample and into the measurement circuit. The current that flows through the measurement circuit in this way consists of a steady current that flows in a steady state and a transient current that flows between when the voltage is applied and when the steady state is reached.

過渡電流は、通電により物tq構造が誘電現象によって
分極を受ける現象と、電圧の印加による物質破壊に伴う
現象とによるエネルギー吸収によって生起される。従っ
て、この定常電流の方向とは反対の方向に流れる電流を
測定1−ることによって、過渡現象に用いられたエネル
ギー、即ち、物質の分極性及び物質の絶縁破壊性を四側
することができる。
The transient current is caused by energy absorption due to a phenomenon in which the material tq structure undergoes polarization due to a dielectric phenomenon when current is applied, and a phenomenon accompanying material destruction due to the application of voltage. Therefore, by measuring the current flowing in the opposite direction to the steady current, it is possible to estimate the energy used in the transient phenomenon, that is, the polarizability of the material and the dielectric breakdown property of the material. .

本発明は、このような観点によりなされたもので、2つ
の電極間に試料を接触させると共に、該電極間にはロー
1抵抗を介して直流定電11二を印加し、それによって
試料及びロード抵抗に的流電流を流すと共に、該ロー1
2抵抗の両端に電圧を発生させ、この電圧を微分処理し
、得られた微分値を試料の分極性及び絶縁破壊性の関数
として測定し、次いでその測定終了後、該直流定電圧の
印加を停止させると共に、両電極間をロード抵抗を介し
て短絡させ、その際に流れる電流によりロード抵抗の両
端に電圧を発生させ、この電圧を微分処理し、得られた
微分値を試料の分極性として測定することを特徴とする
物質の分極性及び絶縁破壊性の測定方法を提供するもの
である。
The present invention was made from this point of view, in which a sample is brought into contact between two electrodes, and a constant DC current 112 is applied between the electrodes via a low 1 resistor, whereby the sample and the load are brought into contact with each other. While passing a target current through the resistor, the low 1
A voltage is generated across two resistors, this voltage is differentiated, the obtained differential value is measured as a function of the polarizability and dielectric breakdown property of the sample, and then, after the measurement is completed, the application of the constant DC voltage is At the same time, the two electrodes are short-circuited via a load resistor, the current flowing at that time generates a voltage across the load resistor, this voltage is differentiated, and the obtained differential value is used as the polarizability of the sample. The present invention provides a method for measuring the polarizability and dielectric breakdown of a substance.

次に本発明を図面により説明する。Next, the present invention will be explained with reference to the drawings.

図面は本発明の方法を実施するだめの測定装置系統図で
あり、Sは試料、E++E2は針状の接触電極、Rはロ
ー1抵抗、1は高入力微分装置、2は直流定電圧電源、
3は手動型リレー回路、4は記録計を示す。
The drawing is a system diagram of a measuring device for carrying out the method of the present invention, where S is a sample, E++E2 is a needle-shaped contact electrode, R is a low 1 resistor, 1 is a high input differentiator, 2 is a DC constant voltage power supply,
3 is a manual relay circuit, and 4 is a recorder.

本発明においては、2個(一対)の針状電極B l +
E2を試料Sの表面に接触させると共に、直流定電圧電
源2からの直流定電圧を両電極EI+E2の間に印加す
る。この直流定電圧の印加により、試料Sを通じ、電極
El+”2の間に設けられた測定回路に定常電流と過渡
電流が流れるが、この測定回路にはロード抵抗Itが挿
入されていることがら、このロード抵抗の両端に電流に
比例して電j“1−が発生ずる。そして、この発生した
電J:E it人カイノビ−ダンスの高い微分装置2て
微分処」411され、イ:1られだ微分値は、試料の分
極性及び絶縁破壊1シ1の関数として記録計4に記録さ
れる。
In the present invention, two (pair) needle-shaped electrodes B l +
E2 is brought into contact with the surface of the sample S, and a constant DC voltage from the constant DC voltage power source 2 is applied between the electrodes EI+E2. Due to the application of this constant DC voltage, a steady current and a transient current flow through the sample S to the measurement circuit provided between the electrodes El+"2, but since a load resistor It is inserted in this measurement circuit, A voltage j"1- is generated across the load resistor in proportion to the current. Then, this generated electric current is differentiated using a differentiator with a high degree of resistance, and the differential value of the electric current is calculated as a function of the polarizability of the sample and the dielectric breakdown of the recorder. Recorded in 4.

前記において、直流定圧電源か一定で、電極E、。In the above, the DC constant voltage power supply is constant, and the electrode E.

E2に印加される電圧が一定であれば、試に’l Sに
流れる定常電流成分は一定であるから、この定常電流成
分の電圧を微分処理すればそのイ11′昧」、零になる
If the voltage applied to E2 is constant, the steady-state current component flowing through S is constant, so if the voltage of this steady-state current component is differentiated, it becomes zero.

これに対し、過渡電流成分は時間により変化することか
ら、ロード抵抗1tの両端に発生した電圧の微分値は過
渡電流成分によって形成され/こものであり、これによ
って過渡′flj流成分全成分電流成分から分離させる
ことが可能になるニ1′かりてなく、この微分値が零に
なったIL’I V′C過、1隻現象が終It、lここ
とを示すため、過渡現象の終r時を・決定することがで
きる。
On the other hand, since the transient current component changes with time, the differential value of the voltage generated across the load resistor 1t is formed by the transient current component. It becomes possible to separate it from IL'I V'C, and this differential value becomes zero. You can decide the time.

過渡現象終了後、手動型リレー回路3を作用させて、直
流定電圧電源を端子5,6がらはずして、電極El 、
 I・r2に対する電圧の印加を停止させると共に、端
子5,6の間を短絡させる。そして、その短絡により逆
方向に電流が流れる。この電光によりロード抵抗ILの
両端に電圧が生じ、この電圧は微分装置i’+’により
微分処理され、その微分値は、試別の分極性の関数とし
て記録計4に記録される。
After the transient phenomenon ends, the manual relay circuit 3 is activated to disconnect the DC constant voltage power source from the terminals 5 and 6, and connect the electrodes El,
The application of voltage to I.r2 is stopped, and terminals 5 and 6 are short-circuited. The short circuit causes current to flow in the opposite direction. This lightning generates a voltage across the load resistor IL, this voltage is differentiated by the differentiator i'+', and the differential value is recorded on the recorder 4 as a function of the polarizability of the sample.

過渡現象のうち、分子の分極化により吸収されたエネル
ギーは・分子中に蓄積されるが、この蓄積されたエネル
ギーは、前記端子5,6の短絡により放出される。この
際の蓄積エネルギーの放出により生じる電流の流れは、
試別に対して電圧を印加し、エネルギー吸収を行わせた
場合の電流の方向とは逆方向になる。そして、この蓄積
エネルギーの放出による電流は、ロード抵抗Rの両端に
電圧として観測される。
Among the transient phenomena, energy absorbed by polarization of molecules is stored in the molecules, but this stored energy is released by shorting the terminals 5 and 6. The current flow caused by the release of stored energy at this time is
The direction is opposite to the direction of current when a voltage is applied to the sample and energy is absorbed. A current due to the release of this stored energy is observed as a voltage across the load resistor R.

本発明において、直流定電圧電源としては、一般に、1
0〜10万ボルトの定電圧を発生するものが用いられ、
寸だローIS抵抗Itとしては、通常100〜10メグ
オームのものが採用される。電極間の距離は、通常1〜
l0cmである。
In the present invention, the DC constant voltage power supply generally includes 1
Those that generate a constant voltage of 0 to 100,000 volts are used,
The low IS resistance It is usually 100 to 10 megohms. The distance between the electrodes is usually 1~
It is 10 cm.

本発明の方法は神々の低分子、1.H’p;分子の翁機
又は無機の固体物質に対してJl:?J川用\れる。
The method of the present invention uses divine small molecules, 1. H'p; Jl for molecular or inorganic solid substances: ? For J river\reru.

次に、本発明による測定例を・;j、ず。。Next, measurement examples according to the present invention are as follows. .

測定試料としてフェニル゛アルノ゛ヒト樹脂を用い、第
1図に示した装置を用いて測定を?−i″っだ。この場
合、直流定圧電源による電圧として+ (10(lボル
ト、ロード抵抗1しとして1へ4Ω、電極間隔として1
0調、針状電極Bl’+ l>2として白金製のものを
・用いた。
Using phenylaluminum resin as the measurement sample, perform the measurement using the apparatus shown in Figure 1. -i''. In this case, the voltage from the DC constant voltage power supply is +
In the zero tone, a platinum electrode was used as the needle electrode Bl'+l>2.

その測定結果を第23図に/J、ず。第2図t」、微分
曲線を示し、縦111+はロー!5抵抗1(、の両ψ1
1.;に生じる電圧の微分値(L)であり、横11’l
ll it: l+、1」間(【)を示ず3.波形Aは
電圧印加時及び波形13は上用−の印加を・停+L L
、短絡した時のそれぞれの微分波形をノJりず。
The measurement results are shown in Figure 23. Figure 2 t'' shows a differential curve, vertical 111+ is low! 5 resistance 1 (both ψ1 of
1. ; is the differential value (L) of the voltage generated at horizontal 11'l
ll it: l+, 1'' (without parentheses) 3. Waveform A is when voltage is applied, and waveform 13 is when voltage is applied.
, the respective differential waveforms when short-circuited.

この微分曲線によれば、′lIJ、ll二卵加’B」(
’ l” ’ 1 )における微分信号の大きさ及び上
用コ印加後倣分イ1)号の最大ピークを示す捷での時間
(t ;+ 7 ++)と、電圧の印加を停止し、短絡
時(12以後)の倣分信弼の大きさ及び短絡後微分信号
の最大1″−りを示−J−までの時間(tb−t2)は
、それぞれほぼ一致した値を示しており、それ故、この
試料に関して微分曲線で示される過渡現象は物質の可逆
現象を示し、そして、この現象は両電極間に電位差を与
えることによって発生ずるものであることから、物質の
分極性に起因するものであることがわかる。
According to this differential curve, 'lIJ, ll2 egg addition'B' (
The magnitude of the differential signal at 'l''1) and the time (t; The magnitude of the imitation signal at the time (after 12) and the maximum 1"-reduction of the differential signal after the short circuit (tb-t2) show almost the same value, respectively. Therefore, the transient phenomenon shown by the differential curve for this sample indicates a reversible phenomenon of the material, and since this phenomenon is caused by applying a potential difference between the two electrodes, it can be attributed to the polarizability of the material. It can be seen that it is.

以上のことから、第2図において、ピークの高さから分
極性の大きさ、そしてピークに達す“る時間から分極に
要する時間を求めることができる。
From the above, in FIG. 2, the magnitude of polarizability can be determined from the height of the peak, and the time required for polarization can be determined from the time it takes to reach the peak.

分極性の検討を行う方法としてミ従来から誘電率の測定
を行う方法が用いられている。この方法によれば、試料
に有える電場として交流の電場を用いて測定が行われて
いる。このため、位相差の小さい信号と位相差の大きい
信号とは互に重なり、観測の結果では合成位相として観
測されるようになり、正確な位相差を分離観測すること
は困難となる。
As a method for examining polarizability, a method of measuring dielectric constant has been conventionally used. According to this method, measurements are performed using an alternating current electric field as the electric field present in the sample. For this reason, signals with a small phase difference and signals with a large phase difference overlap each other, and in the observation results, they are observed as a composite phase, making it difficult to separate and observe the accurate phase difference.

これに対し、本発明による測定法は、前記の誘電率の測
定とは異なり、単発発振法とも言われるものであること
から、スタートしてからの分極時間並びに消滅時間を直
接的に求めることができる。
On the other hand, the measurement method according to the present invention is different from the above-mentioned dielectric constant measurement and is also called a single oscillation method, so it is not possible to directly determine the polarization time and extinction time after the start. can.

また、第2図に示され/こ微分向ijgdにおいて、ピ
ークAの積分値CA’Jとビ゛−り13の積分値UJと
を・求めて両者を比較し、両者の1的が一致すれば、両
者の現象は完全な可逆現象となり、この過渡現象は物質
の分極性にのみ起因、するととからこの微分曲線に示さ
れた測定結果は、絶縁破壊現象を伴わないことがわかる
。−ノブ1イ、′「分(11’1’、 CA ]とイ、
11、分値〔B〕との間に((1−(1,+ ’] )
が認められれし1:、この差は、過渡現象のうちの小用
逆現象、即ち、絶縁破壊成分に起因することがわかり、
絶縁破壊成分の、oラメータを求めることが11」ゴ市
となる。
In addition, in the differential direction ijgd shown in FIG. 2, calculate the integral value CA'J of peak A and the integral value UJ of beam 13, compare them, and check if they match. For example, both phenomena are completely reversible, and this transient phenomenon is caused only by the polarizability of the material.Therefore, it can be seen that the measurement results shown in this differential curve are not accompanied by dielectric breakdown phenomena. -Knob 1, 'min (11'1', CA] and i,
11. Between the minute value [B] ((1-(1,+'])
1: It turns out that this difference is caused by the inverse phenomenon of transient phenomena, that is, the dielectric breakdown component.
Obtaining the o parameter of the dielectric breakdown component is 11".

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施のだめの測定装置系統図を
示し、第2図UL1本発明でイ(tられる微分曲線を示
す。 1・・・高入力微分装置Ni、2・・・ll′l流定電
月0上用、3・・・手動型リレー回路、4 ・1.1録
、¥1、l’:1.I・)2・接触電極、R・・ロード
抵抗。
Fig. 1 shows a system diagram of a measuring device used to carry out the method of the present invention, and Fig. 2 shows a differential curve obtained by UL1 according to the present invention. 1... High input differentiator Ni, 2... 'l Current constant current for 0 and above, 3... Manual relay circuit, 4 ・1.1 record, ¥1, l': 1.I・) 2. Contact electrode, R... Load resistance.

Claims (1)

【特許請求の範囲】[Claims] (1)2つの電極間に試料を接触させると共に、該電極
間にはロー1抵抗を介して直流定電圧を印加し、それに
よって試料及びロード抵抗に直流電流を流すと共に、該
ロード抵抗の両端に電圧を発生させ、この電圧を微分処
理し、得られた微分値を試料の分極性及び絶縁破壊性の
関数として測定し、次いでその測定終了後、該直流定電
圧の印加を停止させると共に、両電極間をロー1?抵抗
を介して短絡させ、その際に流れる電流によりロード抵
抗の両端に電圧を発生させ、この電圧を微分処理し、得
られた微分値を試料の分極性として測定することを特徴
とする物質の分極性及び絶縁破壊性の測定方法。
(1) A sample is brought into contact between two electrodes, and a constant DC voltage is applied between the electrodes via a low 1 resistor, thereby causing a DC current to flow through the sample and the load resistor, and both ends of the load resistor. generate a voltage, differentiate this voltage, measure the obtained differential value as a function of the polarizability and dielectric breakdown property of the sample, and then, after completing the measurement, stop the application of the constant DC voltage, and Low 1 between both electrodes? A material characterized by short-circuiting through a resistor, generating a voltage across the load resistor by the current flowing at that time, differentially processing this voltage, and measuring the obtained differential value as the polarizability of the sample. Method for measuring polarizability and dielectric breakdown properties.
JP15853382A 1982-09-11 1982-09-11 Method for measuring polarization and dielectric breakdown of material Granted JPS5946845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15853382A JPS5946845A (en) 1982-09-11 1982-09-11 Method for measuring polarization and dielectric breakdown of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15853382A JPS5946845A (en) 1982-09-11 1982-09-11 Method for measuring polarization and dielectric breakdown of material

Publications (2)

Publication Number Publication Date
JPS5946845A true JPS5946845A (en) 1984-03-16
JPH0244015B2 JPH0244015B2 (en) 1990-10-02

Family

ID=15673801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15853382A Granted JPS5946845A (en) 1982-09-11 1982-09-11 Method for measuring polarization and dielectric breakdown of material

Country Status (1)

Country Link
JP (1) JPS5946845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504991A (en) * 1989-02-18 1992-09-03 ホピ アンシュタルト Packing method and equipment
US6745544B2 (en) 2000-04-04 2004-06-08 Matsumoto System Engineering Co., Ltd. Method of and apparatus for wrapping loadable objects
US7827766B2 (en) 2001-10-24 2010-11-09 Matsumoto System Engineering Co., Ltd. Method and device for packaging load body
CN110672992A (en) * 2019-09-27 2020-01-10 清华大学 Electrode material discharge performance testing device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153746A (en) * 1980-04-30 1981-11-27 Fujitsu Ltd Measuring method for transient response characteristic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153746A (en) * 1980-04-30 1981-11-27 Fujitsu Ltd Measuring method for transient response characteristic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504991A (en) * 1989-02-18 1992-09-03 ホピ アンシュタルト Packing method and equipment
US6745544B2 (en) 2000-04-04 2004-06-08 Matsumoto System Engineering Co., Ltd. Method of and apparatus for wrapping loadable objects
US7827766B2 (en) 2001-10-24 2010-11-09 Matsumoto System Engineering Co., Ltd. Method and device for packaging load body
CN110672992A (en) * 2019-09-27 2020-01-10 清华大学 Electrode material discharge performance testing device and method

Also Published As

Publication number Publication date
JPH0244015B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
US4028615A (en) Method of and device for testing hermetically enclosed reed contacts
JPS5840703B2 (en) Non-destructive insulation test equipment
CN104345201A (en) Leakage current detection method and device
JP2571364B2 (en) Magnetic flux gate sensor device
JPS5946845A (en) Method for measuring polarization and dielectric breakdown of material
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
US9354192B2 (en) Ferroelectric analyzing device and method for adjusting ferroelectric domain switching speed
DE2530723A1 (en) MEASURING DEVICE FOR MEASURING PHASE SHIFTS ON ELECTRIC FOUR-POLES
US3500188A (en) Method and means for measuring constriction resistance based on nonlinearity
JPH01502391A (en) Cable failure detection device
Washabaugh et al. Dielectric measurements of semi-insulating liquids and solids
US4213087A (en) Method and device for testing electrical conductor elements
Nelms et al. A comparison of two equivalent circuits for double-layer capacitors
Moore Membrane conductance changes in single nodes of Ranvier, measured by laser-induced temperature-jump experiments
Barnaal Analog electronics for scientific application
CA1120545A (en) Method and device for testing electrical conductor elements
US3566259A (en) Instrument for measuring conductance or capacitance of an electrical load during operation
DE19716173A1 (en) Process for testing the leakage current of a planar oxygen sensor
US3644187A (en) Instrument for measuring conductance or capacitance of an electrical load during operation
JPS6259260B2 (en)
Bishop The reactance of nerve and the effect upon it of electrical currents
JPS61284654A (en) Evaluating method for thin insulator film
JPS6319809Y2 (en)
Takashima Non-linear dielectric properties of nerve membranes
DE415188C (en) Method for locating and determining the position of parts of the ground with deviating electrical conductivity with the aid of electrical currents sent into the ground