JPS5946817B2 - Vehicle brake hydraulic control device - Google Patents

Vehicle brake hydraulic control device

Info

Publication number
JPS5946817B2
JPS5946817B2 JP7557778A JP7557778A JPS5946817B2 JP S5946817 B2 JPS5946817 B2 JP S5946817B2 JP 7557778 A JP7557778 A JP 7557778A JP 7557778 A JP7557778 A JP 7557778A JP S5946817 B2 JPS5946817 B2 JP S5946817B2
Authority
JP
Japan
Prior art keywords
valve
pressure
chamber
control valve
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7557778A
Other languages
Japanese (ja)
Other versions
JPS554211A (en
Inventor
光豊 水沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP7557778A priority Critical patent/JPS5946817B2/en
Publication of JPS554211A publication Critical patent/JPS554211A/en
Publication of JPS5946817B2 publication Critical patent/JPS5946817B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、車輌、特に自動車に用いられるブレーキ油圧
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brake hydraulic control device used in vehicles, particularly automobiles.

従来、自動車の制動装置において、制動時、車輌におけ
る荷重の前方移動による後輪荷重の減少に応じ後輪ブレ
ーキの油圧の上昇を抑制して後輪のロック現象を防止し
、効率のよい制動作用を得るために、マスクシリンダと
後輪ブレーキ間を結ぶブレーキ油路に、車輌の所定値以
上の減速度を感知するとマスクシリンダの発生油圧を減
圧して後輪ブレーキに伝達し得る匍濁弁を介装したブレ
ーキ油圧匍脚装置が知られている。
Conventionally, in automobile braking systems, when braking, the hydraulic pressure of the rear brakes is suppressed from increasing in response to the decrease in the rear wheel load due to the forward movement of the vehicle load, thereby preventing the rear wheels from locking, resulting in efficient braking. In order to achieve this, an impregnation valve is installed in the brake oil path connecting the mask cylinder and the rear brakes, which can reduce the hydraulic pressure generated in the mask cylinder and transmit it to the rear brakes when it senses deceleration of the vehicle exceeding a predetermined value. Interposed brake hydraulic pedestals are known.

ところで、か〜るブレーキ油圧制御装置においては、車
輌の所定の減速度を感知するためには、ブレーキ油路の
途中に形成される弁室に前記減速度に応動して閉じる重
錘弁体を設置することが一般であり、このものには2つ
の問題が挙げられる。
By the way, in such a brake hydraulic control device, in order to sense a predetermined deceleration of the vehicle, a weighted valve body that closes in response to the deceleration is installed in a valve chamber formed in the middle of the brake oil passage. There are two problems with this.

その1つは、車輌が急勾配の下り坂を降下するとき、前
記重錘弁が誤作動して適正なブレーキ油圧の昇圧を妨げ
、制動作用に支障を来たすこと、他の1つは、マスクシ
リンダから前記弁室に流入する圧油の動圧の影響により
、制動操作の緩急に応じて前記重錘弁体の作動時期が変
動するため、ブレーキ油圧の上昇抑制値が変化し、所定
のブレーキ性能を得ることが困難であることである。
One of these is that when the vehicle descends a steep downhill slope, the weight valve malfunctions and prevents the appropriate brake hydraulic pressure from increasing, causing problems in braking operation. Due to the influence of the dynamic pressure of the pressure oil flowing from the cylinder into the valve chamber, the actuation timing of the weight valve element changes depending on the speed of the braking operation, so the increase suppression value of the brake oil pressure changes, and the predetermined brake It is difficult to obtain good performance.

本発明は、そのような問題点を解消した前記ブレーキ油
圧制御装置を提供することを目的とする。
An object of the present invention is to provide the brake hydraulic pressure control device that eliminates such problems.

以下、図面により本発明の一実施例について説明すると
、第1図は自動車のブレーキ油圧回路の全体図で、ブレ
ーキペダルにより作動されるタンデム型マスクシリンダ
Mの第1出力ポートP1 に第1油路L1を介して前輪
ブレーキBfのホイールシリンダが、またその第2出力
ポートP2に第2油路L2を介して後輪ブレーキBγの
ホイールシリンダがそれぞれ接続され、前記第2油路L
2に第1制御弁v1および第2制御弁V2を互いに並列
して介装する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. Fig. 1 is an overall diagram of a brake hydraulic circuit of an automobile, and a first oil passage is connected to a first output port P1 of a tandem type mask cylinder M operated by a brake pedal. The wheel cylinder of the front wheel brake Bf is connected via L1, and the wheel cylinder of the rear wheel brake Bγ is connected to its second output port P2 via a second oil path L2, and the second oil path L
2, a first control valve v1 and a second control valve V2 are interposed in parallel with each other.

先ず、第1制御弁v1を第2図により詳細に説明すると
、弁面1は車輌の前方を向く、即ち前部の函体2と後部
の蓋体3とに分割され、蓋体3は、前記第2油路L2の
上流に連なる入力ポート4を、また函体2はその下流に
連なる出力ポート5をそれぞれ備えており、それらはボ
ルト6により一体に結合される。
First, to explain the first control valve v1 in detail with reference to FIG. 2, the valve surface 1 faces the front of the vehicle, that is, it is divided into a front case 2 and a rear cover 3, and the cover 3 is The input port 4 is connected upstream of the second oil passage L2, and the box 2 is provided with an output port 5 downstream thereof, and these are integrally connected by bolts 6.

上記蓋体3には、入力ポート4と連通ずる小径シリンダ
孔7、蓋体3の前面から突出して内側に減衰室Aを区画
する筒状部3a、および小径シリンダ孔7の後部を減衰
室Aに連通ずる流入路8を設け、他方、函体2には、前
記小径シリンダ孔1と同軸線上にあって出力ポート5と
連通ずる大径シリンダ孔9、それと小径シリンダ孔7と
の間に挟まれるばね室10、車輌の前後方向に延びる軸
線を持つ円筒状弁室B、弁室Bの前面に開口する弁孔1
2、およびその弁孔12を大径シリンダ孔9の前部に連
通ずる流出路13を設ける。
The lid 3 includes a small diameter cylinder hole 7 that communicates with the input port 4, a cylindrical portion 3a that protrudes from the front surface of the lid 3 and defines a damping chamber A inside, and a damping chamber A that extends from the rear of the small diameter cylinder hole 7. On the other hand, the box 2 is provided with a large-diameter cylinder hole 9 that is coaxial with the small-diameter cylinder hole 1 and communicates with the output port 5, and a large-diameter cylinder hole 9 that is sandwiched between it and the small-diameter cylinder hole 7. a cylindrical valve chamber B having an axis extending in the longitudinal direction of the vehicle; and a valve hole 1 opening in the front surface of the valve chamber B.
2, and an outflow passage 13 that communicates the valve hole 12 with the front part of the large diameter cylinder hole 9 is provided.

小径シリンダ孔7には小径ピストン14を摺合して入力
油圧室りを画成し、また大径シリンダ孔9には大径ピス
トン15を摺合して出力油圧室Eを画成し、これらピス
トン14.15の対向端部をばね室10で互いに連接さ
せ、ばね室10には大径ピストン15を前方、即ち出力
油圧室Eの方向へ一定のばね力で押圧するばね16を収
容する。
A small-diameter piston 14 is slid into the small-diameter cylinder hole 7 to define an input hydraulic chamber, and a large-diameter piston 15 is slid into the large-diameter cylinder hole 9 to define an output hydraulic chamber E. .15 are connected to each other in a spring chamber 10, and the spring chamber 10 accommodates a spring 16 that presses the large diameter piston 15 forward, that is, in the direction of the output hydraulic pressure chamber E with a constant spring force.

上記ピストン14.15は加工精度上の理由から2分割
したが、両者を一体に形成しても機能上は差支えない。
Although the pistons 14 and 15 are divided into two parts for reasons of machining accuracy, there is no functional problem even if the two parts are integrally formed.

筒状部3aの開口端には仕切板20を嵌着し、その仕切
板20に穿設した連通孔21により減衰室Aおよび弁室
8間が連通される。
A partition plate 20 is fitted to the open end of the cylindrical portion 3a, and a communication hole 21 formed in the partition plate 20 allows communication between the damping chamber A and the valve chamber 8.

また弁室Bに開口する弁孔12の周囲には弾性弁座゛2
2を形成し、その弁座22と協働して弁孔12を開閉制
御する球状の重錘弁体23を弁室Bに収容する。
In addition, an elastic valve seat 2 is provided around the valve hole 12 that opens into the valve chamber B.
2, and a spherical weight valve body 23 that cooperates with the valve seat 22 to control opening and closing of the valve hole 12 is accommodated in the valve chamber B.

弁室Bの底面24は、弁面1の車体への取付角度の適当
な調節により車輌の前方上向きに一定角度θ傾斜した斜
面とされ、これによって重錘弁体23は、通常斜面24
の下方で仕切板20に支承されて弁孔12を開放してい
る。
The bottom surface 24 of the valve chamber B is formed into a slope inclined upwardly at a constant angle θ toward the front of the vehicle by appropriately adjusting the mounting angle of the valve surface 1 to the vehicle body.
It is supported by a partition plate 20 below, and the valve hole 12 is opened.

而して、車輌の走行中にブレーキペダルによりマスクシ
リンダMを作動すれば、その第1出力ポートP1 から
送出される。
Thus, when the mask cylinder M is actuated by the brake pedal while the vehicle is running, the signal is delivered from the first output port P1.

圧油は第4油路L1を経て前輪ブレーキBfに供給され
てそれを作動し、第2出力ポートP2から送出される圧
油は第2油路L2の上流を経て入力ポート4に導入され
、流入路8から減衰室Aに流入して該室で一旦減速され
、次いで連通孔より弁室Bに流入し、続いて圧油は流出
路13、出力ポート5および第2油路L2の下流を経て
後輪ブレーキBγに供給されてそれを作動し、これらの
作動に伴い車輌に所定の減速度が発生すると、重錘弁体
23がそれを感知して、自己の慣性力により斜面24を
登り弁座22に着座して弁孔12を閉じ(鎖線示状態)
、後輪ブレーキBγの作動油圧の上昇を抑制し、その抑
制値は車輌の積載重量が重い場合に大きく、軽い場合に
は小さい。
The pressure oil is supplied to the front wheel brake Bf through the fourth oil path L1 to operate it, and the pressure oil sent out from the second output port P2 is introduced into the input port 4 through the upstream of the second oil path L2, Pressure oil flows into the damping chamber A from the inflow path 8, is decelerated once in the chamber, and then flows into the valve chamber B through the communication hole. The brake is then supplied to the rear wheel brake Bγ to activate it, and when a predetermined deceleration occurs in the vehicle due to these operations, the weight valve body 23 senses this and climbs the slope 24 by its own inertia force. Seats on the valve seat 22 and closes the valve hole 12 (state shown by chain line)
, the increase in the hydraulic pressure of the rear wheel brake Bγ is suppressed, and the suppression value is large when the loaded weight of the vehicle is heavy, and small when the loaded weight of the vehicle is light.

そして通常の制動時には、重錘弁体23が作動する前に
、小径ピストン14の入力油圧室りに臨ませた受圧面積
と、大径ピストン15の出力油圧室Eに臨ませた受圧面
積との差に起因して両ピストン14.15全体に働く後
方(図では右方)への油圧による押圧力がはね16のセ
ット荷重に打勝ち、両ピストン14.15を後方へ摺動
させる。
During normal braking, before the weight valve body 23 operates, the pressure receiving area facing the input hydraulic pressure chamber of the small diameter piston 14 and the pressure receiving area facing the output hydraulic pressure chamber E of the large diameter piston 15 are determined. Due to the difference, the rearward (to the right in the figure) hydraulic pressure force acting on both pistons 14.15 as a whole overcomes the set load of the spring 16, causing both pistons 14.15 to slide rearward.

その後、重錘弁体23の作動により後輪ブレーキBγの
作動油圧の上昇が抑制されてから、さらにブレーキペダ
ルの踏力を増大させてマスクシリンダMの出力油圧、し
たがって入力油圧室りの油圧を上昇させれば、それに伴
い両ピストン14゜15が原位置に向って前進し、ピス
トン15が大径シリンダ孔9の端面に当接するまで出力
油圧室Eの油圧、したがって後輪ブレーキBγの作動油
圧を再び上昇させることができる。
After that, the increase in the hydraulic pressure of the rear wheel brake Bγ is suppressed by the operation of the weight valve body 23, and then the depression force of the brake pedal is further increased to increase the output hydraulic pressure of the mask cylinder M, and therefore the hydraulic pressure of the input hydraulic pressure chamber. As a result, both pistons 14 and 15 move forward toward their original positions, and the oil pressure in the output oil pressure chamber E, and therefore the working oil pressure of the rear wheel brake Bγ, is increased until the piston 15 comes into contact with the end face of the large diameter cylinder hole 9. It can be raised again.

その結果、車輌に一定値以上の減速度が発生してからは
、マスクシリンダMの出力油圧を比例的に減圧して後輪
ブレーキBγに伝達することができ、制動効果による後
輪荷重の減少によるも後輪のロック現象を予防する。
As a result, after the vehicle decelerates above a certain value, the output hydraulic pressure of the mask cylinder M can be proportionally reduced and transmitted to the rear wheel brake Bγ, reducing the rear wheel load due to the braking effect. This also prevents the rear wheels from locking up.

しかしながら、車輌が急坂を下るときには、車体が前部
がりに傾斜することから、通常前止がりの姿勢をもつ弁
面1が水平状態に近付き、したがって弁室Bの底面24
の傾斜角θが略零になる。
However, when the vehicle descends a steep slope, the front of the vehicle body tilts toward the front, so the valve surface 1, which normally has a front-closed position, approaches a horizontal state, and the bottom surface 24 of the valve chamber B approaches the horizontal state.
The inclination angle θ becomes approximately zero.

このような場合に制動をかけると、重錘弁体23は車輌
の僅かな減速度にも応動して弁孔12を閉じてしまい、
出力油圧室Eの油圧によりピストン14.15を前述の
ように入力ポート4側へ前進させるには至らないので、
その後、マスクシリンダMの出力油圧を上昇させても、
それに応じて前輪ブレーキBfの作動油圧が上がるだけ
で、後輪ブレーキBγの作動油圧の上昇は得られず、後
輪ブレーキBγの制動力が不足するという不都合を生じ
る。
When braking is applied in such a case, the weight valve body 23 closes the valve hole 12 in response to even the slightest deceleration of the vehicle.
Since the hydraulic pressure in the output hydraulic chamber E does not advance the pistons 14 and 15 toward the input port 4 as described above,
After that, even if the output oil pressure of the mask cylinder M is increased,
Correspondingly, only the working oil pressure of the front wheel brake Bf increases, but the working oil pressure of the rear wheel brake Bγ does not increase, resulting in an inconvenience that the braking force of the rear wheel brake Bγ is insufficient.

このような不都合は、急制動時にも起こり得る。Such inconvenience may also occur during sudden braking.

即ちブレーキペダルを急激に踏込むことにより、減衰室
Aから連通孔21を通して弁室B内に急速に流入する圧
油が重錘弁体23に高い動圧を及ぼすと、それを弁孔1
2側に押圧するので重錘弁体23は車輌に所定の減速度
が発生する前に早期に弁孔12を閉じてしまうからであ
る。
That is, when the brake pedal is suddenly depressed, pressure oil that rapidly flows into the valve chamber B from the damping chamber A through the communication hole 21 exerts a high dynamic pressure on the weight valve body 23.
This is because the weight valve body 23 closes the valve hole 12 early before a predetermined deceleration occurs in the vehicle since the weight valve body 23 is pressed toward the second side.

本発明は、上記のような不都合を防止するために前記第
1制御弁■1 と並夕1ルて第2制御弁V2を第2油路
L2に接続するものであって、次にその第2制御弁■2
を第3図により詳細に説明する。
In order to prevent the above-mentioned inconvenience, the present invention connects the second control valve V2 to the second oil passage L2 in parallel with the first control valve (1), and then 2 control valve ■2
will be explained in detail with reference to FIG.

弁面30は一側と他側とに、第2油路L2の上流に連な
る入力ポート31と、同下流に連なる出力ポート32と
を備えており、この弁面30内部をゴ云等の弾性材より
なる弁座33により入力ポート31に連なる入力油圧室
Fと、出力ポート32に連なる出力油圧室Gとに区分し
、弁座33と協働して両油圧室F、G間を連通、遮断す
るピストン形弁体34を弁面30内に収容する。
The valve surface 30 has an input port 31 connected to the upstream side of the second oil passage L2 and an output port 32 connected to the downstream side on one side and the other side. The valve seat 33 made of material is divided into an input hydraulic chamber F connected to the input port 31 and an output hydraulic chamber G connected to the output port 32, and cooperates with the valve seat 33 to communicate between the two hydraulic chambers F and G. A shutoff piston-shaped valve body 34 is accommodated within the valve face 30 .

弁体34の弁杆35は弁座33の弁孔37を貫通して弁
面30の両端壁に摺動自在に支承され、弁杆35の中間
部に固設した受圧ピストン36は弁座33に対向して出
力油圧室Gに配設される。
The valve rod 35 of the valve body 34 passes through the valve hole 37 of the valve seat 33 and is slidably supported on both end walls of the valve surface 30. The output hydraulic pressure chamber G is disposed opposite to the output hydraulic pressure chamber G.

受圧ピストン36を境として弁杆35の入力油圧室F側
部分と出力油圧室G側部分とでは、直径において前者の
方が大きく、したがって受圧ピストン36の弁座33に
対向する受圧面36aより、その反対側の受圧面36b
の方が面積が広くなっている。
The input hydraulic chamber F side part of the valve rod 35 and the output hydraulic chamber G side part of the valve rod 35 have a larger diameter than the pressure receiving surface 36a facing the valve seat 33 of the pressure receiving piston 36. Pressure receiving surface 36b on the opposite side
has a larger area.

この弁体34を入力油圧室Fの方向へ一定のばね力によ
り偏倚させるはね38を入力油圧室Fに収容し、これに
より受圧ピストン36は通常、弁座33から離れて弁孔
37に開放している。
A spring 38 that biases this valve body 34 in the direction of the input hydraulic pressure chamber F by a constant spring force is housed in the input hydraulic pressure chamber F, so that the pressure receiving piston 36 normally moves away from the valve seat 33 and opens into the valve hole 37. are doing.

而して、マスクシリンダMが作動されると、その第2出
力ポートP2から送出される圧油は第1および第2制御
弁V1.v2側に分流してそれぞれ、の入カポ−)4,
31へ流入し、入力ポート4に流入した圧油による第1
制御弁v1の作用は先に述べた通りである。
When the mask cylinder M is operated, the pressure oil sent out from the second output port P2 flows through the first and second control valves V1. Divert to the v2 side and input capo)4,
31 and into the input port 4.
The operation of the control valve v1 is as described above.

さて、第2制御弁v2の入力ポート31に流入した圧油
は、入力油圧室F、弁孔37、出力油圧室Gおよび出力
ポート32を経て後輪ブレーキBγに供給されてそれを
作動する。
Now, the pressure oil that has flowed into the input port 31 of the second control valve v2 is supplied to the rear wheel brake Bγ via the input hydraulic chamber F, the valve hole 37, the output hydraulic chamber G, and the output port 32 to operate it.

そして、マスクシリンダMの発生油圧の上昇により出力
油圧室Gの油圧が所定値に達すると、受圧ピストン36
の両受圧面36a 、36bの面積差に起因して受圧ピ
ストン36に働く図で右向きの油圧による押圧力がはね
38のセット荷重に打勝って弁体34を右動し、受圧ピ
ストン36を弁座33に係合させて弁孔37を閉じ、両
油圧室F、G間を遮断する。
When the oil pressure in the output oil pressure chamber G reaches a predetermined value due to an increase in the oil pressure generated by the mask cylinder M, the pressure receiving piston 36
In the figure, pressure force due to the rightward hydraulic pressure acting on the pressure receiving piston 36 due to the area difference between the two pressure receiving surfaces 36a and 36b overcomes the set load of the spring 38 and moves the valve body 34 to the right, causing the pressure receiving piston 36 to move. It is engaged with the valve seat 33 to close the valve hole 37 and cut off between the two hydraulic chambers F and G.

その後、更にマスクシリンダMの発生油圧を上昇させれ
ば、受圧ピストン36の受圧面36aに作用する入力油
圧室Fの油圧が高まり、弁体34を左方へ押し返して弁
孔37を再び開くので、出力油圧室Gも昇圧するが、そ
れに伴い受圧ピストン36の両受圧面36a、36bの
面積差に起因して生じる前記右向きの押圧力が直ちに増
大して弁体34を再び右動し、弁孔37を閉じ、以後、
マスクシリンダMの発生油圧の上昇に伴い同様の作動が
繰返される。
After that, if the hydraulic pressure generated by the mask cylinder M is further increased, the hydraulic pressure of the input hydraulic pressure chamber F acting on the pressure receiving surface 36a of the pressure receiving piston 36 will increase, pushing the valve body 34 back to the left and opening the valve hole 37 again. , the pressure in the output hydraulic chamber G also rises, but the rightward pressing force generated due to the area difference between the pressure receiving surfaces 36a and 36b of the pressure receiving piston 36 immediately increases, causing the valve body 34 to move to the right again, causing the valve to close. After closing the hole 37,
Similar operations are repeated as the hydraulic pressure generated by the mask cylinder M increases.

その結果、弁体34が一旦作動してからは、マスクシリ
ンダMの発生油圧、即ち入力油圧室Fの油圧を出力油圧
室Gに比例的に減圧して伝達することができる。
As a result, once the valve body 34 is activated, the hydraulic pressure generated by the mask cylinder M, that is, the hydraulic pressure in the input hydraulic chamber F can be proportionally reduced and transmitted to the output hydraulic chamber G.

第2制御弁■2は、このように作動するので、前述のよ
うに第1制御弁v1 において若し何等かの理由で重錘
弁体23が早期に作動して弁孔12を閉じることがあっ
ても、第2制御弁v2を通してマスクシリンダMの発生
油圧を後輪ブレーキBγに伝達することができる。
Since the second control valve 2 operates in this manner, as mentioned above, the weight valve body 23 may operate early and close the valve hole 12 in the first control valve v1 for some reason. Even if there is, the hydraulic pressure generated by the mask cylinder M can be transmitted to the rear wheel brake Bγ through the second control valve v2.

したがって、この場合の後輪ブレーキBγの作動油圧は
第2制御弁V2の特性に依存する。
Therefore, the hydraulic pressure of the rear wheel brake Bγ in this case depends on the characteristics of the second control valve V2.

また、制動操作の初期には、マスクシリンダMからの圧
油は両制御弁v1.v2に分流するので、第1制御弁V
1の弁室Bを通過する油量が、第1制御弁V1 のみを
備える従来装置に比し著しく減少し、したがって弁室B
を通過する圧油の重錘弁体23に及ぼす動圧の影響が軽
減するので、急制動時でも、重錘弁体23は、上記動圧
に惑されることなく車輌の所定の減速度に的確に応動す
ることができる。
In addition, at the beginning of the braking operation, the pressure oil from the mask cylinder M is supplied to both control valves v1. Since the flow is diverted to V2, the first control valve V
The amount of oil passing through the first valve chamber B is significantly reduced compared to the conventional device that includes only the first control valve V1.
Since the influence of the dynamic pressure of the pressure oil passing through the weight valve body 23 is reduced, even during sudden braking, the weight valve body 23 maintains the predetermined deceleration of the vehicle without being affected by the dynamic pressure. Able to respond accurately.

尚、第1制御弁V1での圧油の流量は、連通孔21や弁
孔12を絞って適宜調節することができる。
Note that the flow rate of the pressure oil in the first control valve V1 can be adjusted as appropriate by narrowing the communication hole 21 and the valve hole 12.

次に制動を解除した場合には、第2制御弁■2において
は弁体34が前記右向き押圧力により弁孔37を閉鎖し
ていても、後輪ブレーキBγに供給された圧油は、第1
制御弁V1の出力ポート5、弁孔12(制動の解除と同
時に重錘弁体23は、この弁孔12を開放する)、弁室
B、連通孔21、減衰室Aおよび入力ポート4を経てマ
スクシリンダMに還流するので、それに伴い第2制御弁
v2の出力油圧室Gが減圧し、弁体34に対する前記右
向き押圧力が減少若しくは消失するため、はね38の作
用により弁体34は原位置に復帰して弁孔37を開放す
ることができる。
Next, when the brake is released, even though the valve body 34 of the second control valve 2 closes the valve hole 37 due to the rightward pressing force, the pressure oil supplied to the rear wheel brake Bγ 1
Via the output port 5 of the control valve V1, the valve hole 12 (the weight valve body 23 opens this valve hole 12 at the same time as the brake is released), the valve chamber B, the communication hole 21, the damping chamber A, and the input port 4. Since the flow returns to the mask cylinder M, the pressure in the output hydraulic pressure chamber G of the second control valve v2 decreases, and the rightward pressing force against the valve body 34 decreases or disappears. It is possible to return to the position and open the valve hole 37.

したがって、第2制御弁v2には、圧油の帰還手段を特
別に講する必要がない。
Therefore, it is not necessary to provide a special means for returning pressure oil to the second control valve v2.

尚、本発明においては、第2制御弁v2を、後輪ブレー
キBγの作動油圧が一定値以上に上昇すると閉成する所
謂油圧制限弁により構成することもできる。
In the present invention, the second control valve v2 can also be configured as a so-called oil pressure limiting valve that closes when the working oil pressure of the rear wheel brake Bγ rises above a certain value.

この場合には、制動時に第2制御弁■2、即ち油圧制限
弁が閉成する以前に油圧制限弁の出力油圧により第1制
御弁V1のピストン14.15をはね16のセット荷重
に抗して後退させるので、その後置制御弁■1.v2が
共に閉成すれば、マスクシリンダMの発生油圧がピスト
ン14.15の前進により比例的に減圧して後輪ブレー
キBγに伝達され、不都合がない。
In this case, during braking, before the second control valve (2), that is, the hydraulic limit valve, closes, the output hydraulic pressure of the hydraulic limit valve causes the piston 14,15 of the first control valve V1 to resist the set load of the spring 16. The rear control valve ■1. If v2 are both closed, the hydraulic pressure generated in the mask cylinder M is proportionally reduced by the advancement of the piston 14, 15 and transmitted to the rear wheel brake Bγ, and there is no problem.

以上のように本発明によれば、車輌の所定値以上の減速
度を感知してマスクシリンダの発生油圧を減圧して車輪
ブレーキに伝達し得る第1制御弁と、車輪ブレーキの作
動油圧が所定値以上に上昇するのを感知して閉成し、若
しくはマスクシリンダの発生油圧を減圧して車輪ブレー
キに伝達し得る第2匍脚弁とを並列にブ1−キ油路に介
装したので、制動時車輪ブレーキの作動油圧が適正値ま
で昇圧しないうちに、第1制御弁が何等かの理由で早期
に作動しても、未だ開放状態の第2制御弁を通してマス
クシリンダの発生油圧を車輪ブレーキに伝達して制動力
の不足を補うことができ、制動に支障を来たさない効果
を達成する。
As described above, according to the present invention, the first control valve is capable of detecting deceleration of the vehicle equal to or higher than a predetermined value, reduces the pressure generated in the mask cylinder, and transmits the reduced pressure to the wheel brakes, and the first control valve is configured to control the working pressure of the wheel brakes to a predetermined value. A second leg valve is installed in the brake oil passage in parallel with a second leg valve that can sense when the oil pressure rises above the specified value and close it, or reduce the pressure generated by the mask cylinder and transmit it to the wheel brakes. During braking, even if the first control valve operates early for some reason before the hydraulic pressure of the wheel brakes has increased to the appropriate value, the hydraulic pressure generated by the mask cylinder is transferred to the wheels through the second control valve, which is still open. It can compensate for the lack of braking force by transmitting it to the brake, achieving an effect that does not interfere with braking.

また通常の制動時には、マスクシリンダからの圧油を第
1制御弁側と第2制御弁側とに分流して車輪ブレーキに
供給することにより第1制御弁に与える圧油の動圧の影
響を大きく軽減させたので、第1制御弁は車輌の所定の
減速度に的確に応動し、車輪ブレーキの作動油圧の上昇
抑制開始点を車輌の積載重量に応じて適切に変化させる
ことができ、効率の良い制動作用を得ることができる効
果をも達成する。
Also, during normal braking, the influence of the dynamic pressure of the pressure oil on the first control valve is reduced by dividing the pressure oil from the mask cylinder into the first control valve side and the second control valve side and supplying it to the wheel brakes. As a result, the first control valve can accurately respond to the predetermined deceleration of the vehicle, and can appropriately change the starting point for suppressing the increase in the hydraulic pressure of the wheel brakes according to the loaded weight of the vehicle, increasing efficiency. It also achieves the effect that good braking action can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を備えた自動車のブレーキ油圧回路
、第2および第3図はその油圧回路図の第1および第2
制御弁の各縦断側面図である。 Bγ・・・・・・車輪ブレーキとしての後輪ブレーキ、
L2・・・・・・油圧としての第2油路、M・・・・・
・マスタシリンダ、Vl・・・・・・第1制御弁、■2
・・・・・・第2制御弁。
Fig. 1 shows the brake hydraulic circuit of an automobile equipped with the device of the present invention, and Figs. 2 and 3 show the first and second hydraulic circuit diagrams thereof.
FIG. 3 is a vertical sectional side view of a control valve. Bγ・・・Rear wheel brake as a wheel brake,
L2...Second oil path as hydraulic pressure, M...
・Master cylinder, Vl...1st control valve, ■2
...Second control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 マスタシリンダと車輪ブレーキ間を結ぶ油路に、車
輌の所定値以上の減速度を感知すると前記マスクシリン
ダの発生油圧を減圧して前記車輪ブレーキに伝達し得る
第1制御弁を介装したものにおいて、前記車輪ブレーキ
の作動油圧が所定値以上に上昇すると閉成し、若しくは
前記マスクシリンダの発生油圧を減圧して前記車輪ブレ
ーキに伝達し得る第2制御弁を前記第1制御弁と並列し
て油路に接続してなる、車輌用ブレーキ油圧制御装置。
1 A first control valve is installed in the oil path connecting the master cylinder and the wheel brakes, which can reduce the hydraulic pressure generated in the mask cylinder and transmit it to the wheel brakes when deceleration of the vehicle equal to or higher than a predetermined value is detected. A second control valve is arranged in parallel with the first control valve, and is capable of closing when the working pressure of the wheel brake increases to a predetermined value or more, or reducing the pressure of the hydraulic pressure generated in the mask cylinder and transmitting the reduced pressure to the wheel brake. A vehicle brake hydraulic control device that is connected to an oil path.
JP7557778A 1978-06-22 1978-06-22 Vehicle brake hydraulic control device Expired JPS5946817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7557778A JPS5946817B2 (en) 1978-06-22 1978-06-22 Vehicle brake hydraulic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7557778A JPS5946817B2 (en) 1978-06-22 1978-06-22 Vehicle brake hydraulic control device

Publications (2)

Publication Number Publication Date
JPS554211A JPS554211A (en) 1980-01-12
JPS5946817B2 true JPS5946817B2 (en) 1984-11-15

Family

ID=13580176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7557778A Expired JPS5946817B2 (en) 1978-06-22 1978-06-22 Vehicle brake hydraulic control device

Country Status (1)

Country Link
JP (1) JPS5946817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311141Y2 (en) * 1985-08-23 1991-03-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3841963C2 (en) * 1988-12-14 2000-05-25 Bosch Gmbh Robert Anti-lock control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311141Y2 (en) * 1985-08-23 1991-03-19

Also Published As

Publication number Publication date
JPS554211A (en) 1980-01-12

Similar Documents

Publication Publication Date Title
US3317251A (en) Brake pressure proportioning device
US4768841A (en) Brake control device
US4129341A (en) Modulator valve assembly for a fluid braking system
US4500138A (en) Brake oil pressure controlling valve device for vehicles
US4072363A (en) Inertia-controlled valve for vehicle braking systems
US4462641A (en) Deceleration sensing valve assembly for vehicle brake
US4205883A (en) Inertia sensing brake proportioning valve
US4261623A (en) Vehicle brake oil-pressure control valve device
US4179164A (en) Braking pressure control valve unit
US4141596A (en) Hydraulic brake control assembly responsive to vehicular deceleration
US4080006A (en) Braking pressure control valve unit
JPS5838341B2 (en) Deceleration responsive hydraulic control valve
JPS6344585B2 (en)
JPS5946817B2 (en) Vehicle brake hydraulic control device
JPS5946818B2 (en) Brake hydraulic control valve device for vehicles
JPS582860B2 (en) Hydraulic control valve for two-line piping
JPS594839Y2 (en) hydraulic control valve
US4212501A (en) Vehicular anti-skid brake device
US4165905A (en) Vehicle deceleration responsive pressure modulating valve and vehicle brake system including the same
US4444436A (en) Hydraulic pressure control valve
US4560208A (en) Brake pressure control unit of deceleration-responsive type
JPS5833140B2 (en) Brake hydraulic control valve device for vehicles
US4411476A (en) Hydraulic pressure control valve
US3966268A (en) Inertia load sensing brake valve
JP2674771B2 (en) Aquiumulator for vehicle antilock system