JPS5946678B2 - Method for producing metal peroxide water treatment agent - Google Patents

Method for producing metal peroxide water treatment agent

Info

Publication number
JPS5946678B2
JPS5946678B2 JP1612177A JP1612177A JPS5946678B2 JP S5946678 B2 JPS5946678 B2 JP S5946678B2 JP 1612177 A JP1612177 A JP 1612177A JP 1612177 A JP1612177 A JP 1612177A JP S5946678 B2 JPS5946678 B2 JP S5946678B2
Authority
JP
Japan
Prior art keywords
treatment agent
metal
aqueous solution
active oxygen
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1612177A
Other languages
Japanese (ja)
Other versions
JPS53101848A (en
Inventor
哲也 内野
公彦 佐藤
益穂 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1612177A priority Critical patent/JPS5946678B2/en
Publication of JPS53101848A publication Critical patent/JPS53101848A/en
Publication of JPS5946678B2 publication Critical patent/JPS5946678B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は水処理剤の製造方法、特に廃水中に含まれるア
ルコール類やホルムアルデヒド等のCOD成分を酸化処
理する際圧用いられる金属過酸化物から成る水処理剤の
製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a water treatment agent, particularly a method for producing a water treatment agent comprising a metal peroxide which is used in the oxidation treatment of COD components such as alcohols and formaldehyde contained in wastewater. It is related to the method.

近年、工場や河川等における排水中のCODの低減が公
害防止の観点から要求されている。
In recent years, reduction of COD in wastewater from factories, rivers, etc. has been required from the viewpoint of pollution prevention.

従来、か\るCODの低減法としては、活性汚泥法、活
性炭吸着法、オゾン酸化法、塩素−光酸化法、アルミニ
ウムや鉄等の可溶性電極を用いる電解凝集法や電解浮上
法等の方法が提案され、又一部は実施され又いる。
Conventionally, methods for reducing COD include activated sludge method, activated carbon adsorption method, ozone oxidation method, chlorine-photooxidation method, electrolytic flocculation method and electrolytic flotation method using soluble electrodes such as aluminum and iron. Some have been proposed and some have been implemented.

しかしながら、これらの方法のうち、活性汚泥法はBO
Dの低減には有効であるが、CODに対し又はその成分
により有効でないものがある。
However, among these methods, the activated sludge method
Some substances are effective for reducing COD, but are not effective for COD or depending on their components.

又、活性炭吸着法は、親水性の大きなCOD成分となる
有機物、例えば低分子量のアルコール類に対し又は殆ん
ど効果を示さない。
In addition, the activated carbon adsorption method has little effect on organic substances that are highly hydrophilic COD components, such as low molecular weight alcohols.

オゾン酸化法をζ脱臭、脱色、殺菌には有効であるが、
酸化力がそれ根強(なく、CODの低下には必ずしも十
分ではない。
Although the ozone oxidation method is effective for deodorizing, decolorizing, and sterilizing,
The oxidizing power is strong and not necessarily sufficient to reduce COD.

塩素−光酸化法は、比較的酸化力の強い処理法ではある
が、希薄なCOD成分に対し又は例えば紫外線発生ラン
プを用いる等、多量の電力と長い処理時間を要する為、
設備面及び処理に要する費用が大となり、経済性の点で
有利な方法とは言い難い。
Although the chlorine photooxidation method is a treatment method with relatively strong oxidizing power, it requires a large amount of electricity and a long treatment time because it is used for dilute COD components or uses an ultraviolet generating lamp, for example.
This method requires a large amount of equipment and processing costs, and cannot be said to be an economically advantageous method.

又、電解処理法は低分子量の親水性有機働程酸化電位が
高(、実際には電場による酸化は殆んど期待出来ず、電
力費が高(、大量の排水処理には不向きである等これら
何れの方法も効果面や経済性の面で必ずしも満足し得る
ものではなかった。
In addition, the electrolytic treatment method has a high oxidation potential for low-molecular-weight hydrophilic organics (in reality, almost no oxidation due to an electric field can be expected, and the electricity cost is high (and is not suitable for treating large amounts of wastewater, etc.). None of these methods was necessarily satisfactory in terms of effectiveness or economy.

他方、過酸化ニッケルの如く金属の過酸化物を用い1次
亜塩素酸塩の存在下にCOD成分を酸化する方法が提案
され又いる。
On the other hand, a method has been proposed in which a metal peroxide such as nickel peroxide is used to oxidize a COD component in the presence of a primary chlorite.

(例えば特開昭49−37465号公報参照) この方法は、前述した従来のCOD成分の低減法に比し
又かなり有効であるが、長時間使用中に一部排水自体と
反応したり、或は必要量の次亜塩素酸塩の供給が例えば
被処理廃水量の変動によって不十分となったりし℃過酸
化物がより安定な低位の酸化物に転化し、活性を失ない
、COD成分の処理に支障を来たす。
(For example, see Japanese Patent Application Laid-open No. 49-37465.) Although this method is considerably more effective than the conventional COD component reduction method described above, it may partially react with the wastewater itself during long-term use, or For example, if the supply of the required amount of hypochlorite becomes insufficient due to fluctuations in the amount of wastewater to be treated, the peroxide will be converted to a more stable lower oxide, and the COD component will not lose its activity. This will interfere with processing.

金属過酸化物が一旦低位の酸化物に転化すると、このま
\の状態でいかに次亜塩素酸塩と接触させ又も、もはや
金属過酸化物に戻すにはかなり長時間を要し、か\る金
属酸化物を含んだま\廃水処理を続行する事は適当でな
い。
Once a metal peroxide is converted to a lower oxide, no matter how much it is brought into contact with hypochlorite in this state, it takes a considerable amount of time to convert it back to a metal peroxide. It is not appropriate to continue treating wastewater that still contains metal oxides.

本発明者は、かかる低位の酸化物となった金属過酸化物
を短時間で且十分に活性ある金属過酸化物に転化せしめ
る事を目的として種々研究、検討した結果、これを直ち
に酸化する事なく、一旦例えば亜硫酸ソーダやヒドラジ
ン等の還元剤によって水中で金属の水酸化物を生成せし
め、然る後アルカリ性下に次亜塩素酸ソーダ等の酸化剤
により酸化せしめる事により、容易に且十分金属過酸化
物に転化せしめ得る事を見出し、前記目的を達成し得る
事が見出された。
As a result of various studies and examinations aimed at converting metal peroxides that have become low-level oxides into sufficiently active metal peroxides in a short period of time, the present inventor has found that it is possible to immediately oxidize the metal peroxides. However, by first generating metal hydroxide in water using a reducing agent such as sodium sulfite or hydrazine, and then oxidizing it with an oxidizing agent such as sodium hypochlorite under alkaline conditions, metal hydroxide can be easily and sufficiently removed. It has been found that the above object can be achieved by converting it into a peroxide.

か(して本発明は、金属酸化物を水性媒体中において還
元剤により金属水酸化物に転化し、次いでアルカリ性下
に酸化剤により酸化せしめ℃金属過酸化物に転化せしめ
る事を特徴とする水処理剤の製造方法を提供するにある
(Thus, the present invention is characterized in that a metal oxide is converted into a metal hydroxide using a reducing agent in an aqueous medium, and then oxidized with an oxidizing agent under alkaline conditions to convert it into a metal peroxide. The present invention provides a method for producing a processing agent.

本発明において、金属酸化物を(水性媒体中においC)
金属水酸化物に転化せしめる際用いられる還元剤とし又
は、例えば亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸
カルシウム等の亜硫酸塩、ヒドラジン或はH2、CO,
CH4、C3H8等の還元性ガスである。
In the present invention, the metal oxide (C in an aqueous medium)
Reducing agents used in the conversion to metal hydroxides include sulfites such as sodium sulfite, potassium sulfite, calcium sulfite, hydrazine or H2, CO,
It is a reducing gas such as CH4, C3H8, etc.

そのなかでも、亜硫酸ナトリウム等の亜硫酸塩およびヒ
ドラジンは還元反応速度が大きく、しかも取り扱いが容
易という点で好ましい。
Among these, sulfites such as sodium sulfite and hydrazine are preferred because they have a high reduction reaction rate and are easy to handle.

又、還元剤を用いて金属の水酸化物を生成せしめる際用
いられる水性媒体のPHは、通常6〜14、好ましくは
PH7〜13程度が適当である。
Further, the pH of the aqueous medium used when producing the metal hydroxide using a reducing agent is usually about 6 to 14, preferably about 7 to 13.

PHが前記範囲より低い場合には、生成した金属過酸化
物が溶解する場合があるので好ましくない。
If the pH is lower than the above range, the generated metal peroxide may dissolve, which is not preferable.

又、水性媒体とし又は、通常水が用いられるが、金属酸
化物を、水酸化物を経てその過酸化物に転化せしめるの
に支障のない限り適宜な塩類が存在しても差し支えない
The aqueous medium is usually water, but appropriate salts may be present as long as they do not impede the conversion of the metal oxide to its peroxide via the hydroxide.

又液温は5〜50°CY採用することが好ましい。Moreover, it is preferable to adopt a liquid temperature of 5 to 50° CY.

か(シ又得られた金属の水酸化物は、次いでアルカリ性
下に酸化剤により酸化せしめて金属過酸化物に転化せし
める。
The obtained metal hydroxide is then oxidized with an oxidizing agent under alkaline conditions to convert it into a metal peroxide.

本発明に用いられる酸化剤とし′Cは、例えば次亜塩素
酸ナトリウム、次亜塩素酸カルシウム等の次亜塩素酸塩
等が適当である。
The oxidizing agent used in the present invention is suitably a hypochlorite such as sodium hypochlorite or calcium hypochlorite.

又、酸化剤による酸化に際し又は、P H7,5〜14
、好ましくはPH8〜13程度が適当である。
In addition, upon oxidation with an oxidizing agent, or with a pH of 7.5 to 14
, preferably a pH of about 8 to 13.

pHが7.5より低い場合には、被酸化物である金属水
酸化物が溶解し、次亜塩素酸塩が分解し、不必要な塩素
ガスが発生するので好ましくない。
If the pH is lower than 7.5, the metal hydroxide to be oxidized will dissolve, the hypochlorite will decompose, and unnecessary chlorine gas will be generated, which is not preferable.

本発明において水処理剤Aして用いられる金属過酸化物
の原料となる金属の酸化物としては、ニッケル、コバル
ト、銅、マンカフ、亜鉛、セリウム、鉛、マクネシウム
、アルミニウム、カルシウム、バリウム、ストロンチウ
ム、チタン等の金属の酸化物が挙げられる。
Examples of metal oxides that are raw materials for the metal peroxide used as water treatment agent A in the present invention include nickel, cobalt, copper, mancuff, zinc, cerium, lead, magnesium, aluminum, calcium, barium, strontium, Examples include oxides of metals such as titanium.

これら酸化物は、例えば粉末を適当な大きさにバインダ
ーを用い或は用いずし又造粒されたものでも、或はシリ
カ質やアルミナ質等適宜な担体に担持せしめられ又いて
も差し支えない。
These oxides may be, for example, powdered to an appropriate size with or without a binder or granulated, or supported on a suitable carrier such as silica or alumina.

更に本発明においては、一旦水処理剤としての金属過酸
化物から低位の酸化物に転化したものの処理のみならず
、新らたに金属酸化物を原料として金属過酸化物に転化
せしめる場合にも本方法を適用し得る事は言う迄もない
Furthermore, in the present invention, not only the treatment of metal peroxides used as water treatment agents that have been converted into lower oxides, but also the treatment of newly converted metal oxides into metal peroxides as raw materials. It goes without saying that this method can be applied.

本発明による水処理剤は、廃水中に予めCODが含まれ
ているものの処理のみならず、ガス中に含まれる例えば
フェノールやホルマリン等の成分を水性媒体中に捕集し
、この結果捕集した水性媒体がCOD成分を含む様にな
る場合、このガス捕集とCOD成分の処理とを同時に行
なう様なプロセスにも適用出来る。
The water treatment agent according to the present invention not only treats wastewater that already contains COD, but also collects components such as phenol and formalin contained in gases in an aqueous medium. When the aqueous medium contains COD components, it can also be applied to a process in which gas collection and treatment of the COD components are performed simultaneously.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例 1 硫酸ニッケルの2モル/l水溶液な粒径0.2〜0.5
藺、水銀圧入式ポロシメーターで測定した細孔容積0.
5 CC/ rのシリカ質担体zK9に含浸させ、得ら
れた溶液含浸担体を151の4%苛性ソーダ水溶液に3
時間浸漬し、硫酸ニッケルを水酸化物に転化し、次いで
101の12%次亜塩素酸ソーダ水溶液に3時間浸漬し
、水酸化ニッケル過酸化物に転化せしめた。
Example 1 Particle size of 2 mol/l aqueous solution of nickel sulfate 0.2-0.5
The pore volume measured with a mercury intrusion porosimeter is 0.
A siliceous carrier zK9 of 5 CC/r was impregnated, and the resulting solution-impregnated carrier was diluted with 4% caustic soda aqueous solution of 151 for 3
The sample was immersed for an hour to convert nickel sulfate into hydroxide, and then immersed in a 12% sodium hypochlorite aqueous solution of 101 for 3 hours to convert it to nickel hydroxide peroxide.

これを水洗して付着次亜塩素酸ソーダ及び硫酸ソーダを
十分除去して処理剤とした。
This was washed with water to sufficiently remove adhering sodium hypochlorite and sodium sulfate, and a treatment agent was obtained.

かくして得られた処理剤の活性酸素(測定法は後述)は
、3.6 X I O−’ ?酸素原子/1処理剤であ
った。
The active oxygen content of the treatment agent thus obtained (the measurement method will be described later) is 3.6 X I O-'? The treatment agent was 1 oxygen atom/1.

これを内径35u、長さ2mの硝子製反応管に1.21
充填し、主たるCOD成分がメタノール、蟻酸ソーダを
CODMn20■/l含む化学工場排水にNaC10を
濃度180■/l相当添加し、前記反応管上部から60
−7分の割合で導入し、下部から抜き出した処、C,O
DMnの除去率は80%であった。
This was placed in a glass reaction tube with an inner diameter of 35u and a length of 2m.
NaC10 was added at a concentration of 180 μ/l to chemical factory wastewater containing methanol and sodium formate as the main CODM components, and 60 μ/l was added from the top of the reaction tube.
- Introduced at a rate of 7 minutes and extracted from the bottom, C, O
The removal rate of DMn was 80%.

引き続き30日間上記条件での通液後のCODMnの除
去率は30%であり、このときの処理剤の活性酸素は1
.3X10″″4v酸素原子/V処理剤であった。
The removal rate of CODMn after passing the solution under the above conditions for 30 days was 30%, and the active oxygen content of the treatment agent at this time was 1.
.. The treatment agent was 3×10''4v oxygen atoms/V.

かくして活性酸素が低下し、COD除去性能が低下した
処理剤の半量を1%Na2SO3水溶液に12時間浸漬
した後、12%NaC10水溶液に2時間浸漬処理した
後の処理剤の活性酸素は3.7 X I O−’ r酸
素原子/1処理剤に回復し、再び同様な反応装置で同様
の排水を307nl/分の害拾で導入し、抜き出した処
、CODMnの除去率は82%であった。
Thus, active oxygen content decreased and COD removal performance decreased. Half of the treatment agent was immersed in a 1% Na2SO3 aqueous solution for 12 hours, and then immersed in a 12% NaC10 aqueous solution for 2 hours. The active oxygen content of the treatment agent was 3.7. After recovering to X I O-' r oxygen atom/1 treatment agent, the same waste water was introduced again into the same reactor at a rate of 307 nl/min and extracted, and the removal rate of CODMn was 82%. .

比較の為、前記30日間通液の結果活性酸素が1.3X
10″″4y酸素原子/V処理剤となった残りの半量の
処理剤をNa2SO3水溶液による還元操作をすること
なく、直接12%NaC10水溶液に6時間浸漬処理し
た後の処理剤の活性酸素は1.4 X 10−’ ?酸
素原子/V処理剤であり、これを前記と同様の反応装置
で同様の排水を30yd/分の割合で導入し、抜き出し
た処、CODMnの除去率は35%であった。
For comparison, active oxygen was 1.3X as a result of the 30 days of water circulation.
The remaining half of the treatment agent, which became the 10''''4y oxygen atom/V treatment agent, was directly immersed in a 12% NaC10 aqueous solution for 6 hours without any reduction operation with an Na2SO3 aqueous solution, and the active oxygen of the treatment agent was 1. .4 X 10-'? This is an oxygen atom/V treatment agent, and when the same waste water was introduced into the same reactor as above at a rate of 30 yd/min and extracted, the removal rate of CODMn was 35%.

尚、処理剤の活性酸素の測定法は以下の如(である。The method for measuring active oxygen in the treatment agent is as follows.

処理剤lyを正しく秤量し、共栓付き三角フラスコ30
0m1に移し、蒸留水約257nlを加える。
Weigh the processing agent ly correctly and place it in an Erlenmeyer flask with a stopper.
0 ml and add about 257 nl of distilled water.

KI約21を加え溶解した後、36%酢酸水溶液約10
rIllを加え、暗所に約20分放置する。
After adding and dissolving about 21% of KI, add about 10% of 36% acetic acid aqueous solution.
Add rIll and leave in the dark for about 20 minutes.

0.INチオ硫酸ソーダを用い、澱粉指示薬の紫色が消
える点を滴定の終点とする。
0. Using IN sodium thiosulfate, the end point of the titration is the point at which the purple color of the starch indicator disappears.

処理剤の活性酸素の計算は次式より求める。The active oxygen content of the treatment agent is calculated using the following formula.

Xv 処理剤の活性酸素−−X 5 X I F 5(グ酸素
原子/1処理剤) 但し、f二〇、INチオ硫酸ソーダ水溶液のファクター ■二滴定量(ml) W:試料処理剤重量(1) 実施例 2 硫酸ニッケルの2モル/l水溶液な粒径0.2〜0.5
闘、水銀圧入式ポロシメータで測定した細孔容積0.5
cc、/ rのシソカ質担体2に9に含浸させ、得ら
れた溶液含浸担体を151の4%苛性ソーダ水溶液に3
時間浸漬し、硫酸ニッケルを水酸化物に転化し、次いで
lOlの12%次亜塩素酸ソーダ水溶液に3時間浸漬し
、水酸化ニッケルをニッケル過酸化物に転化せしめた後
十分水洗して処理剤とした。
Xv Active oxygen of treatment agent--X 5 1) Example 2 2 mol/l aqueous solution of nickel sulfate particle size 0.2-0.5
The pore volume measured with a mercury intrusion porosimeter was 0.5.
cc,/r of perilla support 2 was impregnated with 9, and the resulting solution-impregnated support was soaked with 4% caustic soda aqueous solution of 151 with 3
After soaking for 3 hours in a 12% sodium hypochlorite aqueous solution of lOl to convert nickel hydroxide into nickel peroxide, rinse thoroughly with water and use the treatment agent. And so.

得られた処理剤の活性酸素は3.4×I F’であった
The active oxygen content of the obtained treatment agent was 3.4×IF'.

これを実施例1と同様の反応管に同量充填し、同様な排
水を同様に反応管に導入し又抜き出した処、CODMn
の除去率は82%であった。
The same amount of this was filled into the same reaction tube as in Example 1, and the same waste water was similarly introduced into the reaction tube and taken out.
The removal rate was 82%.

引き続き30日間上記条件での通液後の CODMnの除去率は35%であり、このときの処理剤
の活性酸素は1.5 X 10−’であった。
After the solution was passed under the above conditions for 30 days, the CODMn removal rate was 35%, and the active oxygen content of the treatment agent at this time was 1.5 x 10-'.

か(し又活性酸素が低下し、COD除去性能が低下した
処理剤の半量を0.4%ヒドラジン水溶液に12時間浸
漬した後、12%NaC10水溶液に2時間浸漬した後
の処理剤の活性酸素は3.7 X I O−’に回復し
、再び同様な反応装置で同様の排水を30yd/分の割
合で導入し、抜き出した処、CODMnの除去率は80
%であった。
The active oxygen content of the treatment agent decreased after immersing half of the treatment agent in a 0.4% hydrazine aqueous solution for 12 hours and then immersing it in a 12% NaC10 aqueous solution for 2 hours. recovered to 3.7 X I O-', and when the same waste water was introduced again into the same reactor at a rate of 30 yd/min and extracted, the removal rate of CODMn was 80
%Met.

比較の為、前記30日間通液の結果活性酸素が1.5
X I O−’となった残りの半量の処理剤をヒドラジ
ン水溶液による還元操作をしないで12%NaC10水
溶液に6時間浸漬処理した後の処理剤の活性酸素は1.
7 X 10””’であり、これを前記と同様の反応装
置で同様の排水を3077271!/分の割合で導入し
、抜き出した処、CODMnの除去率は38%であった
For comparison, active oxygen was 1.5 as a result of the 30 days of water circulation.
After immersing the remaining half of the treatment agent, which became X I O-', in a 12% NaC10 aqueous solution for 6 hours without reducing it with a hydrazine aqueous solution, the active oxygen of the treatment agent was 1.
7 x 10""', which was used in the same reactor as above and the same waste water was 3077271! The removal rate of CODMn was 38% when it was introduced and extracted at a rate of 1/min.

実施例 3 塩化コバルトの2モル/l水溶液な粒径0.2〜0.5
wl1、水銀圧入式ポロシメーターで測定した細孔容積
0.45CC1/Vのシリカ・アルミナ質担体2胸に含
浸させ、得られた溶液含浸担体を151の4%苛性ソー
ダ水溶液に3時間浸漬し、塩化コバルトを水酸化物に転
化し、次いでlOlの12%次亜塩素酸ソーダ水溶液に
3時間浸漬し、水酸化コバルトをコバルト過酸化物に転
化せしめた後十分水洗して処理剤とした。
Example 3 2 mol/l aqueous solution of cobalt chloride particle size 0.2-0.5
wl1, a silica/alumina carrier with a pore volume of 0.45 CC1/V measured with a mercury intrusion porosimeter was impregnated into two parts, and the resulting solution-impregnated carrier was immersed in a 4% caustic soda aqueous solution of 151 for 3 hours to form a cobalt chloride solution. was converted into a hydroxide, and then immersed in a 12% sodium hypochlorite aqueous solution of 1O1 for 3 hours to convert cobalt hydroxide into cobalt peroxide, and then thoroughly washed with water to obtain a treatment agent.

得られた処理剤の活性酸素は4.OX I F’であつ
た。
The active oxygen content of the obtained treatment agent was 4. It was OX IF'.

これを実施例1と同様の反;芯管に同量充填し、同様な
排水を同様に反応管に導入して抜き出し処、CODMn
の除去率は75%であった。
The same amount of this was filled into the same reactor core tube as in Example 1, and the same waste water was introduced into the reaction tube and extracted.
The removal rate was 75%.

引き続き30日間上記条件での通液後の CODMnの除去率は30%であり、このときの処理剤
の活性酸素は1.6 X 10−4であった。
After the solution was passed under the above conditions for 30 days, the CODMn removal rate was 30%, and the active oxygen content of the treatment agent at this time was 1.6 x 10-4.

かくし℃活性酸素が低下し、COD除去性能が低下した
処理剤の半量を1%Na2SO3水溶液に12時間浸漬
した後、x2%NaclO水溶液に2時間浸漬処理した
後の処理剤の活性酸素は3.9X10−4に回復し、再
び同様な反応装置で同様の排水を30−7分の割合で導
入し、抜き出した処、CODMnの除去率は77%であ
った。
After half of the treatment agent whose active oxygen content decreased and COD removal performance decreased for 12 hours in a 1% Na2SO3 aqueous solution and immersed in a 2% NaClO aqueous solution for 2 hours, the active oxygen content of the treatment agent decreased to 3. When the temperature was restored to 9X10-4, the same waste water was again introduced into the same reactor at a rate of 30-7 minutes, and extracted, the removal rate of CODMn was 77%.

比較の為、前記30日間通液の結果活性酸素が1.6
X 10−4となった残りの半量の処理剤をN a2S
03水溶液による還元操作をしないで12%NaCl
0水溶液に6時間浸漬処理した後の処理剤の活性酸素は
1.7 X l O−4であり、これを前記と同様の反
応装置で同様の排水を307!/分の割合で導入し、抜
き出した処、CODMnの除去率は32%であった。
For comparison, active oxygen was 1.6 as a result of the 30 days of water circulation.
The remaining half of the processing agent that became X 10-4 was converted into Na2S.
03 12% NaCl without reduction operation with aqueous solution
The active oxygen content of the treatment agent after being immersed in an aqueous solution for 6 hours was 1.7 X l O-4, and the same waste water was treated using the same reaction apparatus as above. The removal rate of CODMn was 32% when it was introduced and extracted at a rate of 1/min.

Claims (1)

【特許請求の範囲】 1 金属酸化物を水性媒体中におい又還元剤により金属
水酸化物に転化し、次いで、アルカリ性下に次亜塩素酸
塩により酸化せしめ又金属過酸化物に転化せしめる事を
特徴とする金属過酸化物水処理剤の製造方法。 2 金属酸化物がニッケル、コバルト、銅、マンガン、
亜鉛、セリウム、鉛、マグネシウム、アルミニウム、カ
ルシウム、バリウム、ストロンチウム、チタンから選ば
れた少な(とも一種の酸化物である特許請求の範囲1記
載の方法。 3 還元剤が、亜硫酸塩、ヒドラジン、H21CO,C
H,、c3n8、である特許請求の範囲1記載の方法。 4 金属酸化物が、シリカ又はアルミナ系の担体に担持
され又いる特許請求の範囲1記載の方法。
[Scope of Claims] 1. A process in which a metal oxide is converted into a metal hydroxide in an aqueous medium using a reducing agent, and then oxidized with a hypochlorite under alkaline conditions and converted into a metal peroxide. A method for producing a characteristic metal peroxide water treatment agent. 2 Metal oxides include nickel, cobalt, copper, manganese,
The method according to claim 1, wherein the reducing agent is a type of oxide selected from zinc, cerium, lead, magnesium, aluminum, calcium, barium, strontium, and titanium. 3. The reducing agent is sulfite, hydrazine, H21CO ,C
H,, c3n8, the method according to claim 1. 4. The method according to claim 1, wherein the metal oxide is supported on a silica or alumina support.
JP1612177A 1977-02-18 1977-02-18 Method for producing metal peroxide water treatment agent Expired JPS5946678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1612177A JPS5946678B2 (en) 1977-02-18 1977-02-18 Method for producing metal peroxide water treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1612177A JPS5946678B2 (en) 1977-02-18 1977-02-18 Method for producing metal peroxide water treatment agent

Publications (2)

Publication Number Publication Date
JPS53101848A JPS53101848A (en) 1978-09-05
JPS5946678B2 true JPS5946678B2 (en) 1984-11-14

Family

ID=11907672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1612177A Expired JPS5946678B2 (en) 1977-02-18 1977-02-18 Method for producing metal peroxide water treatment agent

Country Status (1)

Country Link
JP (1) JPS5946678B2 (en)

Also Published As

Publication number Publication date
JPS53101848A (en) 1978-09-05

Similar Documents

Publication Publication Date Title
EP0490317B1 (en) Active carbon materials, process for the preparation thereof and the use thereof
KR920009114B1 (en) Process of effluent treatment
JP2573641B2 (en) Decomposition method of oxidizer in effluent stream
RU2117639C1 (en) Method of purification of sewage
JPH09510655A (en) Oxidation method
JP4436659B2 (en) Foaming detergent
JPS5946678B2 (en) Method for producing metal peroxide water treatment agent
EP0204399B1 (en) Method of regenerating permanganate etch bath
JPH0466628B2 (en)
JPS6235838B2 (en)
JP2004074088A (en) Treatment method for waste liquid containing chemical polishing liquid
JP2018086614A (en) Method for treating oxidizing substance-containing waste water
JPH0249798B2 (en) JUKIKAGOBUTSUGANJUSUINOSHORIHOHO
JPS607952B2 (en) Method for treating wastewater containing polyvinyl alcohol
JPH0839079A (en) Treatment of hydrogen peroxide-containing acidic water
JPH0780479A (en) Treatment of organic compound-containing waste liquid
CN116002842B (en) Method for degrading carbamazepine by activating peroxyacetic acid with carbon nano tube supported catalyst
JP4011197B2 (en) Method for treating ethanolamine-containing water
JP2005313080A (en) Iodine ion removing process and electrolytic process
JP4450146B2 (en) COD component-containing water treatment method
JP3420697B2 (en) Method for treating ethanolamine-containing water
JPH0326096B2 (en)
JPS607953B2 (en) Treatment method for wastewater containing hydrazine
RU2160152C2 (en) Method of hydrogen sulfide removal from gas mixtures
JP2003202396A (en) Method for treating chemical decontamination waste liquid