JPS5945430A - Electrochromic display element - Google Patents

Electrochromic display element

Info

Publication number
JPS5945430A
JPS5945430A JP15606582A JP15606582A JPS5945430A JP S5945430 A JPS5945430 A JP S5945430A JP 15606582 A JP15606582 A JP 15606582A JP 15606582 A JP15606582 A JP 15606582A JP S5945430 A JPS5945430 A JP S5945430A
Authority
JP
Japan
Prior art keywords
electrolyte
polymer
display element
film
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15606582A
Other languages
Japanese (ja)
Inventor
Koji Kakiuchi
宏司 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP15606582A priority Critical patent/JPS5945430A/en
Priority to EP83300116A priority patent/EP0083988B1/en
Priority to US06/456,787 priority patent/US4519930A/en
Priority to DE8383300116T priority patent/DE3374447D1/en
Publication of JPS5945430A publication Critical patent/JPS5945430A/en
Priority to US07/055,186 priority patent/USRE33040E/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Abstract

PURPOSE:To form an element having excellent responsiveness and is free from deterioration with age in an electrochromic (EC) display element using a liquid electrolyte, by using the liquid electrolyte in the solidified state in which the electrolyte is absorbed in a specific cross-linked type polymer. CONSTITUTION:A solidified electrolyte obtd. by adsorbing a liquid electrolyte on a cross-linked polymer obtd. by cross-linking PVA with a dicarboxylic acid (anhydride) (preferably the polymer crosslinked by using about >=2wt% pyromellitic anhydride) is used. The above-mentioned solidified electrolyte 4 is sandwiched between an upper glass substrate 1 provided with a transparent conductive film 2 of tin oxide, etc. and EC electrodes 3 consisting of a thin film of Prussian blue, etc., and a lower glass substrate 7 provided with a counter electrode 6 of Cr-Au, etc., whereby the EC display element is formed (a symbol 5 is a spacer).

Description

【発明の詳細な説明】 本発明はエレクトロクロミンク表示素子の電解質に関す
るものであり、さらに詳しくいえば電解質を固型化し、
素子の性能全改善することに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolyte for an electrochromic display element, and more specifically, it solidifies the electrolyte,
It is concerned with improving the overall performance of the device.

工1ツクトロクコミック表示素子においては、電解質と
し又多くの場合、電解質溶液を用いていた。しかし、溶
液充用いた場合には、液を注入する際の気泡の問題・や
、表示セルと液との膨張率の差による高温でのパネルの
破壊の問題があった。
In engineering comic book display elements, an electrolyte and in many cases an electrolyte solution was used. However, when a solution is used, there are problems with air bubbles when the solution is injected and the panel breaking at high temperatures due to the difference in expansion coefficient between the display cell and the solution.

そこで電解質として固体を用いることが考えらitてお
りs%にプロトンの導イオン体として、二酸化クイ素薄
膜、酸化メンタル薄膜等の酸化物薄膜が用いらitたこ
ともある。しかし、と扛らの固体電Fi了質は、抵抗が
大きいという欠点を有していた。した7’′Cって、素
子の応答が遅(なることや、電圧が(t%ぐなるどいつ
結果を招いていた。さらにこ才tらの固体電解質では、
チレクトロクロミンク電極と電解質、あるいは、対同電
極と電解質との間の接触が充分であるかどうかという問
題点がちつた。即ち、液との接触では液の流動性により
工充分な接触が期待できるが、固体同志では、剥離とい
う現象が起こる可能性がある。特に、電圧を印7JOL
、 r :駆動している状態が長く続いた場合に大きな
不安定要因となる可能性がある。
Therefore, it has been considered to use a solid material as an electrolyte, and oxide thin films such as quartz dioxide thin films and mental oxide thin films have been used as ion conductors for protons. However, Toran et al.'s solid-state electrical material had the drawback of high resistance. At 7''C, the response of the element becomes slow and the voltage increases (t%).Furthermore, with the solid electrolyte of Kosai et al.
The question arose as to whether there was sufficient contact between the tilectrochromic electrode and the electrolyte, or between the counter electrode and the electrolyte. That is, when contacting with a liquid, a satisfactory contact can be expected due to the fluidity of the liquid, but when solids come into contact with each other, a phenomenon of peeling may occur. In particular, mark the voltage 7JOL
, r: If the driving state continues for a long time, it may become a major instability factor.

固体731M質の有するこれらの欠点を除くために電w
r、JR溶液金高分子中に含ませて固型化するという方
法が考えられた。仁の方法では電極との接触は液に近く
かつ、含ませるTl!解質溶液の帛が充分多ければ導電
度も液に近いと考えられるので、上記の固体電解質にお
ける欠点を除去しかつ電解質を固型化できると考えら几
る。本発明は、このような高分子に電解液を担持させた
構造を有する電解質に13qシて、具体的な構成を与え
るものであり特に水を溶媒とする溶液について、こ′n
を411持する高分子を見つけ出すことを目的としてい
る。
In order to eliminate these drawbacks of solid 731M quality, electric
r, JR solution A method of solidifying the gold by including it in the gold polymer was considered. In Jin's method, the contact with the electrode is close to the liquid and the Tl! It is believed that if the amount of electrolyte solution is sufficiently large, the conductivity will be close to that of a liquid, so it is thought that the above-mentioned drawbacks of the solid electrolyte can be eliminated and the electrolyte can be solidified. The present invention provides a specific structure for an electrolyte having a structure in which an electrolytic solution is supported on a polymer, and is particularly applicable to a solution using water as a solvent.
The aim is to find a polymer that has 411.

そのためには、まず水溶性の1″TI分子を見つけ出し
、これを架橋不溶化し工やることを考える。
To do this, we will first find a water-soluble 1″ TI molecule and then crosslink it to make it insolubilized.

マーt”ポリビニルアルコールについて考えると、ポリ
ビニルアルコールは、水溶性高分子として代表的なもの
である。しかしこ1.だけでは水溶性であるので液を相
持させることはできない。これを架橋することができI
Lば、液に溶解しないで、担持させることが可能である
。そこでこれを架橋するために、エステル化反応を次の
ように応用する○II        OH OOH −−O ■ C=0 −aH,−0IT−OH!−0H− fJIIち、アルコール部分のOH基に、カルボン酸基
全エステル化反応させて結合を作る。この操作音2つの
高分子鎖にまたがってやfLば、高分子を架橋すること
ができるはずである。よって架橋剤はジカルボン酸とい
うことになる。しかし、この際に、ジカルボン酸の代わ
りに酸無水物でもよいことは明らかである。
When considering polyvinyl alcohol, polyvinyl alcohol is a typical water-soluble polymer.However, this 1. alone is water-soluble and cannot make liquids compatible.It is not possible to crosslink this. I can do it
If it is, it is possible to support it without dissolving it in a liquid. Therefore, in order to crosslink this, the esterification reaction is applied as follows: ○II OH OOH --O ■ C=0 -aH, -0IT-OH! -0H- fJII, the OH group of the alcohol moiety undergoes a total esterification reaction of the carboxylic acid group to form a bond. If this operation sound spans two polymer chains, it should be possible to crosslink the polymers. Therefore, the crosslinking agent is a dicarboxylic acid. However, in this case, it is clear that an acid anhydride may be used instead of the dicarboxylic acid.

また一般に架橋した高分子は、その高分子けのため溶媒
には溶解せず、したがって成形が難しい。よって架橋す
るn1■に液に溶かしてフィルム成形し、その後架橋高
分子化できれば望ましい。そのためにまず高分子と架橋
剤をまぜ工溶液に溶かした後ガラス基板等の上に流して
乾かし、フィルムを作って架橋するのが望ましい方法で
ある。
Additionally, crosslinked polymers generally do not dissolve in solvents due to their polymer structure, and are therefore difficult to mold. Therefore, it would be desirable if n1■ to be crosslinked could be dissolved in a liquid, formed into a film, and then crosslinked into a polymer. For this purpose, a desirable method is to first mix the polymer and crosslinking agent and dissolve them in a working solution, then pour the mixture onto a glass substrate or the like and dry it to form a film and then crosslink it.

それでは以下、実施例に沿って本発明について具体的に
説明する。
The present invention will now be described in detail with reference to Examples.

実施例1 架橋剤として無水ピロメリット酸を使ってみる。ポリビ
ニルアルコールを10%(重を比]の濃度で水に溶解し
、これに無水ピロメリット酸全ポリビニルアルコールに
対シて2%、4%、6’A、8% 、 10チの濃度で
力0える。無水ピロメリット酸は常温で水に溶解しない
ので80℃程度に溶液を加温すると溶ける。このように
し′″CC調整溶液をガラス板の上に流して、80℃程
度のホットブレート上で蒸発、乾燥させてやる。すると
4明なフィルムが生成して、無ホビロメ11ツト酸が再
結晶する仁となく、被nI7が形成される。この被、膜
全120℃の炉の中で架橋反応させる。そして、反応時
間を1時間、20S間、3時間、4時間、5時間にどり
、できた被、膜に水を吸収させてどの程度水を吸収する
かを1jl−1べてみた。その結果が第1図に示し7で
ある。こ扛から不溶化するためには1%よシ多ぐの架橋
剤が必要であることがわかる。また、最も吸収率の大き
なものは、架橋剤′M′4チ、反応時間4時間のもので
あって、吸水した高分子が吸収する前σ)約3.5倍I
ll;)重Mを持つことがわかる。これは、I及11y
シた水分の量が高分子の約2゜5倍であることを示して
いる。
Example 1 Pyromellitic anhydride is used as a crosslinking agent. Polyvinyl alcohol was dissolved in water at a concentration of 10% (by weight), and pyromellitic anhydride was added at concentrations of 2%, 4%, 6'A, 8%, and 10% based on the total polyvinyl alcohol. Since pyromellitic anhydride does not dissolve in water at room temperature, it will dissolve when the solution is heated to about 80℃. In this way, pour the CC adjustment solution onto a glass plate and heat it on a hot plate at about 80℃. The film is then evaporated and dried.Then, a bright film is formed, and there is no crystallization of the non-fobilometic acid, and the nI7 is formed. Allow the crosslinking reaction to occur.Then, the reaction time was increased to 1 hour, 20S, 3 hours, 4 hours, and 5 hours, and the resulting coating and film absorbed water. The results are shown in Figure 1 and are 7. It can be seen that more than 1% of the crosslinking agent is required to make the material insolubilized. Agent 'M' 4th, reaction time 4 hours, before absorption by water-absorbing polymer σ) about 3.5 times I
ll;) It can be seen that it has heavy M. This is I and 11y
This shows that the amount of water contained in the material is approximately 2.5 times that of the polymer.

以上のようにして得た高分子に電解液を吸収させて牟れ
は固型化した電解質と六る。上記の架橋争件即ち、架橋
剤量4チ、反応時間4時間の架橋東件R11ち、架橋剤
慴4チ、反応時間4時間の架橋高分子について、とfl
f−IMの塩化カリウム溶液に浸して!全吸収させて固
型化電解質を作った。
The electrolyte is absorbed into the polymer obtained as described above, and the solidified electrolyte is formed. The above-mentioned crosslinking issue is about the crosslinking polymer with 4 parts of crosslinking agent and 4 hours of reaction time.
Soak it in f-IM potassium chloride solution! A solidified electrolyte was made by completely absorbing it.

こ牡f:第2図のような構造の表示パネルに組み込んだ
。ここで1は上側基板ガラス、2は透明導電膜で酸化ス
ズを用いた。3はエレクトロクロミック’FJjL l
kでここではプルシャンブルー薄、肺ヲ用いた。このプ
ルシャンブルー薄BCAは、フェリシアンカリウムKa
 [F(B  (aN)a  ]と塩化第二鉄Fe O
t、の混合溶液中で酸化スズ股上で電解還元することに
よって’?I!極上に析出させて成膜した。
Component f: It was incorporated into a display panel with a structure as shown in Figure 2. Here, 1 is an upper substrate glass, and 2 is a transparent conductive film made of tin oxide. 3 is Electrochromic'FJjL l
In this case, Prussian blue was used. This Prussian Blue Thin BCA contains Felicyan Potassium Ka
[F(B (aN)a ] and ferric chloride FeO
By electrolytic reduction over tin oxide in a mixed solution of '? I! A film was formed by depositing it on top.

4は、上記の固型化電解質、5はガラスのスベーづ、6
は下側のガラス板である。この表示セルの表示1に極は
、第3図のような彫金I〜でおり、右から左へあるいは
左から右へ表示が移ることにより切り換えができるよう
になっている。まだ7 &J、 Cr−A ?4の蒸肩
膜で対同電極として用いる。
4 is the above-mentioned solidified electrolyte, 5 is a glass substrate, 6 is
is the lower glass plate. The display 1 pole of this display cell has a metal engraving I~ as shown in FIG. 3, and can be switched by moving the display from right to left or from left to right. Still 7&J, Cr-A? The vaporized shoulder membrane of No. 4 is used as a counter electrode.

このような表示装置で、1ず成膜したてのプルシャンブ
ルーは宵(呈色しているので、2つの表示膜の一方全対
向電極の金と接続して、消色する。表示電極は面積が←
♂で、表示電荷量として6 mc / tm″だけつけ
であるので、消色に必要な電荷mは2.40 p c 
/ cm’である。そこで金電極−表示車(電量にIQ
 p Aの定電流を24sec間流して消色I〜た。次
に、マだ階色したままの膜とこの消色した膜間に(1、
7Vの電用金、7色1漠が低電圧t4]1になるよりに
かけて・守・る。すると青色の表示が右から左に移ジ変
った。このときの応答は58ecであった。液を月Jい
た。9:、1合が2secであるとと金考えると、ゲル
化したことによりかなり遅くなっていることが分かる。
In such a display device, first, the newly formed Prussian blue film is colored in the evening, so it is connected to the gold of one of the two display films on the opposite electrode, and the color disappears.The display electrode is The area is←
Since only 6 mc/tm'' is added as the display charge amount, the charge m required for erasing the color is 2.40 pc.
/cm'. Therefore, the gold electrode-display wheel (IQ in the amount of electricity)
A constant current of pA was applied for 24 seconds to decolorize the sample. Next, between the film that remains mottled and this colorless film (1,
7V electric power, 7 colors 1 voltage becomes low voltage t4]1. Then, the blue display shifted from right to left. The response at this time was 58ec. There was a liquid on the moon. 9: Considering that 1 cup takes 2 seconds, it can be seen that the time is considerably slowed down due to gelation.

実施例2 実施(!□111と同様な表示装置’r: (’i り
 z 同じ架橋条件を用いたが、今度は、架橋したフィ
ルムに電1f打液を吸収させないで、フィルム成形・I
“るときに電解質を含ませるようにし、た。即ち、1M
の塩化カリウム水溶液にポリビニルアルコール全10チ
の重慣割合で溶解させ、この溶液にポリビニルアルコー
ルに対して4係の重′(会比率になるように無水ピロメ
リット11秒を混ぜた。そし王、こオtff:120℃
;4時間の条件で架橋させて、架橋、(41Jビニルア
ルコールのフィルムを作った。このフィルムに水を吸収
させて電解質とした。これを実施例1と同じ形の表示装
置に組み込んでやけυ着消色の切り換えを行った。その
結果、着消色の応答は4secになり、実施例1.より
少なく速くなった。
Example 2 Implementation (!□Same display device as in 111: ('i ri z) The same crosslinking conditions were used, but this time, film forming and I
"I added an electrolyte to the solution, i.e. 1M
Polyvinyl alcohol was dissolved in an aqueous solution of potassium chloride at a ratio of 10 parts by weight, and 11 parts of anhydrous pyromellit was mixed into this solution at a ratio of 4 parts by weight to polyvinyl alcohol. Kotff: 120℃
A film of 41J vinyl alcohol was made by crosslinking for 4 hours.Water was absorbed into this film and used as an electrolyte.This was incorporated into a display device of the same type as in Example 1. Coloring/decoloring was switched.As a result, the response time for coloring/decoloring was 4 seconds, which was faster than in Example 1.

実施例3 実施例1の第2図において金電極7の上に、プルシャン
ブルー電極を電解成膜した表示装置を作p1対同電極と
表示電極の間で駆動できるようにした。この場合には、
対向電極が青色をしているため表示の切り換えがよく見
えない。そこで、ポリビニルアルコール金架橋するとき
に、酸化チタンを分散させて架橋することにした。つま
り、ポリビニルアルコールf l M塩化カリウム性液
にIDwt%の割合で溶゛解した後に、酸化チタン粉末
を乳バチですりつぶして細奇くしたもの’c 5+”+
’r’にさせる。この液に無水ピロメリットQ3 t、
ポリビニルアルコールに対して4Wf、φになるように
泪、ぜる。そσ)後にこれ120℃、4時間の降件で架
橋さセタ。こσ)架橋ポリビニルアルコ−刀・に水を吸
収させて、電解質とし、これを表示装置に組み込A7だ
Example 3 A display device was fabricated in which a Prussian blue electrode was electrolytically deposited on the gold electrode 7 in FIG. 2 of Example 1, so that it could be driven between the gold electrode 7 and the display electrode. In this case,
Since the counter electrode is blue, it is difficult to see the display switching clearly. Therefore, when crosslinking polyvinyl alcohol with gold, we decided to disperse titanium oxide for crosslinking. In other words, after dissolving in polyvinyl alcohol fl M potassium chloride solution at a ratio of IDwt%, titanium oxide powder is ground into fine particles with a milk pestle.
Make it 'r'. Add anhydrous pyromellit Q3 t to this liquid,
Rinse the polyvinyl alcohol so that it becomes 4Wf and φ. After that, it was cross-linked at 120°C for 4 hours. σ) Water is absorbed into cross-linked polyvinyl alcohol to form an electrolyte, and this is incorporated into a display device.A7.

この表示装置の、表示極と、対向電極の間圧、097v
の電圧を表示極が低電圧(11+1になるようにかける
と、表示極の色が消えて、電解質中の酸化チタンによる
白色背暇の秋態になった。このときの応答は液と同じで
2secであった。応答が実施例1.2より遅(々つた
のは、電流の流2’する距1tlffが短くなったから
である。つまり、タコ施例1゜2では、電流は、2つの
表示極間を流れるが、実施例3においては、表示電極と
対同電極の間全流才1.るからで、セルの厚みが薄けg
ば薄いほど、電MJPtの抵抗は低くなり応答が速(力
る。
The pressure between the display electrode and the counter electrode of this display device is 097v
When voltage was applied to the display electrode at a low voltage (11+1), the color of the display electrode disappeared and a white background appeared due to the titanium oxide in the electrolyte.The response at this time was the same as that of the liquid. 2 sec.The response was slower than in Example 1.2 because the distance 1tlff through which the current flowed was shorter.In other words, in Tacho Example 1.2, the current was However, in Example 3, there is a flow between the display electrode and the counter electrode, and the cell thickness is thinner.
The thinner the electric MJPt, the lower the resistance and the faster the response.

実施例1,2.3から分かるように、架橋ポリビニルア
ルコールの導電度は水溶液より低いが、充分に河いセル
に11%げ、水溶液と遜色のない応答を得ることができ
る。これは、電解質の抵抗の他に、膜の界面抵抗がある
からで、この界面抵抗はセルの、11.Jさによらず一
定であるが、電解質抵抗は薄いほど低く、充分薄いセル
ではほとんど応答に影響を及ぼさなくなる。
As can be seen from Examples 1 and 2.3, although the conductivity of crosslinked polyvinyl alcohol is lower than that of an aqueous solution, it is sufficiently conductive to a cell of 11%, and a response comparable to that of an aqueous solution can be obtained. This is because in addition to the resistance of the electrolyte, there is the interfacial resistance of the membrane, and this interfacial resistance is the cell's 11. The electrolyte resistance is constant regardless of J, but the thinner the electrolyte is, the lower it is, and if the cell is sufficiently thin, it will hardly affect the response.

実施例4 架橋するジカルボン酸として、マ1ツイン酸ケ用いてみ
ることにする。実施例1と同様にポリビニルアルコール
の1.o w t 11)水溶液kfFす、これにマレ
イン酸がポリビニルアルコールに対してtOWCチに在
るように加え、温度130℃で、1時間架橋反応させた
。その結果できた架橋ポリビニルアルコールのフィルム
に電蟹液を吸収させたところ、1a3分子フィルムはフ
ィルムのままの形を保存せず、細りJnの寒天のような
状態になった。即ち、固型化してはいるが明確な形を持
たない状態で水を吸収した。この吸水高分子も実施例1
と同様の表示装置に組み込んだ。これでも気泡の問題は
負了決できた。そしてこの表示装置についても実施例1
と同様の駆動方法により、右、左に漸色電荷全移動させ
ることができ、そのときの応答は288Cで液と同じで
あった。
Example 4 As the dicarboxylic acid to be cross-linked, we will try to use malignant acid. 1 of polyvinyl alcohol as in Example 1. 11) An aqueous solution of kfF was added to this so that maleic acid was at a ratio of tOWC to polyvinyl alcohol, and a crosslinking reaction was carried out at a temperature of 130° C. for 1 hour. When the resulting crosslinked polyvinyl alcohol film was allowed to absorb the electrolyte liquid, the 1a3 molecule film did not maintain its original shape and became thin, resembling Jn agar. That is, it absorbed water in a solidified state but without a clear shape. This water-absorbing polymer was also used in Example 1.
It was incorporated into a similar display device. Even with this, the bubble problem could be resolved. Also regarding this display device, Example 1
Using the same driving method as above, it was possible to move the entire color charge to the right and left, and the response at that time was 288C, the same as the liquid.

実施例5 同様にマレイン酸を用いたが、架橋条件を温度130℃
4時間にし、マレイン酸を、ポリビニルアルコールに対
し一’CjW t %だけ刀日えた。そσン結果実施例
4と同じ状態の半固型状の物質となりこれに電解液を吸
収さぜたところやC1:り実施例4と同様な芹(1果が
得られた。
Example 5 Maleic acid was used in the same manner, but the crosslinking conditions were changed to a temperature of 130°C.
After 4 hours, the maleic acid was added to the polyvinyl alcohol by 1'CjW t %. As a result, a semi-solid substance was obtained in the same state as in Example 4, and when the electrolyte was absorbed into this substance, C1: The same substance as in Example 4 was obtained.

実施例4,5からマレイン酸を用いた場合にはフィルム
状に成形できないことが分かる。この理由は酸無水物と
ジカルボン酸のニスデル化反応における反応(lt 0
)違いに由るものと思わ壮る。酸無水物の方が反応性が
太きぐより穏やかな条件で反毘、するからである。
From Examples 4 and 5, it can be seen that when maleic acid is used, it cannot be formed into a film. The reason for this is the reaction (lt 0
) I think this is due to the difference. This is because acid anhydrides are more reactive and react under milder conditions.

実施例6 実施例6と同様な方法によってアジピン酸を使って架橋
した。この場合でも130℃4時間で4Wtq4の条件
ではフィルムにならなかった。しかし気泡の問題は解決
することができた。
Example 6 Crosslinking was carried out in the same manner as in Example 6 using adipic acid. Even in this case, no film was formed under the conditions of 4Wtq4 at 130°C for 4 hours. However, the bubble problem could be solved.

実施例7 実施例2と同様な方法、架橋条件で、今度は無水マレイ
ン酸を用いて架橋した。この場合は、フィルム状に架橋
することができた。このフィルムを第2図と同じ表示装
置に組み込んで実施例2と同じように右、左で着色電荷
を転送し、やけフ応答1.4 、q e cが得られた
Example 7 Crosslinking was carried out in the same manner and under the same conditions as in Example 2, this time using maleic anhydride. In this case, crosslinking could be achieved in the form of a film. This film was incorporated into the same display device as shown in FIG. 2, and colored charges were transferred to the right and left sides in the same manner as in Example 2, and a burnout response of 1.4 and q e c was obtained.

実施例8 実施例jと同じ架橋剤を用いたが、今度は、ポリビニル
アルコールf 177 痕化カリウノ・でなく、1 p
過塩素酸リヂウムの水溶液に溶解した。そしてこの溶液
から作った架橋ポリビニルアルコール(架橋条件は実施
例2と同様]に水を吸収させて電解質を作った。そして
この電解’Rを第2図と同様な表示装置に却み込んだが
、本実施例ではエレクトロクロミック物質としてプルシ
ャンブルーではな(酸化タングステンを用いた。酸化タ
ングステンし11、真空蒸眉に1つ工作製した。
Example 8 The same crosslinking agent as in example j was used, but this time polyvinyl alcohol f 177 instead of 1 p
Dissolved in an aqueous solution of lithium perchlorate. Then, an electrolyte was prepared by absorbing water into cross-linked polyvinyl alcohol made from this solution (cross-linking conditions were the same as in Example 2).This electrolysis 'R was then placed in a display device similar to that shown in Fig. 2. In this example, tungsten oxide (not Prussian blue) was used as the electrochromic material.Tungsten oxide was used and one was machined into a vacuum steamed eyebrow.

酸化タングステンの場合には、膜を生成した状態でQ1
無色である。こ扛と全対極との間にLn7電流で240
 p cの電荷を注入し、2つの膜の間で着色電荷を転
送した。ただし、電圧は1.5vかけた。この結果応答
は2secで、液を用いたときの応答Q、5secより
遅かった。
In the case of tungsten oxide, Q1 is
It is colorless. 240 at Ln7 current between this pole and all counter electrodes.
A charge of pc was injected to transfer the colored charge between the two membranes. However, the voltage was 1.5V. As a result, the response was 2 seconds, which was slower than the response Q when using a liquid, which was 5 seconds.

実施例9 実施例3と同様にフィルム成形のときに酸化ブタン粉末
を混ぜること全実施例8においても行った。そして実施
例3のときのように対極と駆動した。今度しま対極は全
対極のままで電圧は±1゜2■で行った。その結果、応
答は0.5secとなり、液と同じ値を得ることができ
た。
Example 9 Similar to Example 3, butane oxide powder was mixed during film forming in all Examples 8 as well. Then, as in Example 3, it was driven with a counter electrode. This time, all striped counter electrodes were left as they were, and the voltage was set at ±1°2■. As a result, the response was 0.5 sec, which was the same value as the liquid.

以」二、実施例を挙げて説、明したように、本発明に1
2tば、水溶液を用いる任意、のエレクトロクロミック
表示に使うことができることは明らかであり、かつ充分
薄くセルを作扛ば応答も液と遜色のないものfすること
ができる。また本発明により気泡の間1項全解決できる
ことも明らかである。
2. As explained and clarified with reference to Examples, the present invention has 1
It is clear that 2T can be used for any electrochromic display using an aqueous solution, and if the cell is made sufficiently thin, the response can be made comparable to that of a liquid. It is also clear that the present invention can solve all problems in one bubble.

【図面の簡単な説明】[Brief explanation of the drawing]

a′51図Q311、ツ、111;水ピロメリット酸を
架橋剤にしたときσ)反応時間、及び架橋剤型による架
橋高分子の吸水率の変化。第2図は、実施例で用いたエ
レクトロク[コミツク表示装置の構造で1超、上(fi
l+ガラス、2 (rj: Iみ明7.F7電11’;
’s  3はエレクトロクロミック膜、4は本発明によ
る固゛型化電解質、5はスペー→]、6は下Illガラ
ス、7はar−A、、薄膜。第3i!2Ir15、表示
装置の表示パターンである。 μ −ヒ 出願人 株式会社第二1Ii9工合 代理人 弁理士最上  務
a'51 Figure Q311, tsu, 111; When water pyromellitic acid is used as a crosslinking agent σ) Change in water absorption of crosslinked polymer depending on reaction time and type of crosslinking agent. Figure 2 shows the structure of the electronic display device used in the examples.
l+glass, 2 (rj: Imiaki7.F7den11';
's 3 is an electrochromic membrane, 4 is a solidified electrolyte according to the present invention, 5 is a space →], 6 is a lower Ill glass, and 7 is an ar-A thin film. 3rd i! 2Ir15 is the display pattern of the display device. μ-hi Applicant Daini 1I9 Co., Ltd. Joint Agent Patent Attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも2つの電極と、’t’f Il「/g
f金有全会エレクトロクr」ミツクパ示、gfにおいて
、該電解質がポリビニルアルコールをジカルボン酸もし
くはカルボン酸無水物で架橋り、 ’Ic )t(−ト
危全有する高分子に、水浴成金・吸収させたものである
ことfr:特徴とするエレクトロクロミック衣不累子。 (2、特許請求の範囲第1項eこおいて、ジカルボン酸
もしくはカルボンM無水物が、無水ピロメリット酸、マ
レイン酸、アジビン酸、無水マレイン酸の中から選ばl
しることを′1徴とするエレクトロクロミック表示素子
。 〈3)l侍ij’H#求の範囲第2偵においL1無水ピ
ロメリット酸がポリビニルアルコールに対して、21狙
係以上の割合で含−1rシていること全特徴とするエレ
クトロクロミック表示素子。
(1) At least two electrodes and 't'f Il'/g
In the electrolyte, polyvinyl alcohol is cross-linked with dicarboxylic acid or carboxylic acid anhydride, and the electrolyte is formed into a water bath and absorbed by a polymer having a risk of fr: characterized by an electrochromic coating. Selected from acid, maleic anhydride
An electrochromic display element whose characteristic is '1'. <3) An electrochromic display element characterized in that L1 pyromellitic anhydride is contained in a ratio of -1r to polyvinyl alcohol at a ratio of 21 or more. .
JP15606582A 1982-01-11 1982-09-07 Electrochromic display element Pending JPS5945430A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15606582A JPS5945430A (en) 1982-09-07 1982-09-07 Electrochromic display element
EP83300116A EP0083988B1 (en) 1982-01-11 1983-01-10 Electrochromic display device
US06/456,787 US4519930A (en) 1982-01-11 1983-01-10 Electrochromic display device
DE8383300116T DE3374447D1 (en) 1982-01-11 1983-01-10 Electrochromic display device
US07/055,186 USRE33040E (en) 1982-01-11 1987-05-28 Electrochromic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15606582A JPS5945430A (en) 1982-09-07 1982-09-07 Electrochromic display element

Publications (1)

Publication Number Publication Date
JPS5945430A true JPS5945430A (en) 1984-03-14

Family

ID=15619532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15606582A Pending JPS5945430A (en) 1982-01-11 1982-09-07 Electrochromic display element

Country Status (1)

Country Link
JP (1) JPS5945430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255328A2 (en) * 1986-07-28 1988-02-03 EASTMAN KODAK COMPANY (a New Jersey corporation) Improved sodium ion selective electrode and method of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255328A2 (en) * 1986-07-28 1988-02-03 EASTMAN KODAK COMPANY (a New Jersey corporation) Improved sodium ion selective electrode and method of use

Similar Documents

Publication Publication Date Title
SU1620056A3 (en) Liquid-crystal device with microcapsulated components
USRE33040E (en) Electrochromic display device
US4116545A (en) Polymeric electrolyte for electrochromic display devices
JPH03504050A (en) Electrochromic device and its manufacturing method
JPS5844425A (en) Variable light transmitting apparatus
US4427267A (en) Metal diphthalocyanine electrochromic displays and electrolytes therefor
JPH0369921A (en) Orientation layer in conductive macromolecule, liquid crystal switch and display element using conductive macromolecule
CN108251099A (en) Under a kind of illumination can gelation and selfreparing electrochromic solutions and its application
JPS5945430A (en) Electrochromic display element
JPH01230691A (en) Electrochromic display element
JPS6040614B2 (en) Process for producing polymer electrolytes especially for electro-optical devices
GB2048921A (en) Polymeric eletrolyte for electro-optical device
CN108251100A (en) It is a kind of at room temperature can gelation and selfreparing electrochromic solutions and its application
JPH03126922A (en) Electrochromic film
KR100222387B1 (en) A composite of polyelectrolyte
JPS61143727A (en) Electrochromic display element
Zhang et al. Advances in the Study of Gel Polymer Electrolytes in Electrochromic Devices
JPH04204521A (en) Flexible electrochromic element
JP2574027B2 (en) Liquid crystal light control material manufacturing method
JPS62295031A (en) Electrochromic display device
GB2325236A (en) Polymer electrolyte for an electrochromic device
JPH03231229A (en) Electrochemical color developing element
JPS59178432A (en) Electrocoloring display element
JPH08221006A (en) Display device utilizing electrochromism phenomenon and its production
JPS6034096B2 (en) Manufacturing method of liquid crystal cell