JPS59451B2 - Silver recovery method from silver-containing aqueous solution - Google Patents
Silver recovery method from silver-containing aqueous solutionInfo
- Publication number
- JPS59451B2 JPS59451B2 JP12563376A JP12563376A JPS59451B2 JP S59451 B2 JPS59451 B2 JP S59451B2 JP 12563376 A JP12563376 A JP 12563376A JP 12563376 A JP12563376 A JP 12563376A JP S59451 B2 JPS59451 B2 JP S59451B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- aqueous solution
- copper
- extraction
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
- Extraction Or Liquid Replacement (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【発明の詳細な説明】
この発明は銅、ニッケル等の卑金属と銀が溶存する水溶
液から、高品位の銀を回収する方法に係わり、さらに詳
しくは銀の回収に先立って、共存する卑金属を溶媒抽出
で分離除去する精製方法に関する。[Detailed Description of the Invention] The present invention relates to a method for recovering high-grade silver from an aqueous solution in which silver and base metals such as copper and nickel are dissolved. This invention relates to a purification method that involves separation and removal by extraction.
銀は天然界に単独に存在することは少なく、銅、ニッケ
ル、亜鉛、コバルトなどの卑金属と共存して産する例が
多い。Silver rarely exists alone in nature; it often coexists with base metals such as copper, nickel, zinc, and cobalt.
たとえば、我国で毎年回収される銀の約2/3が、銅の
副産物といわれている。For example, about two-thirds of the silver collected each year in Japan is said to be a by-product of copper.
したがって銀の湿式製錬に際しては、銀と卑金属の混合
溶液を扱うケースが多い。Therefore, in hydrometallurgy of silver, a mixed solution of silver and base metals is often used.
銀の製錬では一般に前記卑金属の電解製錬で副生じた不
溶残渣(アノードスライム)が利用される。Silver smelting generally utilizes insoluble residue (anode slime) produced by electrolytic smelting of base metals.
すなわちこの不溶残渣には銀が濃縮された形で存在する
ので、この残渣を熔澱処理して粗銀となし、これをアノ
ードとして電解精製を行う。That is, since silver exists in a concentrated form in this insoluble residue, this residue is subjected to a melting treatment to obtain crude silver, which is then used as an anode for electrolytic refining.
電解液には硝酸銀溶液が使われ、カソードにはステンレ
ス鋼その他が使われる。The electrolyte is a silver nitrate solution, and the cathode is made of stainless steel or other material.
ただし、粗銀中の卑金属分が電解液中に過剰に蓄積する
と、カソードに析出する電気銀の品位が損なわれる結果
になるので、一定期間を経たら、電解液の少なくとも一
部を、別系統に抜き出して処理せねばならない。However, if the base metal content of the crude silver accumulates excessively in the electrolyte, the quality of the electrolytic silver deposited on the cathode will be impaired, so after a certain period of time, at least a portion of the electrolyte should be transferred to another system. It must be extracted and processed.
しかしながら、更新した不純な電解液から、高価な銀、
銅および有害な遊離硝酸を回収するために、繁雑な工程
を経ねばならないこと、および、新しい建浴に硝酸や銀
の補充が必要なこと、などにより、コストがかかる問題
があった。However, expensive silver,
There are problems with high costs, such as the complicated process required to recover copper and harmful free nitric acid, and the need to replenish nitric acid and silver when building a new bath.
また、銀は電気製品その他の加工品において、銅等の卑
金属と併用されるケースが多く、したがってその加工時
に出る滓類や使用済みのスクラップ類も、天然産のもの
に劣らず銀資源として重要である。In addition, silver is often used in combination with base metals such as copper in electrical products and other processed products, so the slag and used scraps produced during processing are as important as silver resources as naturally produced silver. It is.
この銀資源もまた、前述の卑金属の製錬工程に副原料と
して投入され、乾式溶錬と湿式精製からなる長い工程を
経て、最終的に銀が回収されている。This silver resource is also input as an auxiliary material in the base metal smelting process mentioned above, and silver is finally recovered through a long process consisting of dry smelting and hydrorefining.
しかし、銀の回収に際しては、上記とは異なって銀資源
からより直接的に回収することが、回収率を向上させる
意味から、また回収日数に要する金利負担を軽減させる
意味から、経済的に望ましい。However, when recovering silver, it is economically desirable to recover silver more directly from silver resources, in contrast to the above method, from the standpoint of improving the recovery rate and reducing the interest burden required for collection days. .
とくに銀を迅速に回収することは、銀が国際的に価格変
動し易い貴金属であるだけに、製錬業の大きな魅力とし
て、注目されているところでもある。In particular, the rapid recovery of silver is attracting attention as a major attraction for the smelting industry, as silver is a precious metal whose price is subject to fluctuations on an international basis.
それに応える方法として、銀原料を湿式酷に溶解してか
ら回収する方法が考えられる。As a method to meet this demand, a method can be considered in which the silver raw material is wet-dissolved and then recovered.
銀糸化合物は一般に化学的に安定であるから、それを実
用的に溶解するためには、硝酸などの激酸とかアンモニ
ヤや青化物などの錯塩性溶液の使用が考えられるが、こ
れらの方法では銀の溶解とともに、卑金属の多くが同時
に溶解してしまう。Silver thread compounds are generally chemically stable, so in order to practically dissolve them, it is possible to use strong acids such as nitric acid or complex salt solutions such as ammonia or cyanide, but these methods do not dissolve silver. As the base metals melt, many of the base metals also melt at the same time.
したがって高品位の銀を高い能率で回収するためには、
銀溶液の精製が重要である。Therefore, in order to recover high-grade silver with high efficiency,
Purification of the silver solution is important.
たとえば電解法で電気銀を回収する場合では、銀溶液中
の銅分濃度を、109/11以下に管理せねばならない
が、現状では先にみたように効率的にもコスト的にも問
題が残る。For example, when recovering electrolytic silver using the electrolytic method, the copper concentration in the silver solution must be controlled to 109/11 or less, but as we saw earlier, problems remain in terms of efficiency and cost. .
一方、卑金属についても経済的評価は決して低いもので
はなく、また安易な投棄処分は環境保全上杵されないの
で、これを有価金属として余すことなく回収せねばなら
ない。On the other hand, the economic evaluation of base metals is by no means low, and easy dumping is not considered environmentally friendly, so all of these metals must be recovered as valuable metals.
しかし従来では、不純な銀溶液を精製してから回収する
試みは少なく、むしろ、粗銀ないし粗銀化合物の形で分
離してから、熔解や電解法で再精製する方法が一般にと
られてきた。However, in the past, there have been few attempts to purify and recover impure silver solutions; rather, the method has generally been to separate crude silver or crude silver compounds and then re-purify them using melting or electrolytic methods. .
たとえば銅、亜鉛、アルミニウム、鉄といった、銀より
もイオン化傾向の大きい活性金属を用いる置換法である
とか、炭素等の不溶性アノードを用いる電解採取法であ
るとか、亜硫酸ガスやヒドラジン等の還元剤を使用する
化学的還元法とか、あるいは銀のハロゲン化物が難溶性
であることを利用するハロゲン化物沈澱法等々、が挙げ
られる。For example, there are substitution methods that use active metals such as copper, zinc, aluminum, and iron, which have a greater ionization tendency than silver, electrowinning methods that use insoluble anodes such as carbon, and reducing agents such as sulfur dioxide gas and hydrazine. Examples include a chemical reduction method used, a halide precipitation method that takes advantage of the fact that silver halide is sparingly soluble, and the like.
しかし、回収の迅速化、コストの低減をはかるためには
、不純な銀溶液から直接卑金属を精製できる実用的な回
収方法の確立が、望まれている。However, in order to speed up recovery and reduce costs, it is desired to establish a practical recovery method that can directly purify base metals from impure silver solutions.
この発明は上記事情に鑑みてなされたもので、銀と卑金
属が溶存する溶液から高品位の銀を直接的に回収すると
ともに、卑金属成分も直接的に回収する精製方法を提供
するものである。This invention was made in view of the above circumstances, and provides a purification method that directly recovers high-grade silver from a solution in which silver and base metals are dissolved, and also directly recovers base metal components.
この発明は、銅、ニッケル、コバルト、亜鉛のうち少な
くとも一種の卑金属と銀が溶存する水溶液を、pH0,
2〜13.0の範囲で、カチオンに対し選択的交換性の
ある抽出剤を含む対水不混和性有機溶媒と混合し、前記
卑金属を有機溶媒相に抽出分離せしめ、しかるのちこの
有機溶媒を卑金属回収工程に供給するとともに、銀を含
む水溶液を銀回収工程に供給することを特徴とする。This invention provides an aqueous solution in which at least one base metal among copper, nickel, cobalt, and zinc and silver are dissolved at pH 0,
The base metal is extracted and separated into the organic solvent phase by mixing with a water-immiscible organic solvent containing an extractant having selective exchange properties for cations in the range of 2 to 13.0. It is characterized by supplying a base metal recovery process and also supplying an aqueous solution containing silver to the silver recovery process.
以下詳細に説明する。This will be explained in detail below.
この発明で溶媒抽出の対象に選ぶ水溶液は、銅、ニッケ
ル、コバルト、亜鉛のうち少なくとも一種の卑金属と、
銀が共存する水溶液であって、具体的には銀資源を硝酸
その他の鉱酸やアンモニア等のアルカリに溶解して得ら
れる水溶液を指す。The aqueous solution selected for solvent extraction in this invention contains at least one base metal among copper, nickel, cobalt, and zinc.
It is an aqueous solution in which silver coexists, and specifically refers to an aqueous solution obtained by dissolving silver resources in nitric acid, other mineral acids, or alkalis such as ammonia.
このような水溶液中では、銀および卑金属は水やアンモ
ニア分子を配位して、カチオンとして溶存している。In such an aqueous solution, silver and base metals coordinate with water and ammonia molecules and are dissolved as cations.
この水溶液を、pH0,2〜13の範囲に保持して、カ
チオンに対し選択的交換性のある抽出剤で抽出処理する
と、銅やニッケル等の卑金属成分は、抽出剤と反応して
、水に不溶で有機溶媒に可溶な錯化合物を形成し、有機
溶媒に抽出される。When this aqueous solution is extracted with an extractant that selectively exchanges cations while maintaining the pH in the range of 0.2 to 13, base metal components such as copper and nickel react with the extractant and are dissolved in water. Forms a complex compound that is insoluble but soluble in organic solvents, and is extracted into organic solvents.
しかし、銀は有機溶媒側に抽出されず、実質的に殆ど水
溶液中に残るので、ここに銀の分離精製目的が達成され
る。However, since silver is not extracted into the organic solvent and substantially remains in the aqueous solution, the purpose of separating and purifying silver is achieved here.
溶媒抽出時のpH条件は0.2〜13の範囲に限定する
が、卑金属のうち、とくに銅を抽出したいときにはpH
0,5以上、ニッケルやコバルトを抽出したいときには
pH2,5以上、亜鉛を抽出したいときにはpH3以上
、のpH範囲が好ましい。The pH conditions during solvent extraction are limited to a range of 0.2 to 13, but when it is desired to extract copper among base metals, the pH condition is
The preferred pH range is 0.5 or higher, pH 2.5 or higher if you want to extract nickel or cobalt, and pH 3 or higher if you want to extract zinc.
もしもpHが0.2を下回ると、抽出操作は不可能とな
り、またpHが13を越えると、卑金属の抽出率が低下
したり、銀成分の抽出が僅かながら起ったりして、不都
合が生ずる。If the pH is less than 0.2, the extraction operation will be impossible, and if the pH exceeds 13, the extraction rate of base metals will decrease, and a small amount of silver components will be extracted, causing problems. .
溶媒抽出により生成された抽出錯化合物は、抽出剤と金
属イオンとの間に一定の化学量論比的関係があって、抽
出し得る金属イオンの最大飽和容量というものが存在す
る。In the extractable complex compound produced by solvent extraction, there is a certain stoichiometric relationship between the extractant and the metal ion, and there is a maximum saturation capacity of the metal ion that can be extracted.
そして、pHが低い場合は、錯体形成の反応平衡が錯体
の分解(逆反応)に偏り、平衡抽出容量は前記の最大飽
和容量より小さくなるのが一般的で、アルカリ性が著し
ぐ過剰になれば、ついには抽出が実質的に起らなくなる
。When the pH is low, the reaction equilibrium of complex formation is biased toward decomposition (reverse reaction) of the complex, and the equilibrium extraction capacity is generally smaller than the maximum saturation capacity mentioned above, and the alkalinity becomes significantly excessive. Eventually, extraction will virtually no longer occur.
しかしpHが0.2〜13の範囲にあれば、一定のpH
値に対し金属特有の平衡容量が存在するので、したがっ
て、平衡容量を予め知っておれば、目的とする量の卑金
属を抽出するための、必要な抽出削量を決定することが
できる。However, if the pH is in the range of 0.2 to 13, a certain pH
Since there is a metal-specific equilibrium capacity for each value, therefore, if the equilibrium capacity is known in advance, it is possible to determine the necessary extraction amount to extract the desired amount of base metal.
この発明で使用するカチオンに対し選択的交換性のある
抽出剤とは、卑金属イオンと安定でかつ水に不溶性の錯
化物を形成できる物質を言い、とくに有効なものを挙げ
ると、ヒドロキシ・ヒドロキシム類とヒドロキシキノリ
ン類がある。The extractant with selective exchange properties for cations used in this invention refers to substances that can form stable and water-insoluble complexes with base metal ions. There are hydroxyquinolines and hydroxyquinolines.
いづれも前述のpH範囲で卑金属を選択的に抽出する能
力があるが、その他の性質や価格等の面も考え併せると
、ヒドロキシ・ヒドロキシム類が実用的に優れているケ
ースが多い。All of them have the ability to selectively extract base metals within the above-mentioned pH range, but when considering other properties, price, etc., hydroxy hydroxymes are often superior for practical use.
このヒドロキシ・ヒドロキシム類は水酸基とヒドロキシ
ム基とを分子内に共有する、水に実質的に不溶な有機化
合物であって、とくに両基がα位またはβ位に隣接して
配されている場合に、有効である。These hydroxy hydroxymes are organic compounds that share a hydroxyl group and a hydroxyme group in their molecules and are substantially insoluble in water, especially when both groups are arranged adjacent to each other at the α or β position. Valid if applicable.
まずα−ヒドロキシ・ヒドロキシムは下記の一般構造式
を有し、式中R1とR2は炭素数6〜20の炭化水素基
、R3は同じく炭化水素基または水素原子を示し、これ
らの炭化水素基は互に同じでも異っていてもよい。First, α-hydroxy hydroxime has the following general structural formula, where R1 and R2 are hydrocarbon groups having 6 to 20 carbon atoms, R3 is a hydrocarbon group or a hydrogen atom, and these hydrocarbon groups may be the same or different.
またβ−ヒドロキシ・ヒドロキシムは下記の一般構造式
に示すように、芳香環に水酸基が結合したヒドロキシ・
ベンゾフェノン型が好ましく、式中、R4は水素または
炭素数6〜20の炭化水素基、R5は1〜4個の炭化水
素基を示し、その炭素数は1〜20に制限される。In addition, β-hydroxy hydroxyme is a hydroxy group with a hydroxyl group attached to an aromatic ring, as shown in the general structural formula below.
A benzophenone type is preferred; in the formula, R4 represents hydrogen or a hydrocarbon group having 6 to 20 carbon atoms, R5 represents 1 to 4 hydrocarbon groups, and the number of carbon atoms is limited to 1 to 20.
ただし、R5の一部は炭化水素以外の置換基で代用され
てもよく、とくにハロゲン等の電子吸引性の基では、金
属イオンとのキレート形成が促進される。However, a part of R5 may be substituted with a substituent other than a hydrocarbon, and in particular, an electron-withdrawing group such as a halogen promotes chelate formation with a metal ion.
具体的にヒドロキシ・ヒドロキシム類の代表例ヲ示スと
、5,8−ジエチル−7−ヒトロキシートデカンー6−
オキシム、19−ヒドロキシーヘキサトリュフタ−9,
27−レニン−18−オキシム、5.10−ジエチル−
8−ヒドロキシテトラデカン=7−オキシム、2−ヒド
ロキシ−37−メチル−5−エチルベンゾフェノンオキ
シム、2−ヒドロキシ−5−(1,1−ジメチル−プロ
ピル)−ベンゾフェノンオキシム、2−ヒドロキシ−3
,5−ジオクチルベンゾフェノンオキシム、2−ヒドロ
キシ−5−フェニルベンゾフェノンオキシム、4−エト
キシ−2−ヒドロキシ−フェノンカプリルオキシム、4
−ブチル−2−ヒドロキシ−フェノンステリルオキシム
、などがある。Specifically, representative examples of hydroxy hydroxymes are shown, and 5,8-diethyl-7-hydroxytodecane-6-
Oxime, 19-hydroxy-hexatruffle-9,
27-renine-18-oxime, 5.10-diethyl-
8-hydroxytetradecane = 7-oxime, 2-hydroxy-37-methyl-5-ethylbenzophenone oxime, 2-hydroxy-5-(1,1-dimethyl-propyl)-benzophenone oxime, 2-hydroxy-3
, 5-dioctylbenzophenone oxime, 2-hydroxy-5-phenylbenzophenone oxime, 4-ethoxy-2-hydroxy-phenone capryloxime, 4
-butyl-2-hydroxy-phenosteryl oxime, and the like.
つぎに、一方の抽出剤であるヒドロキシキノリ類とは、
8−ヒドロキシキノリン誘導体を指すもので、その一般
構造式は下記に示すとおりである。Next, what is one of the extractants, hydroxyquinori?
It refers to an 8-hydroxyquinoline derivative, and its general structural formula is as shown below.
くC
式中、Rは1〜6個の炭化水素基を示し、その炭素数の
合計が8〜30の範囲にあるとき、ヒドロキシキノリン
類は実用的な有機溶剤溶解性を示す。In the formula, R represents 1 to 6 hydrocarbon groups, and when the total number of carbon atoms is in the range of 8 to 30, the hydroxyquinolines exhibit practical solubility in organic solvents.
具体例として主なものを挙げると、たとえば7− (3
−(5,5,7,7,)テトラメチル−1−オクチル)
〕−〕8−ヒドロキシキノリン7−(3−(5,5−ジ
メチル−1−ヘキシル)〕−〕〕〕8−ヒドロキシキノ
リン7−トデシルー8ドロキシキノリン、などがある。The main concrete examples are, for example, 7- (3
-(5,5,7,7,)tetramethyl-1-octyl)
]-]8-hydroxyquinoline 7-(3-(5,5-dimethyl-1-hexyl))]-]]]8-hydroxyquinoline 7-todecyl-8-droxyquinoline, and the like.
さて、上述のカチオンに対し選択的交換性のある抽出剤
を用いて溶媒抽出を行なうときは1.この抽出剤を水に
不溶な有機溶媒に溶解希釈して使用する。Now, when performing solvent extraction using an extractant that has selective exchange properties for the above-mentioned cations, 1. This extractant is used after being dissolved and diluted in a water-insoluble organic solvent.
たとえばヒドロキシ・ヒドロキシム類は、通常1〜50
%、望ましくは1〜25%の濃度で、ケロシン(溶油)
やキシレンをはじめ水に不溶な任意の炭化水素溶剤に溶
解希釈して用いられる。For example, hydroxy hydroxymes usually have 1 to 50
%, preferably at a concentration of 1 to 25%, kerosene (soluble oil)
It is used by dissolving and diluting it in any hydrocarbon solvent that is insoluble in water, such as xylene or xylene.
ここで、炭化水素溶剤とは、オレタン、イソオクタン、
デカン、ペンタン又はこれらの混合物等からなる脂肪族
炭化素子、ベンゼン、キシレン、トルエン及びこれらの
混合物等からなる芳香族炭化水素、シクロヘキサン、シ
クロペンクン、シクロオクタン又はこれらの混合物等か
らなる脂環状炭化水素、更には以上のものの混合物、ケ
ロシン、ガソリン、ベンジン、軽油等である。Here, hydrocarbon solvents include olethane, isooctane,
Aliphatic carbon elements such as decane, pentane or mixtures thereof; aromatic hydrocarbons such as benzene, xylene, toluene and mixtures thereof; alicyclic hydrocarbons such as cyclohexane, cyclopenkune, cyclooctane or mixtures thereof; Furthermore, there are mixtures of the above, kerosene, gasoline, benzene, light oil, etc.
またヒドロキシキノリン類も同様に希釈して用いられる
が、好ましい希釈用有機溶剤としては、キシレン等の炭
化水素系溶剤と少量の高級アルコールとの混合液がある
。Hydroxyquinolines can also be used diluted in the same way, and a preferred organic solvent for dilution is a mixture of a hydrocarbon solvent such as xylene and a small amount of higher alcohol.
卑金属の抽出条件は、カチオンに対し選択的交換性のあ
る抽出剤の種類によって多少異なるが、最も基本的なp
H条件については既述したとおりである。Extraction conditions for base metals vary somewhat depending on the type of extractant with selective exchange for cations, but the most basic
The H conditions are as described above.
卑金属の種類と抽出能力との関係は、ヒドロキシ・ヒド
ロキシム類、ヒドロキシキノリン類、ともに銅を最もよ
く抽出できる。Regarding the relationship between the type of base metal and extraction ability, both hydroxy hydroxymes and hydroxyquinolines can extract copper best.
ヒドロキシ・ヒドロキシム類では、銅についでニッケル
、コバルトをよく抽出でき亜鉛の抽出力は劣る。Among hydroxy hydroxymes, nickel and cobalt can be extracted next to copper, but the extraction power of zinc is inferior.
この亜鉛に対しては、ヒドロキシキノリン類の方が、抽
出力にすぐれている。Hydroxyquinolines have superior extraction power for zinc.
なお、カチオンに対し選択的交換性のある抽出剤には上
記のほかにも、たとえば4級カルボン酸や酸性アルキル
リン酸エステルに代表される高級有機酸が知られている
が、抽出特性が劣っている場合が多く、必らずしも適当
でない。In addition to the above-mentioned extractants that have selective exchange properties for cations, higher organic acids such as quaternary carboxylic acids and acidic alkyl phosphates are known, but they have poor extraction properties. In many cases, it is not always appropriate.
たとえば銅の抽出を例にとれば、4級カルボン酸ではp
H約3,5以上、酸性アルキルリン酸エステルではpH
約3以上、でそれぞれ銅の抽出が始まるような次第であ
る。For example, in the case of copper extraction, quaternary carboxylic acid has p
H about 3.5 or higher, pH for acidic alkyl phosphate esters
The extraction of copper begins at about 3 or more.
溶媒抽出によって卑金属を抽出した有機溶媒は、常法に
従って卑金属回収工程に供される。The organic solvent from which base metals have been extracted by solvent extraction is subjected to a base metal recovery step according to a conventional method.
その卑金属の回収方法としては逆抽出その他の方法が適
用される。Back extraction and other methods are applied to recover the base metal.
たとえば卑金属を含む前記有機溶媒に対し、硫酸酸性水
溶液等を混合すると、有機溶媒側から卑金属番水溶液側
に逆抽出することができる。For example, when an acidic aqueous solution of sulfuric acid or the like is mixed with the organic solvent containing a base metal, back extraction can be carried out from the organic solvent side to the base metal aqueous solution side.
逆抽出は抽出の逆反応であるから、前記抽出pH条件を
外れた酸性水溶性を必要とする。Since back extraction is a reverse reaction of extraction, it requires acidic water solubility that is outside the above extraction pH conditions.
なお逆抽出に当って、金属種によりpH条件が異なるこ
とを利用すると、分別的に逆抽出することも可能である
。Note that when back-extracting, it is also possible to perform back-extraction fractionally by utilizing the fact that pH conditions differ depending on the metal species.
ただし、コバルトは逆抽出が困難であるから、この卑金
属の回収に際しては、有機溶媒を硫化水素ガスで処理し
、硫化物として回収する方法が、実用的に好ましいと考
えられる。However, since cobalt is difficult to back-extract, it is considered practically preferable to treat an organic solvent with hydrogen sulfide gas and recover it as a sulfide when recovering this base metal.
一方、銀の最終的な回収については、前記の溶媒抽出に
よって精製された含銀水溶液に、電解法等の常法を適用
すればよいが、とくに粗銀アノードの電解粗製にこの発
明方法を適用すると、以下に述べるように、クローズド
化された回収工程の下で、高品位の銀を、迅速に回収す
ることが可能になる。On the other hand, for the final recovery of silver, conventional methods such as electrolysis may be applied to the silver-containing aqueous solution purified by the solvent extraction described above, but the method of this invention is particularly applicable to the electrolytic crude production of crude silver anodes. Then, as described below, it becomes possible to quickly recover high-grade silver under a closed recovery process.
すなわち、粗銀をアノードとし、硝酸銀溶液を電解液に
使用し、カソード上に純銀を析出させる電解精製におい
て、電解液の少なくとも一部を電解槽から連続的もしく
は間欠的に抜き取り、この電解液に前記の溶媒抽出を施
し、銅等の卑金属を分離除去し、精製された電解液を上
記の電解槽に循環使用する。That is, in electrolytic refining in which pure silver is deposited on the cathode using crude silver as an anode and a silver nitrate solution as an electrolyte, at least a portion of the electrolyte is continuously or intermittently extracted from the electrolytic cell, and the electrolyte is injected into the electrolyte. The above-mentioned solvent extraction is performed to separate and remove base metals such as copper, and the purified electrolyte is recycled to the above-mentioned electrolytic cell.
このようにすれば、電解中の銅分濃度は所定値以下に維
持できるから、クローズド化遣れた工程で、短期間で高
品位の銀を回収することができ、従来とは異ってコスト
ヲ著しく節減することが可能である。In this way, the copper concentration during electrolysis can be maintained below a predetermined value, so high-grade silver can be recovered in a short period of time in a closed process, and unlike conventional methods, costs are reduced. Significant savings are possible.
つぎに実施例を説明する。Next, an example will be explained.
実施例 1 0供試含銀水溶液: 粗銀アノードの電解液を使用した。Example 1 0 Sample silver-containing aqueous solution: A crude silver anode electrolyte was used.
この電解液は、遊離硝酸4 g/l、銅分609/l、
pH1,2の水溶液であり、粗銀アノードの精製によっ
て、銅分濃度が25 g/lに上昇した水溶液でもある
。This electrolyte contained free nitric acid 4 g/l, copper content 609/l,
It is an aqueous solution with a pH of 1.2, and the copper concentration has increased to 25 g/l by purifying the crude silver anode.
なお、粗銀アノード中の不純物のうち、溶解性の主なも
のは銅であり、JISによれば、電気鎖中の銅分は30
pI)m以下に制限される。Of the impurities in the crude silver anode, the main soluble one is copper, and according to JIS, the copper content in the electrical chain is 30
pI) m or less.
このため、銀電解工場の多くは、電解をバアチ的に行な
い、電解前に予め液組成を分析し、アノードを電解し尽
す迄の期間に、銅分が制限濃度(30〜20Vl)を越
えないように、電解液の一部を更新し、低い銅分濃度(
1(1,#前後)に保持している。For this reason, most silver electrolytic factories carry out electrolysis in a vacuum manner, analyze the liquid composition in advance before electrolysis, and ensure that the copper content does not exceed the limit concentration (30 to 20 Vl) until the anode is completely electrolyzed. Renew some of the electrolyte and reduce the copper concentration (
It is held at 1 (around 1, #).
○シェーカテストによるカチオン交換性抽出剤の抽出性
能試験:
下記三種の抽出剤をそれぞれ有機溶媒で稀釈溶解せしめ
、その溶液の100CCと、前記溶解液5Qccとを密
栓フラスコに入れ、15分間振盪し、しばらく静置して
から、上層の有機相を分析した。○Extraction performance test of cation-exchangeable extractants by shaker test: The following three types of extractants were each diluted and dissolved in an organic solvent, and 100 cc of the solution and 5 Q cc of the above solution were placed in a sealed flask and shaken for 15 minutes. After standing for a while, the upper organic phase was analyzed.
その結果を下に示す。The results are shown below.
(イ)抽出剤にLIX65N(ゼネラルミルズケミカル
ズ社商品名、4−ノニル−β−ヒドロキシベンゾフェノ
ンオキシムを主成分とする)を選び、その38%ケロシ
ン溶液を使用した場合、分離した有機相中の銅分は4.
7g/l、銅分は0.05g/lであった。(b) When LIX65N (trade name of General Mills Chemicals Co., Ltd., whose main component is 4-nonyl-β-hydroxybenzophenone oxime) is selected as the extractant and a 38% kerosene solution is used, copper in the separated organic phase Minutes are 4.
The copper content was 7 g/l, and the copper content was 0.05 g/l.
(ロ)抽出剤にSME 529 (シェルケミカルズ社
商品名、5−を−ノニル−2−ヒドロキシフェノールメ
チルケトキシムを主成分とする)を選び、その25%ケ
ロシン溶液を使用した場合、分離した有機相中の銅分は
3.7g/l銀分は0、05 g/13以下であった。(b) When SME 529 (trade name, Shell Chemicals Co., Ltd., whose main component is 5-nonyl-2-hydroxyphenol methyl ketoxime) is selected as the extractant and a 25% kerosene solution is used, the separated organic The copper content in the phase was 3.7 g/l, and the silver content was less than 0.05 g/13.
(/ラ 抽出剤に7−ドデシル−8−ヒドロキシキノ
リンを選び、その15%イソデカノールーキシレン混合
溶液(インデカノール7.5%)を使用した場合、分離
した有機相中の銅分は2.7 El/IJ、銅分は0.
059/13以下であった。(/ra) When 7-dodecyl-8-hydroxyquinoline is selected as the extractant and a 15% isodecanol-xylene mixed solution (indecanol 7.5%) is used, the copper content in the separated organic phase is 2. 7 El/IJ, copper content is 0.
It was below 059/13.
○溶媒抽出および金属回収:
前記の供給含銀水溶液を流量3 Q CC/ minで
3段向流ミキサーセトラーの第1段目に、定量ポンプで
供給した。○Solvent extraction and metal recovery: The above-mentioned supplied silver-containing aqueous solution was supplied to the first stage of a three-stage countercurrent mixer-settler using a metering pump at a flow rate of 3 Q CC/min.
また、抽出剤LIM64N(ゼ゛ネラルミルズケミカル
社商品名、ベンゾフェノンオキシムを主成分)の35%
ケロシン溶液を、同上のミキサーセトラの第三段目に定
量ポンプで30 CC/min供給した。In addition, 35% of the extractant LIM64N (trade name of General Mills Chemical Company, main component is benzophenone oxime)
The kerosene solution was supplied to the third stage of the mixer settler described above at a rate of 30 CC/min using a metering pump.
滞留時間は各々2分、15分とした。The residence times were 2 minutes and 15 minutes, respectively.
第三段セトラーから得られる水溶液を分析したところ、
銅分は抽出前と変りがないが、銅分は1g、 8 g/
11に低下した。Analysis of the aqueous solution obtained from the third stage settler revealed that
The copper content is the same as before extraction, but the copper content is 1g, 8g/
It dropped to 11.
これは直接、銀電解槽に戻せる濃度である。This is a concentration that can be returned directly to the silver electrolyzer.
他方、銅分を抽出したケロシン溶液は2段ミキサーセト
ラーに導入され、逆抽出に供される。On the other hand, the kerosene solution from which the copper content has been extracted is introduced into a two-stage mixer settler and subjected to back extraction.
逆抽出用酸液としては、銅電解工場に隣接する銅電解工
場の電解液(H2804215!/Lcu45.F/d
)を使用し、上記ケロシン溶液と同量を2段ミキサーセ
トラーに供給した。The acid solution for back extraction was an electrolytic solution (H2804215!/Lcu45.F/d) from a copper electrolytic factory adjacent to the copper electrolytic factory.
), and the same amount as the above kerosene solution was supplied to the two-stage mixer settler.
その結果、ケロシン溶液中の銅分は殆ど酸液側に逆抽出
せられ、ケロシン溶液中の銅分が1νl以下に減少した
ので、このケロシン溶液を前記の3段ミキサーセトラー
に供給し、抽出用に循環使用した。As a result, most of the copper content in the kerosene solution was back-extracted to the acid solution side, and the copper content in the kerosene solution was reduced to 1 νl or less, so this kerosene solution was supplied to the three-stage mixer settler and used for extraction. It was used repeatedly.
なお、逆抽出後の酸液は銅分が若干増加しただけであり
、銅電解工場に戻すことができる。Note that the acid solution after back extraction has only a slight increase in copper content and can be returned to the copper electrolysis factory.
実施例 2
0供試含銀水溶液ニ
プリント回路製作工場排水を苛性ソーダで中和して得ら
れるスラッジは、水分85%であるが、乾鉱量ベースに
換算して、銅分22%、銅分1.8%、全労0.05%
を含有する。Example 2 0 The sludge obtained by neutralizing the wastewater from a silver-containing aqueous solution Niprint circuit manufacturing factory with caustic soda has a water content of 85%, but on a dry ore basis, the copper content is 22%. 1.8%, Zenro 0.05%
Contains.
このスラッジを、炭酸アンモニウムとアンモニア水で調
整した全アンモニア分65 j9/11の水溶液に、パ
ルプ濃度が約8%(乾鉱ベース)となるよう投入し、6
時間攪拌したのち濾過した。This sludge was added to an aqueous solution with a total ammonia content of 65 J9/11 adjusted with ammonium carbonate and aqueous ammonia so that the pulp concentration was approximately 8% (based on dry ore).
After stirring for an hour, it was filtered.
このようにすると、スラッジ中の銅、銀は溶解するが、
金は不溶残渣中に残存する。In this way, the copper and silver in the sludge will dissolve, but
The gold remains in the insoluble residue.
この溶液の組成は銅17.29/11、銀1.4νl、
pH11,5であった。The composition of this solution was copper 17.29/11, silver 1.4νl,
The pH was 11.5.
○溶媒抽出および金属回収:
上記のろ液を、実施例1と同じ3段向流ミキサーセトラ
ーに20 CC/minの割合で供給するとともに、抽
出剤LIX64N前出の35%ケロシン溶液を4 Q
CC/minで供給し、溶媒抽出を行なった。○Solvent extraction and metal recovery: The above filtrate was fed at a rate of 20 CC/min to the same three-stage countercurrent mixer settler as in Example 1, and the above 35% kerosene solution of extractant LIX64N was added to the same three-stage countercurrent mixer settler as in Example 1.
The solvent was extracted at CC/min.
この抽出操作でアンモニア性水溶液から銅分が除去され
たので、再びこの水溶液を前記スラッジの溶解に使用し
、以後、同様の溶媒抽出に利用した。Since the copper content was removed from the ammoniacal aqueous solution by this extraction operation, this aqueous solution was used again to dissolve the sludge, and thereafter used in the same solvent extraction.
この操作を数回繰り返し、溶液抽出後、液中の銅分濃度
が77!/1以上に上昇したとき、このアンモニア性水
溶液にヒドラジンを添加して還元処理し、銀粉を得た。Repeat this operation several times, and after extracting the solution, the copper concentration in the solution is 77! When the temperature rose to 1/1 or more, hydrazine was added to this ammoniacal aqueous solution for reduction treatment to obtain silver powder.
上記のアンモニア性水溶液中の銅分濃度は20ppII
Iと微量であり、上記銀粉の銅汚染は1119m以下(
検出不能)で、高品位が実証された。The copper concentration in the above ammoniacal aqueous solution is 20ppII
The copper contamination of the above silver powder is 1119m or less (
(undetectable), demonstrating high quality.
一方、前記溶媒抽出によって、銅分を抽出したケロシン
溶液は実施例1と同じ2段ミキサーセトラーに供給し、
同時に濃度150 i/lの硫酸水溶液を2 Q CC
/minの割合で供給して、逆抽出を行なった。On the other hand, the kerosene solution from which the copper content was extracted by the solvent extraction was supplied to the same two-stage mixer settler as in Example 1,
At the same time, add 2 Q CC of sulfuric acid aqueous solution with a concentration of 150 i/l.
Back extraction was performed by supplying at a rate of /min.
この逆抽出によって銅分を失なったケロシン溶液は、前
記溶媒抽出工程に循環使用した。The kerosene solution that had lost its copper content through this back extraction was recycled and used in the solvent extraction step.
また、銅分を抽出した硫酸水溶液も循環使用し、銅分濃
度が4.09/l!まで上昇したとき、鉛をアノード、
銅板をカソードとする電解槽に電解液として供給し、電
解を行なって、高品位の電析銅を回収した。In addition, the sulfuric acid aqueous solution from which the copper was extracted is reused, and the copper concentration is 4.09/L! When the temperature rises to
The electrolyte was supplied as an electrolytic solution to an electrolytic cell with a copper plate as a cathode, electrolysis was performed, and high-grade electrodeposited copper was recovered.
以上で明らかなように、この発明は、銅、ニッケル、コ
バルト、亜鉛から選ばれる少なくとも一種の卑金属と、
銀が共存する水溶液に対し、カチオンに対し選択的交換
性のある抽出剤を用いて溶媒抽出を行ない、含銀水溶液
を精製する方法を提供するもので、従来とは異って精製
された含銀水溶液からより直接的に銀を回収し、かつ前
記卑金属もより直接的に回収することができるから、回
収効率の向上、回収コストの低減化に貢献することがで
きる。As is clear from the above, the present invention includes at least one base metal selected from copper, nickel, cobalt, and zinc;
This method provides a method for purifying a silver-containing aqueous solution by performing solvent extraction on an aqueous solution in which silver coexists using an extractant that selectively exchanges cations. Since silver can be recovered more directly from the silver aqueous solution and the base metal can also be recovered more directly, it can contribute to improving recovery efficiency and reducing recovery costs.
そしてとくにこの発明を粗銀アノードの電解精製に適用
すれば、短かい工程で短時間に高品位の銀を回収するこ
とができ、金利負担の軽減がはかれ、不安定な銀市況に
対しより柔軟性をもって対処することができ、経済的メ
リットの大きさは測り知れないものがある。In particular, if this invention is applied to the electrolytic refining of crude silver anodes, high-grade silver can be recovered in a short period of time through a short process, reducing interest costs and making it easier to cope with unstable silver market conditions. It can be dealt with flexibly, and the economic benefits are immeasurable.
Claims (1)
一種の卑金属と銀が溶存する水溶液を、pH0,2〜1
3.0の範囲で、カチオンに対し選択的交換性のある抽
出剤を含む対水不混和性有機溶媒と混合し、前記卑金属
を有機溶媒相に抽出分離せしめ、しかるのち卑金属を含
む有機溶媒を卑金属回収工程に供給するとともに、銀を
含む水溶液を銀回収工程に供給することを特徴とする含
銀水溶液の銀回収方法。1 An aqueous solution in which at least one base metal among copper, nickel, cobalt, and zinc and silver are dissolved is heated to a pH of 0.2 to 1.
3.0 with a water-immiscible organic solvent containing an extractant having selective exchange properties for cations, the base metal is extracted and separated into the organic solvent phase, and then the base metal-containing organic solvent is 1. A method for recovering silver from a silver-containing aqueous solution, which comprises supplying a silver-containing aqueous solution to a base metal recovery step and supplying an aqueous solution containing silver to a silver recovery step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12563376A JPS59451B2 (en) | 1976-10-20 | 1976-10-20 | Silver recovery method from silver-containing aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12563376A JPS59451B2 (en) | 1976-10-20 | 1976-10-20 | Silver recovery method from silver-containing aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5350055A JPS5350055A (en) | 1978-05-08 |
JPS59451B2 true JPS59451B2 (en) | 1984-01-06 |
Family
ID=14914863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12563376A Expired JPS59451B2 (en) | 1976-10-20 | 1976-10-20 | Silver recovery method from silver-containing aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59451B2 (en) |
-
1976
- 1976-10-20 JP JP12563376A patent/JPS59451B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5350055A (en) | 1978-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4288304A (en) | Hydrometallurgical process for treatment of sulphur ores | |
Kumbasar | Selective extraction and concentration of cobalt from acidic leach solution containing cobalt and nickel through emulsion liquid membrane using PC-88A as extractant | |
Agrawal et al. | Extractive separation of copper and nickel from copper bleed stream by solvent extraction route | |
JPS61159538A (en) | Recovery of zinc | |
Chauhan et al. | A review on solvent extraction of nickel | |
US3923615A (en) | Winning of metal values from ore utilizing recycled acid leaching agent | |
PL162384B1 (en) | Method for solvent abstraction in copper recovery | |
JP3828544B2 (en) | Gallium recovery method | |
CN113337723A (en) | Method for separating and extracting silver, palladium, copper and germanium from silver separating slag | |
JP2020105587A (en) | Treatment method of acidic solution containing noble metal, selenium and tellurium | |
AU707506B2 (en) | Gas sparging ammonia from organic extractant | |
US5260039A (en) | Process for the two-phase extraction of metal ions from phases containing solid metal oxides, agents and the use thereof | |
RU2339713C1 (en) | Method for copper extraction from sulfuric solution | |
US6599414B1 (en) | Solvent extraction processes for metal recovery | |
US5284633A (en) | Solvent extraction of precious metals with hydroxyquinoline and stripping with acidified thiourea | |
Flett | Solvent extraction in scrap and waste processing | |
US8298510B2 (en) | Process for improving phase separations in solvent extraction circuits | |
Bratt et al. | Production of lead via ammoniacal ammonium sulfate leaching | |
AU2002330990A1 (en) | Improvements in solvent extraction processes for metal recovery | |
Fletcher et al. | Combining sulfate electrowinning with chloride leaching | |
US4314976A (en) | Purification of nickel sulfate | |
JP3661911B2 (en) | Method for producing high purity cobalt solution | |
JPS59451B2 (en) | Silver recovery method from silver-containing aqueous solution | |
Gotfryd et al. | The selective recovery of cadmium (II) from sulfate solutions by a counter-current extraction–stripping process using a mixture of diisopropylsalicylic acid and Cyanex® 471X | |
US3930974A (en) | Two stage selective leaching of metal values from ocean floor nodule ore |