JPS5945180B2 - Manufacturing method for anodes for non-aqueous batteries - Google Patents

Manufacturing method for anodes for non-aqueous batteries

Info

Publication number
JPS5945180B2
JPS5945180B2 JP54151636A JP15163679A JPS5945180B2 JP S5945180 B2 JPS5945180 B2 JP S5945180B2 JP 54151636 A JP54151636 A JP 54151636A JP 15163679 A JP15163679 A JP 15163679A JP S5945180 B2 JPS5945180 B2 JP S5945180B2
Authority
JP
Japan
Prior art keywords
furnace
anode
metal
mno2
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54151636A
Other languages
Japanese (ja)
Other versions
JPS5676166A (en
Inventor
敦 西野
昭彦 吉田
孝志 飯島
信夫 江田
博通 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54151636A priority Critical patent/JPS5945180B2/en
Publication of JPS5676166A publication Critical patent/JPS5676166A/en
Publication of JPS5945180B2 publication Critical patent/JPS5945180B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Description

【発明の詳細な説明】 本発明は、リチウム、ナトリウム、カルシウムなどの軽
金属を負極活物質とし、有機電解質などを用いる非水電
池用陽極の製造法に関するもので、高率放電に優れると
ともに保存性、量産性などに優れた非水電池を与える陽
極を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an anode for a nonaqueous battery using a light metal such as lithium, sodium, or calcium as a negative electrode active material and an organic electrolyte, which has excellent high rate discharge and storage stability. The present invention provides an anode that provides a non-aqueous battery with excellent mass productivity.

本発明の適用できる電池系は、前記のよう麹軽金属を負
極活物質とし、電解質として、γ−ブチロラクトン、テ
トラヒドロフラン、プロピレンカーボネート、ジメトキ
シエタンなどの単独または混合溶媒に過塩素酸リチウム
、ホウフッ化リチウムなどを溶解したいわゆる有機電解
質、またヨウ化銀、硝酸銀などの固体電解質を用いる電
池である。
The battery system to which the present invention can be applied uses koji light metal as a negative electrode active material as described above, and uses γ-butyrolactone, tetrahydrofuran, propylene carbonate, dimethoxyethane, etc. alone or in a mixed solvent as an electrolyte, and lithium perchlorate, lithium borofluoride, etc. as an electrolyte. This battery uses a so-called organic electrolyte in which silver iodide, silver nitrate, etc. are dissolved, or a solid electrolyte such as silver iodide or silver nitrate.

また陽極活物質は、マンガン、ルテニウム、銅、鉛、ニ
ッケル、銀などの熱分解性塩を熱分解して得られる金属
酸化物である。以下にはこれらのなかで最も代表的であ
るマンガン酸化物について説明する。従来、有機電解質
電池の陽極活物質二酸化マンガンには、電解採取された
γ−MnO2を25j伊〜450℃で熱処理してβ−M
nO2またはγ−′厚相MnO2としたものが用いられ
ている。
Further, the positive electrode active material is a metal oxide obtained by thermally decomposing a thermally decomposable salt such as manganese, ruthenium, copper, lead, nickel, and silver. Manganese oxide, which is the most typical of these, will be explained below. Conventionally, manganese dioxide, an anode active material for organic electrolyte batteries, is produced by heat-treating electrolytically collected γ-MnO2 at 250°C to 450°C to produce β-MnO2.
nO2 or γ-' thick phase MnO2 is used.

電解採取されたγ−MnO2は3〜4重量“の付着水、
結晶水を含有するので、脱水のために前記のような熱処
理を行なうのである。しかし、このような熱処理をして
も、この種のMnO2は吸湿性に富むため、相対湿度1
〜3%に制御された乾燥室の中でも短時間に空気中の水
分を吸着し、0.8〜2.0重量%の水分を含有するこ
ととなる。このようにしてMnO2が含有する微量の水
分は、電池の保存寿命に悪影響を及ぼす。すなわち、水
分がリチウム負極と反応したり、有機電解質を分解させ
ることとなり、この傾向は特に高温保存時に顕著【奉一
、電池の内部抵抗の増大、放電容量の減少、保口寿命の
劣化等の主な原因となつている。この熱処理二酸化マン
ガンの吸湿防止策として、γ−βMnO,と黒鉛と結着
剤の混合合剤を200〜350℃で再加熱する方法が提
案されている。
The electrowinning γ-MnO2 has 3 to 4 weights of attached water,
Since it contains water of crystallization, it is subjected to the heat treatment described above for dehydration. However, even with such heat treatment, this type of MnO2 is highly hygroscopic, so the relative humidity is 1.
Even in a drying room controlled to ~3%, moisture in the air is adsorbed in a short time, resulting in a moisture content of 0.8 to 2.0% by weight. Thus, the trace amount of water contained in MnO2 has an adverse effect on the shelf life of the battery. In other words, water reacts with the lithium negative electrode and decomposes the organic electrolyte, and this tendency is particularly noticeable during high-temperature storage. This is the main cause. As a measure to prevent the heat-treated manganese dioxide from absorbing moisture, a method has been proposed in which a mixture of γ-βMnO, graphite, and a binder is reheated at 200 to 350°C.

しかし、MnO2は優れた酸化剤であるととも酸化触媒
であることを考慮すると、この方法はきわめて危険であ
る。また、活性炭、黒鉛などの表面に硝酸マンガンを含
浸し、高温で熱分解して二酸化マンガンを生成させる方
法も提案されているが、この方法も前記と同様に炭素質
とマンガン酸化物とを高温で接触させることになり、工
業的に利用するのはきわめて危険であると考えられる。
However, considering that MnO2 is an excellent oxidizing agent and oxidation catalyst, this method is extremely dangerous. In addition, a method has been proposed in which the surface of activated carbon, graphite, etc. is impregnated with manganese nitrate and thermally decomposed at high temperature to produce manganese dioxide. It is considered extremely dangerous to use it industrially.

本発明は、以上の点に鑑み、量産に適し、吸水性の低い
非水電池用陽極を提供するものである。
In view of the above points, the present invention provides an anode for non-aqueous batteries that is suitable for mass production and has low water absorption.

すなわち、本発明は、陽極集電体となる金属基体上に付
着した金属塩を、半密閉炉内において炉壁の輻射伝熱に
より熱分解して陽極活物質となる金属酸化物を生成させ
ることを特徴とする。以下、本発明の詳細を説明する。
That is, the present invention involves thermally decomposing a metal salt attached to a metal substrate that becomes an anode current collector in a semi-closed furnace by radiant heat transfer from the furnace wall to generate a metal oxide that becomes an anode active material. It is characterized by The details of the present invention will be explained below.

本発明の適用できる陽極活物質は、マンガン、ルテニウ
ム、銅、鉛、ニツケルなどの酸化物で、熱分解性塩とし
ては、これら金属の硝酸塩,酢酸塩、塩酸塩が適当であ
り、なかでも硝酸塩が最もよい。
The anode active materials to which the present invention can be applied are oxides of manganese, ruthenium, copper, lead, nickel, etc., and suitable thermally decomposable salts include nitrates, acetates, and hydrochlorides of these metals, with nitrates being particularly suitable. is the best.

ルテニウムは、塩化物として市販される場合が多いので
、硝酸塩にアニオン交換して用いるのが好ましい。また
、硝酸イオン、アンモニアイオン、水からなる複塩の形
で用いることもよい。集電体に用いる金属基体には、従
来の集電体に用いられているニツケル、クロム、ステン
レス、鋼、銀などを用いることができる。しかし、本発
明ではアルミニウム、タンタル、チタン、ハフニウム、
ニオブのような弁作用金属(これらの金属を主とする合
金)を用いるのが好ましい。これらの中でも特にアルミ
ニウム、チタン、タンタル、ニォプが経済的で、効果が
ある。この金属基体の形状は、目的の電池の形状に応じ
て、デイスク伏、シリンダー状、棒状など適宜選択する
ことができる。
Since ruthenium is often commercially available as a chloride, it is preferable to use it after anion exchange with a nitrate. It may also be used in the form of a double salt consisting of nitrate ions, ammonia ions, and water. As the metal substrate used for the current collector, nickel, chromium, stainless steel, steel, silver, etc. used in conventional current collectors can be used. However, in the present invention, aluminum, tantalum, titanium, hafnium,
Preferably, valve metals such as niobium (alloys based on these metals) are used. Among these, aluminum, titanium, tantalum, and niobium are particularly economical and effective. The shape of this metal base can be appropriately selected, such as a disc-shaped, cylindrical, or rod-like shape, depending on the shape of the intended battery.

この場合、前記金属の粉末をリード片とともに成形し、
焼結して多好質のものとするのがよい。その多孔度は4
0〜90%が好ましく、50〜80%が最も好ましい。
なおアルミニウムは粉末が得難く、また焼結が困難であ
るので、アルミニウムやその合金を用いjる場合は、エ
ツチングにより多孔質とするのがよい。
In this case, the metal powder is molded together with a lead piece,
It is preferable to sinter it to make it polymorphic. Its porosity is 4
0-90% is preferred, and 50-80% is most preferred.
Note that aluminum is difficult to obtain in powder form and difficult to sinter, so when aluminum or its alloys are used, it is best to make them porous by etching.

エツチング比率は5〜50倍が適当で、特に10〜30
倍が機械的強度、量産性、電池性能上から好ましい。エ
ツチング液は、基体により選択されるが、アルミニウム
の場合、10〜20t/tの塩化ナトリウムおよび5〜
20t/tのホウ酸アンモニウムを含む水溶液を30〜
50℃の温度で用いるのが好ましい。本発明は、陽極活
物質を金属基体の表面に直接熱分解により形成すること
を特徴とし、金属基体と活物質との接合強度を強めると
ともに両者の接触抵抗を小さくするには、金属基体とし
て前記のような弁作用金属を用い、その表面に陽極化成
法により誘電体被膜を形成しておくのが好ましい。
The appropriate etching ratio is 5 to 50 times, especially 10 to 30 times.
It is preferable to double the amount in terms of mechanical strength, mass productivity, and battery performance. The etching solution is selected depending on the substrate, but in the case of aluminum, 10-20t/t of sodium chloride and 5-20t/t of sodium chloride
An aqueous solution containing 20t/t of ammonium borate
Preferably it is used at a temperature of 50°C. The present invention is characterized in that the anode active material is formed directly on the surface of the metal substrate by thermal decomposition. It is preferable to use a valve metal such as the following, and to form a dielectric film on the surface thereof by an anodization method.

この陽極化成皮膜は、熱分解時に基体表面が化学的に劣
化するのを防止するとともに、電池の高温保存時に局部
電池の形成による自己放電を抑制する働きをする。弁作
用金属の表面に化成皮膜を形成する方法は、基体の調整
方法に応じて選択される。
This anode chemical conversion film serves to prevent the substrate surface from being chemically degraded during thermal decomposition, and also to suppress self-discharge due to the formation of local cells when the battery is stored at high temperatures. The method for forming a chemical conversion film on the surface of the valve metal is selected depending on the method for preparing the substrate.

アルミニウム基体の場合は、ホウ酸アンモニウムの5〜
10f7/tの水溶液が好ましく、タンタルやチタンの
場合はリン酸や硝酸の5〜10f/t溶液が好ましい。
基体表面に化成皮膜を形成すると、アルミニウム基体の
場合、基地側から順次n層、i層、p層が形成され、こ
の皮膜は第1図のような電気特性を有し、化成皮膜の電
圧に応じて、陽分極では電流は流れないが、陰分極では
自由に電流を流す弁作用を示すので、電池系の陽極を構
成することができる。
For aluminum substrates, ammonium borate 5-
An aqueous solution of 10 f7/t is preferred, and in the case of tantalum or titanium, a 5 to 10 f/t solution of phosphoric acid or nitric acid is preferred.
When a chemical conversion film is formed on the surface of a substrate, in the case of an aluminum substrate, an n layer, an i layer, and a p layer are formed in order from the base side. Accordingly, in anode polarization, no current flows, but in cathodic polarization, it exhibits a valve action that allows current to flow freely, so it can be used as an anode for a battery system.

一方、ニツケル、クロム、銀のような金属も集電体とし
て用いることは可能であるが、後述のような熱分解性塩
溶液の含浸一熱分解の過程で基体表面に酸化物を形成し
、活物質の付着強度を弱めたり、接触強度を低下させた
りし、局部電池を形成したり、電池の内部抵抗を増大さ
せたりする不都合を生じる。
On the other hand, metals such as nickel, chromium, and silver can also be used as current collectors; This results in disadvantages such as weakening the adhesion strength of the active material, lowering the contact strength, forming local batteries, and increasing the internal resistance of the battery.

従つて、金属基体としては弁作用金属の多孔質体を用い
るのが好ましい。活物質を熱分解により金属基体上に生
成させるには、基体の形状、大きさ、多孔度などにより
異なるが、熱分解性塩の含浸一熱分解の工程を2〜10
回繰り返す必要がある。
Therefore, it is preferable to use a porous body of valve metal as the metal substrate. In order to generate an active material on a metal substrate by thermal decomposition, it takes 2 to 10 steps of impregnation with a thermally decomposable salt and thermal decomposition, depending on the shape, size, porosity, etc. of the substrate.
need to be repeated several times.

活物質として二酸化マンガンを例にとれば、基体への硝
酸マンガン溶液の含浸一熱分解一誘電体皮膜の再化成一
硝酸マンガンの含浸一熱分解の工程を繰り返すのがよい
。金属基体に熱分解により活物質を形成させた後、さら
に導電性を改良するために、コロイダル黒鉛のような導
電性材料を含浸し、乾燥後焼付ける。このように、本発
明は、従来の黒鉛粉末と活物質とを混合し、予圧後、成
形する方式とは異なる陽極製造法である。金属基体の表
面に形成される活物質は、その熱分解法により、電気抵
抗、嵩比重などに差が生じる。
Taking manganese dioxide as an example of the active material, it is preferable to repeat the following steps: impregnation of the substrate with a manganese nitrate solution, thermal decomposition, reconversion of the dielectric film, impregnation with manganese mononitrate, and thermal decomposition. After the active material is formed on the metal substrate by pyrolysis, it is impregnated with a conductive material such as colloidal graphite to further improve conductivity, dried and baked. As described above, the present invention is a method for manufacturing an anode that is different from the conventional method of mixing graphite powder and active material, pre-pressing the mixture, and then molding the mixture. The active material formed on the surface of the metal substrate has differences in electrical resistance, bulk specific gravity, etc. depending on its thermal decomposition method.

従来の熱分解炉は、開放型であつて、ヒータにより加熱
した熱風を一方の開口から供給し、他方の排気口から排
気する方法のものが普通である。
Conventional pyrolysis furnaces are usually open type, with hot air heated by a heater being supplied through one opening and exhausted through the other exhaust port.

これは炉内の温度分布を均一にするとともに、熱分解時
に発生する水蒸気および酸化窒素のような熱分解生成ガ
スをできるだけ早く炉外に逸散させるためである。しか
し、このような炉を用いて得られる金属酸化物、例えば
硝酸マンガンを熱分解して得られるβ−MnO2は、第
2図に示す電子顕二微鏡写真(倍率1000)のように
、多孔質であり、γ−MnO2より吸着水分量は少ない
が、平衡吸着水分量も多く、電気抵抗も大きく、嵩比重
も小さい。また、炉の操業性を考慮しても、エネルギー
コスト、設備コストが大である。一方、本発明では、炉
内で熱風の強制循環を行なわない半密閉炉を用い、しか
も従来の炉が炉の主要部に断熱材料を用いるのに3対し
、熱の良導体であるアルミニウム、アルミニウム合金、
ステンレス鋼、銅、鋳物などを用い、炉の輻射熱を利用
.して熱分解するものである。
This is to make the temperature distribution inside the furnace uniform and to dissipate gases produced by thermal decomposition such as water vapor and nitrogen oxides out of the furnace as quickly as possible during thermal decomposition. However, metal oxides obtained using such a furnace, such as β-MnO2 obtained by thermally decomposing manganese nitrate, are porous, as shown in the electron micrograph shown in Figure 2 (magnification: 1000). Although it has a lower adsorbed water content than γ-MnO2, it also has a large equilibrium adsorbed water content, high electrical resistance, and low bulk specific gravity. Moreover, even when considering the operability of the furnace, the energy cost and equipment cost are large. On the other hand, the present invention uses a semi-closed furnace that does not perform forced circulation of hot air inside the furnace, and unlike conventional furnaces that use heat insulating materials for the main parts of the furnace, aluminum and aluminum alloys, which are good conductors of heat, are used. ,
It uses stainless steel, copper, cast metal, etc., and utilizes the radiant heat of the furnace. It decomposes thermally.

以下に、本発明に用いるに適した半密閉炉の構成例を示
す。
An example of the structure of a semi-closed furnace suitable for use in the present invention is shown below.

第3図において、1は炉本体、2はその蓋で、小孔3を
有する。4は温度制御用センサー、5はヒータ6を備え
た加熱装置、7は活物.質を形成する金属基体8を保持
する保持棒である。
In FIG. 3, 1 is the furnace body, 2 is its lid, and has a small hole 3. 4 is a temperature control sensor, 5 is a heating device equipped with a heater 6, and 7 is a live material. This is a holding rod that holds the metal base 8 that forms the structure.

第4図の炉は、蓋2の端部と本体1との間に空隙915
形成した例である。第5,6図は蓋2の両矯を―歯伏と
して本体との間に空隙10,10が形成されるようにし
た例である。なお、この例のようにヒータ6を有底の本
体1および蓋に組込んでもよい。第7図は第3図のよう
な構造の半密閉炉を従来の熱風循環式の炉内にセツトし
た例を示す′,11は排気ダンパー12は棚板でこの上
に半密閉炉が載置してある。
The furnace of FIG. 4 has a gap 915 between the end of the lid 2 and the main body 1.
This is an example of the formation. FIGS. 5 and 6 show an example in which both sides of the lid 2 are set so that gaps 10 and 10 are formed between the lid 2 and the main body. Note that, as in this example, the heater 6 may be incorporated into the bottomed main body 1 and the lid. Figure 7 shows an example in which a semi-closed furnace with the structure shown in Figure 3 is set inside a conventional hot air circulation type furnace. It has been done.

13は断熱材からなる炉本体、14は温度計、15は分
散板、16は循環用フアン、17ぱフアンモータ、18
は冷却用フアン、19はヒータ、20は温度調節用感熱
部、21はカバー、22は制御機器室である。
13 is a furnace body made of a heat insulating material, 14 is a thermometer, 15 is a distribution plate, 16 is a circulation fan, 17 is a fan motor, 18
19 is a cooling fan, 19 is a heater, 20 is a heat sensitive part for temperature adjustment, 21 is a cover, and 22 is a control equipment room.

上記の熱分解炉は、いずれも小孔3あるいは間隙9,1
0を有する半密閉型輻射炉であつて、炉内では特に強制
的に熱風を循環したり、攪拌することなく、熱分解生成
ガスによる微圧が加わるようにしている。
The above pyrolysis furnaces all have small holes 3 or gaps 9 and 1.
It is a semi-closed type radiant furnace having a temperature of 0.0, and a slight pressure is applied by the gas produced by pyrolysis without forced circulation of hot air or stirring inside the furnace.

熱分解に必要な熱源は、炉本体を直接加熱するか、炉本
体の所定の温度雰囲気内に置くかして、確保するのがよ
い。
The heat source necessary for pyrolysis is preferably secured by directly heating the furnace body or by placing it in an atmosphere at a predetermined temperature of the furnace body.

炉本体は、金属または合金がよいが、加工精度が得られ
るなら、他の耐熱性材料でもよい。
The furnace body is preferably made of metal or an alloy, but may be made of other heat-resistant materials as long as machining accuracy can be achieved.

熱の移送拡散をよくするには、熱の良導体の方がよく、
炉本体は熱容量の大きい方がより安定した性能が得られ
る。炉本体を完全に密閉すると、熱分解により生成する
ガスのため内部が加圧され、熱分解性塩が飛散し、金属
基体上に形成される酸化物の量が減少し、また緻密な質
のよ〜酸化膜が得られなくなる。
In order to improve the transfer and diffusion of heat, it is better to be a good conductor of heat.
The larger the heat capacity of the furnace body, the more stable performance can be obtained. When the furnace body is completely sealed, the interior is pressurized due to the gas generated by pyrolysis, which scatters pyrolytic salts, reduces the amount of oxides formed on the metal substrate, and also reduces the amount of oxides formed on the metal substrate. Yo~ You won't be able to get an oxide film.

また、逆に蓋で密閉しない開方伏態にした場合も、緻密
な酸化物が得られない。一また炉内に熱風を循環したり
攪拌するとJ熱分解生成する酸化物は多孔質基体の内部
に十分充填され六表面層にのみ付着した凹凸伏の多孔度
0大なる酸化物となる。一方、前記のような半密閉炉を
用いると、炉内は、熱分解に伴い多孔質基体の表面から
発生する分解ガスにより、常圧(大気圧)よりbずかO
微圧が加わり、こうして自己分解ガスによる微圧のもと
で熱分解が進行するので、次のような効果が得られる。
なお、前記の微圧は5〜100tvnH20が適当であ
る。1多孔質基体の内部にマンガン酸化物を形成する捺
J濃厚硝酸マンガン溶液を使用することができ、熱分解
工程の繰返し回数を低減できる。
Conversely, if the container is placed in an open state without being sealed with a lid, a dense oxide cannot be obtained. When hot air is circulated or stirred in the furnace, the oxide produced by thermal decomposition is sufficiently filled inside the porous substrate and becomes an uneven oxide with zero porosity that adheres only to the surface layer. On the other hand, when a semi-closed furnace as described above is used, the inside of the furnace has a temperature slightly below normal pressure (atmospheric pressure) due to decomposition gas generated from the surface of the porous substrate during thermal decomposition.
A slight pressure is applied, and thermal decomposition proceeds under the slight pressure caused by the autolytic gas, resulting in the following effects.
Note that the above-mentioned micropressure is suitably 5 to 100 tvnH20. 1. A concentrated manganese nitrate solution that forms manganese oxide inside the porous substrate can be used, and the number of repetitions of the pyrolysis process can be reduced.

(2)熱分解により生成される酸化物は、嵩比重が大で
ある。二酸化マンガンの場合、多孔質基体の表面はあた
かも電解付着をしたように、平滑jで緻密1付着伏態を
示す。第8図は、硝酸マンガンを熱分解して得た電子顕
微鏡写真(倍率1000)を示すものである。このよう
にして得られるMnO2は、嵩比重が従来の強制循環式
の炉で得られるものの2〜3倍であり、色も従来の黒色
に対し銀灰色の金属のような光沢を示す。
(2) Oxides produced by thermal decomposition have a large bulk specific gravity. In the case of manganese dioxide, the surface of the porous substrate is smooth and exhibits a dense adhesion state, as if it had been electrolytically deposited. FIG. 8 shows an electron micrograph (magnification: 1000) obtained by thermally decomposing manganese nitrate. The MnO2 obtained in this manner has a bulk specific gravity two to three times that of that obtained in a conventional forced circulation furnace, and exhibits a silver-gray metallic luster in color, compared to the conventional black.

これは、前記の微圧の下での輻射伝導で熱分解を行なう
ため、核沸騰による飛散が妨げられ、多孔質基体の内部
までMnO2が緻密に形成されることによるものと思わ
れる。第8図に示すMnO2の各粒子の大きさは2〜8
μmであるが、この大きさは熱分解の条件により決定さ
れる。
This is thought to be due to the fact that thermal decomposition is carried out by radiation conduction under the above-mentioned micropressure, so scattering due to nucleate boiling is prevented, and MnO2 is densely formed even inside the porous substrate. The size of each particle of MnO2 shown in Fig. 8 is 2 to 8.
The size is determined by the thermal decomposition conditions.

好ましい粒径は0.1〜50ttmである。(3)得ら
れる二酸化マンガンは、電気抵抗が0.01〜1ΩCm
と電解二酸化マンガンを熱処理したγ−β混相のものよ
り小さく、熱処理後の吸着水分量もγ一βMnO2の約
に以下である。
The preferred particle size is 0.1 to 50 ttm. (3) The obtained manganese dioxide has an electrical resistance of 0.01 to 1 ΩCm
It is smaller than that of a γ-β mixed phase obtained by heat-treating electrolytic manganese dioxide, and the amount of adsorbed water after heat treatment is about less than that of γ-βMnO2.

また、熱風循環式の炉を用いて熱分解して得たMnO2
と比較しても、電気抵抗、吸着水分量いずれも非水電池
の陽極活物質として優れている。(4)得られる二酸化
マンガンは、吸湿性が極めて低い。この吸湿性は平衡吸
着水分量で比較することができる。ここでは、各種の調
整されたMnO2を常温中に48時間保存した後、示差
熱天秤を用いて250℃まで加熱したときの重量減少量
をもつて表す。従来の電解採取したγ−MnO2は比表
面積30〜60イ/fで、3〜5重量%の水分を含有し
ている。
In addition, MnO2 obtained by thermal decomposition using a hot air circulation furnace
Compared to the above, it is superior in both electrical resistance and adsorbed water content as an anode active material for non-aqueous batteries. (4) The obtained manganese dioxide has extremely low hygroscopicity. This hygroscopicity can be compared based on the equilibrium adsorbed moisture content. Here, the amount of weight loss is expressed when various adjusted MnO2 are stored at room temperature for 48 hours and then heated to 250° C. using a differential thermal balance. Conventional electrowinning γ-MnO2 has a specific surface area of 30 to 60 i/f and contains 3 to 5% by weight of water.

これを熱処理してγ−β混相にすると、比表面積は10
〜20d/fに減少し、平衡吸着水分量は0.9〜1.
2重量%程度となる。一方、マンガン塩、例えば硝酸マ
ンガンを熱分.解して得られるβ−MnO2でも、熱分
解条件により異なるが、平衡吸着水分量は0.6重量%
以上が普通であり、これ以下にすることは困難である。
When this is heat-treated to form a γ-β mixed phase, the specific surface area becomes 10
~20d/f, and the equilibrium adsorbed water content is 0.9~1.
The amount is approximately 2% by weight. On the other hand, heat a manganese salt, such as manganese nitrate. Even in β-MnO2 obtained by decomposition, the equilibrium adsorbed water content is 0.6% by weight, although it varies depending on the thermal decomposition conditions.
The above is normal, and it is difficult to reduce it below this.

しかし、前記の半密閉炉を用いると、平衡吸着水分量0
.5重量%以下、特に0.2重量%以下のMnO,を得
ることができる。このように吸湿性が極めて低いので電
池組立時に水分を吸着することが殆んどなく、電池の保
存性を向上することになる。次に本発明の実施例を説明
する。
However, if the semi-closed furnace described above is used, the equilibrium adsorbed water content is 0.
.. Up to 5% by weight, in particular up to 0.2% by weight, of MnO can be obtained. Since its hygroscopicity is thus extremely low, it hardly absorbs moisture during battery assembly, improving battery storage stability. Next, examples of the present invention will be described.

金属基体として厚さ1.2T1:mの純アルミニウム板
を用い、第9図のように円板状の基体部分23とリード
片部分24とが支持部25と一体になるように打ち抜い
た。
A pure aluminum plate having a thickness of 1.2T1:m was used as the metal base, and was punched out so that the disc-shaped base portion 23 and the lead piece portion 24 were integrated with the support portion 25 as shown in FIG.

これを塩化ナトリウムとホウ酸アンモニウムを含む水溶
液を用いてエツチング率23倍のエツチング処理をし、
水洗、乾燥後、ホウ酸アンモニウム8t/tの水溶液中
で30で陽極化成皮膜を形成した。このアルミニウム基
体に比重1.6の硝酸マンガン溶液を含浸し、半密閉炉
を用いて、350℃で常圧より50TmH20の微圧が
加わつた状態で熱分解する工程を3回繰り返した後、コ
ロイダル黒鉛を含浸し、200℃で乾燥し、リード片2
4の部分で支持部25から切り離し声。
This was etched using an aqueous solution containing sodium chloride and ammonium borate at an etching rate of 23 times.
After washing with water and drying, an anodic chemical conversion film was formed in an aqueous solution containing 8 t/t of ammonium borate at 30°C. This aluminum base was impregnated with a manganese nitrate solution with a specific gravity of 1.6, and the process of thermally decomposing it in a semi-closed furnace at 350°C under a slight pressure of 50 TmH20 above normal pressure was repeated three times, and then the colloidal Impregnated with graphite and dried at 200℃, lead piece 2
There is a sound of separation from the support part 25 at part 4.

こうして得た陽極をAとする。また、比較例として、熱
分解を従来の熱風循環炉で7回繰り返した他は上記と同
様にして得た陽極をBとする。
The anode thus obtained is designated as A. Moreover, as a comparative example, an anode obtained in the same manner as above except that the thermal decomposition was repeated seven times in a conventional hot air circulation furnace was designated as B.

さらに、電解採取したγ−MnO2を空気中において3
00℃で2時間熱処理したもの90重量部にアセチレン
ブラツク6重量部とフツ素樹脂結着剤3重量部を混合し
、成型後250℃で熱処理した陽極をCとする。これら
の陽極を、円板状のリチウム負極、およびプロピレンカ
ーボネートに過塩素酸リチウムを1.0モル/t溶解し
た有機電解質とともに、ドライボツクス中において試験
用セル内へ密封した。
Furthermore, the electrolytically extracted γ-MnO2 was placed in the air for 3
6 parts by weight of acetylene black and 3 parts by weight of a fluororesin binder were mixed with 90 parts by weight of the anode heat-treated at 00°C for 2 hours, and the anode was heat-treated at 250°C after molding. These anodes were sealed in a test cell in a dry box together with a disk-shaped lithium negative electrode and an organic electrolyte in which 1.0 mol/t of lithium perchlorate was dissolved in propylene carbonate.

こうして得た試作直後の電池を20℃において5mA/
C1!iで放電したときの陽極利用率を比較すると第1
0図の如くであつた。また60℃で3力月保存後の同様
の条件での陽極利用率を第11図に示す。次に各陽極に
用いられ声MnO2の平衡吸着水分量と第10〜11図
の結果を比較したものである。以上のように、本発明に
よる陽極は、電気抵抗が小さく、放電利用率に優れる非
水電池を与えるものである。
The battery obtained in this way immediately after the prototype was rated at 5 mA/
C1! Comparing the anode utilization rate when discharging at i, the first
It was as shown in Figure 0. Further, the anode utilization rate under the same conditions after storage at 60° C. for 3 months is shown in FIG. Next, the equilibrium adsorption water content of MnO2 used in each anode is compared with the results shown in FIGS. 10 and 11. As described above, the anode according to the present invention provides a non-aqueous battery with low electrical resistance and excellent discharge utilization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における化成皮膜を形成したア
ルミニウム基体の電気特性を示す図、第2図は熱風循環
炉で熱分解して得たMnO2の電子顕微鏡写真、第3〜
5図は半密閉炉の構成例を示す縦断面略図、第6図は第
5図に示す炉の正面図、第7図は半密閉炉の他の構成例
を示す縦断面略図、第8図は半密閉炉で熱分解して得た
MnO,の電子顕微鏡写真、第9図は実施例に用いた金
属基体群の正面図、第10図および第11図は各種Mn
O2陽極を用いたリチウム電池の利用率の比較を示す。
Fig. 1 is a diagram showing the electrical characteristics of an aluminum substrate on which a chemical conversion film was formed in an example of the present invention, Fig. 2 is an electron micrograph of MnO2 obtained by thermal decomposition in a hot air circulation furnace, and Fig. 3 -
FIG. 5 is a schematic vertical cross-sectional view showing an example of the configuration of a semi-closed furnace, FIG. 6 is a front view of the furnace shown in FIG. 5, FIG. 7 is a schematic vertical cross-sectional view showing another example of the configuration of the semi-closed furnace, and FIG. is an electron micrograph of MnO obtained by thermal decomposition in a semi-closed furnace, FIG. 9 is a front view of the metal substrate group used in the example, and FIGS. 10 and 11 are various MnO
A comparison of the utilization rates of lithium batteries using O2 anodes is shown.

Claims (1)

【特許請求の範囲】 1 金属基体の表面に付着した金属塩を半密閉炉内にお
いて炉壁の輻射伝熱により熱分解して金属酸化物よりな
る陽極活物質を生成する工程を有することを特徴とする
非水電池用陽極の製造法。 2 前記金属が弁作用金属からなる特許請求の範囲第1
項記載の非水電池用陽極の製造法。 3 前記金属基体の表面に、陽極活物質を生成させるに
先立つて、誘電体被膜を形成する工程を有する特許請求
の範囲第2項記載の非水電池用陽極の製造法。
[Scope of Claims] 1. A method comprising the step of thermally decomposing a metal salt attached to the surface of a metal substrate in a semi-closed furnace by radiant heat transfer from the furnace wall to generate an anode active material made of a metal oxide. A method for manufacturing anodes for non-aqueous batteries. 2 Claim 1 in which the metal is a valve metal
A method for producing an anode for a non-aqueous battery as described in . 3. The method for manufacturing an anode for a non-aqueous battery according to claim 2, which comprises the step of forming a dielectric film on the surface of the metal substrate before forming the anode active material.
JP54151636A 1979-11-22 1979-11-22 Manufacturing method for anodes for non-aqueous batteries Expired JPS5945180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54151636A JPS5945180B2 (en) 1979-11-22 1979-11-22 Manufacturing method for anodes for non-aqueous batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54151636A JPS5945180B2 (en) 1979-11-22 1979-11-22 Manufacturing method for anodes for non-aqueous batteries

Publications (2)

Publication Number Publication Date
JPS5676166A JPS5676166A (en) 1981-06-23
JPS5945180B2 true JPS5945180B2 (en) 1984-11-05

Family

ID=15522870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54151636A Expired JPS5945180B2 (en) 1979-11-22 1979-11-22 Manufacturing method for anodes for non-aqueous batteries

Country Status (1)

Country Link
JP (1) JPS5945180B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585715A (en) * 1984-06-29 1986-04-29 Union Carbide Corporation Metal cathode collector having a protective surface layer of a metal oxide

Also Published As

Publication number Publication date
JPS5676166A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
Swider-Lyons et al. Improved lithium capacity of defective V2O5 materials
US4391729A (en) Metal oxide composite cathode material for high energy density batteries
ES2907994T3 (en) Material consisting of particles composed of oxide, procedure for its preparation, and its use as an active electrode material
McBreen et al. Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation
Ma et al. Synthesis of porous and metallic CoB nanosheets towards a highly efficient electrocatalyst for rechargeable Na–O 2 batteries
JPH0550099B2 (en)
CN110571442A (en) Molybdenum monatomic catalyst and preparation method and application thereof
CN108899551A (en) Composite material and preparation method, lithium ion battery negative material and lithium ion battery
US5733681A (en) Non-aqueous battery with novel lithium manganese oxide cathode
CN106848252A (en) One kind evaporation aluminum fluoride improves the durothermic method of ternary anode material of lithium battery
Zhu et al. Novel agaric-derived olive-like yolk–shell structured MnO@ C composites for superior lithium storage
CN111477849A (en) Preparation method of porous Si/SiC/C material and negative electrode material
JPH11224664A (en) Lithium-ion secondary battery having high moisture resistance and high safety
CN112701260A (en) In-situ carbon-coated titanium niobate composite material and preparation method and application thereof
JP2012051740A (en) Titanium oxide, method for producing the same, and electrochemical device using the same as member
CN112582618B (en) Preparation method of nickel sulfide nanosheet anchored on inner surface of nitrogen-containing hollow carbon substrate, prepared product and application of product
JPS5945180B2 (en) Manufacturing method for anodes for non-aqueous batteries
CN116314704A (en) Coated modified sodium ion layered cathode material and preparation method thereof
CN114744148A (en) Preparation method of hard carbon cathode of high-rate-performance sodium ion battery
CN114094073A (en) Tin dioxide @ carbon foam self-supporting composite material and preparation method and application thereof
CN113161547A (en) Ternary positive electrode material coated with PTC material, preparation method of ternary positive electrode material, lithium ion battery positive electrode material and lithium ion battery
US7618609B2 (en) Method to prepare defective metal oxides with increased specific capacity
US4892629A (en) Electrochemical preparation of silver oxide electrodes having high thermal stability
JPS63175339A (en) Manufacture of hydrogen absorption electrode
CN117673313A (en) Potassium carbonate induced porous carbon skeleton combined tripotassium phosphate coated sodium vanadium phosphate composite anode material and preparation method and application thereof