JPS5944959B2 - Sintered flux for horizontal submerged arc welding - Google Patents

Sintered flux for horizontal submerged arc welding

Info

Publication number
JPS5944959B2
JPS5944959B2 JP9367978A JP9367978A JPS5944959B2 JP S5944959 B2 JPS5944959 B2 JP S5944959B2 JP 9367978 A JP9367978 A JP 9367978A JP 9367978 A JP9367978 A JP 9367978A JP S5944959 B2 JPS5944959 B2 JP S5944959B2
Authority
JP
Japan
Prior art keywords
flux
submerged arc
arc welding
welding
deoxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9367978A
Other languages
Japanese (ja)
Other versions
JPS5522407A (en
Inventor
良平 熊谷
隆司 加藤
静 斉藤
隆一 元松
勝則 田宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9367978A priority Critical patent/JPS5944959B2/en
Publication of JPS5522407A publication Critical patent/JPS5522407A/en
Publication of JPS5944959B2 publication Critical patent/JPS5944959B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明は横向潜弧溶接用フラックスに係り、さらに詳し
くはNi基合金よりなる溶接ワイヤと組み合わせて用い
られ、溶接金属中の酸素含有量を著しく低減し、優れた
機械的性質を得ると共に内部欠陥のない溶接金属を形成
する潜弧溶接用フラックスの新規組成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flux for horizontal submerged arc welding, and more specifically, it is used in combination with a welding wire made of a Ni-based alloy, significantly reduces the oxygen content in the weld metal, and provides an excellent machine. The present invention relates to a new composition of a flux for submerged arc welding that obtains excellent properties and forms a weld metal free of internal defects.

近年、LPGあるいはLNGタンクが各所で建造され低
炭素Alキルド鋼および9%Ni鋼等の横向潜弧溶接が
頻繁に行なわれその重要性が増大している。
In recent years, LPG or LNG tanks have been constructed in various places, and horizontal submerged arc welding of low carbon Al-killed steel, 9% Ni steel, etc. is frequently performed, and its importance is increasing.

一方、横向溶接は特殊な姿勢の溶接であり、基本的に欠
陥が発生しやすい要因を有している。例えば、溶融金属
の凝固方向が下向きである事に起因して内部欠陥が生じ
やすい問題がある。即ち、突合わされた溶接母材のうち
上板側に生成した柱状晶は、下方を向いて成長するため
、溶融池上半部に生成したブローホール、脱酸生成物あ
るいは溶融池内に巻き込まれた溶融スラグが円滑に浮上
し難くその逸出が妨げられ内部欠陥が生成しやすい。さ
らに、溶融金属が重力により垂れ下りやすいという問題
があり、アンダーカット、ビード形状不良あるいは融合
不良等が生じやすい。そこで、本発明者らは以上のよ5
な問題を解決するため、先に潜弧溶接用フラックスの組
成について種々検討した結果に基き、特開昭52一15
6145号公報において多量の弗化物を含有せしめた横
向潜弧溶接用フラックスを提案した。これは、フラック
スに多量の弗化物を添加するとアーク長が極端に短かく
なりワイヤ金属の移行が短絡移行型を呈するようになる
が、この現象が横向溶接における欠陥防止に極めて有効
である事が判明した事によるものである。ところが、上
記フラックスといえども4ンコネル又はバスアロイなど
のNiを40%以上含有するNi基合金からなるワイヤ
により、オーステナイト単相の溶接金属を形成した場合
、脱酸剤の使用方法によつては、溶接金属の延性が必ず
しも満足でなく、又、溶接部内部にX線透過検査では検
出し得ないような微小な欠陥が残存するおそれがある事
が判明した。
On the other hand, horizontal welding is welding in a special position, and basically has a factor that makes it easy to generate defects. For example, there is a problem that internal defects are likely to occur due to the fact that the solidification direction of the molten metal is downward. In other words, the columnar crystals generated on the upper plate side of the welded base metals that are butted together grow downward, so the blowholes generated in the upper half of the molten pool, the deoxidation products, or the molten material caught in the molten pool. It is difficult for the slag to float smoothly, preventing its escape, and internal defects are likely to occur. Furthermore, there is a problem in that the molten metal tends to sag due to gravity, which tends to cause undercuts, poor bead shapes, and poor fusion. Therefore, the present inventors
In order to solve this problem, based on the results of various studies on the composition of flux for submerged arc welding, we published JP-A-52-15.
In Japanese Patent No. 6145, a flux for horizontal submerged arc welding containing a large amount of fluoride was proposed. This is because when a large amount of fluoride is added to flux, the arc length becomes extremely short and the wire metal transfer takes on a short-circuit transfer type, but this phenomenon is extremely effective in preventing defects in horizontal welding. This is due to what has become clear. However, even with the above-mentioned flux, when austenite single-phase weld metal is formed with a wire made of a Ni-based alloy containing 40% or more Ni such as 4-conel or bus alloy, depending on how the deoxidizer is used, It has been found that the ductility of the weld metal is not necessarily satisfactory, and that there is a risk that minute defects that cannot be detected by X-ray inspection may remain inside the weld.

そこで、これを改良すべく、さらに検討を行なつたとこ
ろ、上記問題の解決には溶接金属中の酸素を可及的に低
減する事が必要であり、そのためには弗化物と組み合わ
せて特定の脱酸剤を添加する事が著しく有効である事が
判明した。
Therefore, in order to improve this, we conducted further studies and found that to solve the above problem, it is necessary to reduce the oxygen in the weld metal as much as possible, and to do so, we need to use a specific material in combination with fluoride. It has been found that adding a deoxidizing agent is extremely effective.

本発明は以上のような検討結果に基きなされたものであ
つて、その要旨は、全フラツクス重量に対しCaF2,
BaF2,NaF,AlF3およびMgF2のうち1種
又は2種以上の合計を20〜80%、脱酸剤として2.
5%くAl+0.5Siく5.5%,Siく4%の範囲
でAl,もしくはAlおよびSiの両者を含有し、かつ
AllおよびSiを含む金属粉の粒度構成は100メツ
シユより細かいものが70%以上である事を特徴とする
横向潜弧溶接用焼成形フラツクスにある。
The present invention was made based on the above study results, and its gist is that CaF2,
2. A total of 20 to 80% of one or more of BaF2, NaF, AlF3 and MgF2 as a deoxidizing agent.
The particle size structure of the metal powder containing Al or both Al and Si in the range of 5% Al + 0.5 Si and 4% Si is finer than 100 mesh. % or more, a sintered flux for horizontal submerged arc welding is provided.

以下本発明について詳述する。The present invention will be explained in detail below.

本発明フラツクスにおけるCaF2,BaF2,NaF
,AlF3およびMgF2の目的は一つにはアーク安定
化にある。
CaF2, BaF2, NaF in the flux of the present invention
, AlF3 and MgF2, one purpose is to stabilize the arc.

即ち前述の如く、多量の弗化物はワイヤ金属の移行を短
絡移行形にする効果があり、これにより不安定な溶融池
を有する横向溶接においてスパツタ一およびスラグ巻込
みの発生防止に効果を発揮するものである。ところが弗
化物含有の効果は単にこの点だけではなく、特定の脱酸
剤即ち、2.5〜5.5%のAlかもしくは2.5%く
Al+0.5Si<>5.5%,Siく4%のAlおよ
びSiと組み合わせる事により溶接金属中の酸素を著し
く低減し、その機械的性質および欠陥発生を改善するも
のである事を見出した事による。
That is, as mentioned above, a large amount of fluoride has the effect of short-circuiting the wire metal transfer, which is effective in preventing the occurrence of spatter and slag entrainment in horizontal welding with an unstable molten pool. It is something. However, the effect of containing fluoride is not limited to this point; it is also possible to use specific deoxidizers such as 2.5 to 5.5% Al or 2.5% Al + 0.5Si <>5.5% Si. This is based on the discovery that when combined with 4% Al and Si, oxygen in the weld metal can be significantly reduced, and its mechanical properties and defect generation can be improved.

通常、溶接金属中には、200〜400ppn程度の酸
素が含有されているが、酸素は溶接金属の耐われ性、延
性あるいは靭性を劣化せしめるものであり特にNi基合
金からなるオーステナイト単相溶接金属においては粒界
にNiの酸化物であるNiOが析出しやすく、又、多量
のSiが存在する場合には珪酸塩の粒界析出を促進する
ものであり、これによりオーステナイト粒界が脆化し耐
われ性および延性の低下に至るのである。
Normally, weld metal contains about 200 to 400 ppn of oxygen, but oxygen deteriorates the durability, ductility, or toughness of weld metal, especially in austenitic single-phase weld metal made of Ni-based alloy. NiO, an oxide of Ni, tends to precipitate at the grain boundaries, and when a large amount of Si exists, it promotes the precipitation of silicate at the grain boundaries, which embrittles the austenite grain boundaries and reduces the resistance. This leads to a decrease in cracking properties and ductility.

従つて、溶接金属中の酸素量の低減が極めて重要であり
、検討結果によればオーステナイト単相の溶接金属にお
いては酸素量を150ppm以下にする事が必要である
事が判明した。
Therefore, it is extremely important to reduce the amount of oxygen in the weld metal, and the study results have revealed that it is necessary to reduce the amount of oxygen to 150 ppm or less in austenite single-phase weld metal.

ところで、酸素低減には弗化物自体でも有効であり、こ
れに脱酸剤として主にSiを添加したフラツクスは、従
来、提案された例もある。
By the way, fluoride itself is effective in reducing oxygen, and some fluxes in which Si is mainly added as a deoxidizing agent have been proposed in the past.

しかしながらこれらの組み合わせでは脱酸力が弱く、酸
素を150ppm以下にする事は困難であり、又、Si
の過剰の添加はオーステナイト粒界への珪酸塩の析出を
促す結果になる。そこで、Si以外の強力な脱酸剤を用
いる事が必要であるとの結論によりTi,AlおよびZ
r等について検討したところ、Tiは脱酸には有効であ
るがスラグの剥離性を阻害しかつ、ビード外観をも劣化
せしめるものであり、又Zrは凝固割れ感受性を高める
ものであつた。結局、特定量のAlもしくはA2および
Siを併用するのがフラツクスとしての良好な作業性が
得られ、かつ、最も優れた脱酸効果を発揮しうる事が判
明したのである。
However, these combinations have weak deoxidizing power, making it difficult to reduce oxygen to 150 ppm or less;
Addition of an excessive amount of silicate promotes precipitation of silicate at austenite grain boundaries. Therefore, it was concluded that it was necessary to use a strong deoxidizing agent other than Si, so Ti, Al and Z
A study of r, etc. revealed that although Ti is effective in deoxidizing, it inhibits slag releasability and also deteriorates the bead appearance, and Zr increases susceptibility to solidification cracking. In the end, it was found that by using a specific amount of Al or A2 and Si in combination, good workability as a flux can be obtained and the most excellent deoxidizing effect can be exhibited.

作業性に対する効果としては、ビード祉端部におけるな
じみを改善しうる事、アークが安定しスラグ巻込み、ブ
ローホールあるいはスパツタ一の巻込み現象をも阻止し
得る事等である。
The effects on workability include improving the conformability at the bead edges, stabilizing the arc, and preventing slag entrainment, blowholes, and spatter entrainment phenomena.

CaF2.BaF2,NaF,A2F,およびMgF2
の本発明における効果はこれら弗化物のうち1種又は2
種以上の合計が全フラツクス量に対し20%以上で得ら
れるものであるが80%を超えると、生成スラグの流動
性が過大となるためビードが不整となり、又、下方に垂
れやすい傾向となるためアンダーカツトも生じやすい。
第1〜第4図は弗化物としてCaF235%,BaF,
5%,AIF,8%を含有する焼成形フラツクスにおい
て、脱酸剤として添加するAlおよびSiの量を種々変
化させて横向潜弧溶接を行なつた場合の溶接部の性質に
ついて調査した結果の例について示すものである。
CaF2. BaF2, NaF, A2F, and MgF2
The effect in the present invention is obtained by using one or two of these fluorides.
This is obtained when the total amount of flux exceeds 20% of the total amount of flux, but if it exceeds 80%, the fluidity of the generated slag becomes excessive, resulting in irregular beads and a tendency to sag downward. Therefore, undercuts are likely to occur.
Figures 1 to 4 show fluorides such as CaF235%, BaF,
The results of an investigation into the properties of welds when horizontal submerged arc welding was performed with various amounts of Al and Si added as deoxidizers in a sintered flux containing 5% AIF, 8% AIF, and 8% AIF. This is an example.

この場合の溶接は表1、W−1に示すような成分のハス
テロイ系合金ワイヤ(2.4maφ)を用い、又母材と
しては表2、S−1に示す9%Ni鋼を使用した。
For welding in this case, a Hastelloy alloy wire (2.4 maφ) having the composition shown in Table 1, W-1 was used, and 9% Ni steel shown in Table 2, S-1 was used as the base material.

第1図はフラツクス中のAlおよびSi量と溶接金属中
の酸素量との関係を示すもので、斜線で示した範囲で酸
素量が低く150ppm以下である事が判る。
FIG. 1 shows the relationship between the amounts of Al and Si in the flux and the amount of oxygen in the weld metal, and it can be seen that the oxygen amount is low in the shaded range, 150 ppm or less.

図中の直線Aはフラツクス中のAlとSiの関係が、A
l+0.5Si=2.5である事を、又、直線BはAl
=0.5である事を示すものであり、従つて、斜線の範
囲はAl+0.5Si〉2.5%かつAl′20.5%
の不等式によつて示される。第2図は母材表面の位置よ
りビード長手方向に沿つて、縦ビード曲げ試験片を採取
し、180型曲げ試験を実施し、曲げ表面について亀裂
の有無を調査した結果である。これによれば、酸素量の
低いAl+0.5Si〉2.5%の範囲が良好であるが
一方Al,Siが過多になると却つて、曲げ延性が損な
われる。即ち図中の直線C(Al+0.5Si=5.5
)およびD(Si=4)の左方である事も必要であり、
それは不等式Al+0.5Siく5.5%,Si:<4
%によつて表わされる。第3図は板表面下277!77
Jより採取した2ノツチシヤルピ一衝撃試験片について
−196℃で衝撃試験を実施した結果であり縦ビード曲
げ試験結果と同様にAl+0.5S1く5.5%,Si
く4%の範囲で良好な結果が得られた。さらに第4図は
X線透過検査では検出が困難であるような微細なブロー
ホール又はスラグ巻込み等の欠陥の有無を調査するため
各溶接ビードの表面を1v1t程度研削し染色探傷検査
を実施した結果である。
The straight line A in the figure shows the relationship between Al and Si in the flux.
l+0.5Si=2.5, and straight line B is Al
= 0.5, therefore, the shaded area is Al+0.5Si〉2.5% and Al'20.5%
It is shown by the inequality . FIG. 2 shows the results of taking a longitudinal bead bending test piece from the base metal surface position along the bead longitudinal direction, conducting a 180-type bending test, and investigating the presence or absence of cracks on the bent surface. According to this, a low oxygen content in the range of Al+0.5Si>2.5% is good, but on the other hand, when Al and Si are excessive, the bending ductility is impaired. That is, the straight line C in the figure (Al+0.5Si=5.5
) and to the left of D (Si=4),
It is the inequality Al+0.5Si 5.5%, Si:<4
Expressed in %. Figure 3 is below the plate surface 277!77
These are the results of an impact test conducted at -196°C on a two-notch Shalpi impact test piece taken from J.
Good results were obtained in the range of 4%. Furthermore, Figure 4 shows that the surface of each weld bead was ground by approximately 1v1t and dyed flaw detection was performed to investigate the presence or absence of defects such as minute blowholes or slag entrainment that are difficult to detect with X-ray transmission inspection. This is the result.

これについても2.5%くAl+0.5Siの範囲に欠
陥が少なく健全な横向溶接部が得られる事が判る。本発
明における検討結果の一例は以上のようであり、結局、
2.5%くAl+0.5Siく5.5,Siく4%の範
囲におけるAlもしくはAlおよびSiを脱酸剤として
適用する事が必要である。
It can also be seen that a sound horizontal weld with few defects can be obtained in the range of 2.5% Al+0.5Si. An example of the study results in the present invention is as above, and as a result,
It is necessary to apply Al or Al and Si as a deoxidizing agent in the range of 2.5% Al + 0.5 Si + 5.5% Si + 4%.

ところで本発明に用いるCaF2,BaF2,NaF,
AlF3およびMgF2は通常の溶接材料に用いられる
ものでよく鉱石を粉砕整粒したものあるいは化学合成に
よるものいずれでも用いる事が出来る。脱酸剤として用
いるAlおよびSiはそれらの単独の金属粉か、又はF
e−Al,Fe−Si,Si−Mn,Al−Mg等他の
金属との合金粉で用いる事が出来る。
By the way, CaF2, BaF2, NaF,
AlF3 and MgF2 are commonly used as welding materials, and either pulverized and sized ores or chemically synthesized materials can be used. Al and Si used as deoxidizing agents are their individual metal powders or F
It can be used as an alloy powder with other metals such as e-Al, Fe-Si, Si-Mn, and Al-Mg.

ところで、フラツクス中にこのように種類および量がコ
ントロールされた脱酸剤を添加してもその脱酸剤がフラ
ツクス中で不均一に分布したり、あるいは反応性が鈍い
ものでは、その効果が得られず、本発明の目的とする優
れた溶接金属を得る事が出来ない。本発明者らは、この
ような脱酸剤の不均一分布の対策についても充分検討し
、脱酸剤として添加するAlおよびS1を含有する金属
粉が粒度構成として100メツシユより細かいものを7
0%以上含有する事が必要であることを確めた。
By the way, even if a deoxidizing agent whose type and amount are controlled in this way is added to the flux, the effect may not be obtained if the deoxidizing agent is unevenly distributed in the flux or has low reactivity. Therefore, it is impossible to obtain the excellent weld metal that is the object of the present invention. The present inventors have thoroughly studied countermeasures against such non-uniform distribution of the deoxidizing agent, and have determined that the metal powder containing Al and S1 added as a deoxidizing agent has a particle size structure finer than 100 mesh.
It was confirmed that it is necessary to contain 0% or more.

(なおここで100メツシユより細かいものとはJlS
標準篩のうち149μの目開きの篩を通過する粒子を意
味する)即ち、脱酸剤は金属であり、他の原料粉に較べ
て比重が大きく、均一に混り難い傾向がある上に、脱酸
剤の粒度が粗すぎるとフラツクス中で偏析が起りやすく
、又反応性も低くなるので粒度構成として100メツシ
ユより細かいものを70%以上を含有させておく事によ
り他の原料と混りやすくなり、造粒後も均一な分布をす
る事が明らかにされた。この事について実例により説明
する。
(Here, what is finer than 100 meshes is JlS
In other words, the deoxidizing agent is a metal, has a higher specific gravity than other raw material powders, and tends to be difficult to mix uniformly. If the particle size of the deoxidizing agent is too coarse, segregation will easily occur in the flux and the reactivity will also be low. Therefore, by making the particle size structure contain 70% or more of particles finer than 100 mesh, it will easily mix with other raw materials. It was revealed that the particles were evenly distributed even after granulation. This will be explained using an example.

すなわち表3に示した後記実施例フラツクスF−1(F
e−Al;5.0%(50%Al),Fe一Si:1.
5%(42%Si))において、Fe−AlおよびFe
−Siの粒度を変化させ(4水準)、12〜100メツ
シユの粒度範囲の4種類のフラツクスを作製し、次にこ
れらのフラツクスをそれぞれさらに狭い粒度範囲、即ち
12〜20,20〜32,32〜48,48〜65,6
5〜100メツシユの5段階に篩い分け脱酸剤の分布状
況を調査した。
That is, the Example flux F-1 (F
e-Al; 5.0% (50% Al), Fe-Si: 1.
5% (42% Si)), Fe-Al and Fe
- Varying the particle size of Si (4 levels) to produce four types of fluxes in the particle size range of 12 to 100 meshes, and then each of these fluxes to a narrower particle size range, namely 12 to 20, 20 to 32, 32 ~48,48~65,6
The distribution of the deoxidizing agent was investigated by sieving in five stages from 5 to 100 meshes.

即ち、各サンプルについてFeの分析を行なつたとζ.
ろ、フラツクスへのFeの添加はFe−Si,Fe−A
lのみであるから、この場合のFeの分析値は、Siお
よびAlの分布を相対的に示すものと考えて差支えなく
、結果は第6図に示す通りであつた。この結果から脱酸
剤の粒度が細かい程、即ち100メツシユより細かいも
のが多い程、各粒度範囲間のFe分析値の差が少なく、
70%以上であれば充分均一な分布を示している事が判
る。又、脱酸剤の反応性は細かい程良好であり、より大
きい脱酸効果が得られる事は言うまでもない。
That is, each sample was analyzed for Fe and ζ.
The addition of Fe to the flux is Fe-Si, Fe-A.
Since there is only 1, the analytical value of Fe in this case can be considered to be a relative indication of the distribution of Si and Al, and the results are as shown in FIG. From this result, the finer the particle size of the deoxidizing agent, that is, the more particles are finer than 100 mesh, the smaller the difference in Fe analysis value between each particle size range.
It can be seen that a value of 70% or more indicates a sufficiently uniform distribution. It goes without saying that the finer the reactivity of the deoxidizing agent, the better, and the greater the deoxidizing effect can be obtained.

従つて、本発明のフラックスにおいて、AlおよびSi
を含む金属粉の粒度構成として100メツシユより細か
いものを70%以上とすることが不可欠の要件である。
以上の如き必須材料の他の成分についてはフラツクスの
目的に応じて適宜添加するものであるが酸化物としては
MgO,Al2O3,TiO2,SiO,,MnO,C
aO等があり、又炭酸塩としてはCacO3MgCO3
等を添加するものである。
Therefore, in the flux of the present invention, Al and Si
It is essential that 70% or more of the metal powder is finer than 100 mesh.
Other components of the above-mentioned essential materials are added as appropriate depending on the purpose of the flux, but the oxides include MgO, Al2O3, TiO2, SiO, MnO, C
aO, etc., and carbonates include CacO3MgCO3
etc. are added.

又、金属成分として&虱AlおよびSi以外の脱酸剤即
ちMnあるいは作業性を害さない程度のTi,合金剤で
あるMO,Cr,W等を必要に応じて添加する事が可能
である。
Further, as metal components, deoxidizers other than Al and Si, such as Mn, Ti to an extent that does not impair workability, and alloying agents such as MO, Cr, and W can be added as necessary.

ところで本発明フラツクスは焼成形フラツクスの形態を
とるものであるが、これは脱酸剤を含有させるためであ
り、その他の成分については一端溶融粉砕した溶融形フ
ラツクスを全部又は一部に用いる事が出来る。
By the way, the flux of the present invention is in the form of a sintered flux, but this is because it contains a deoxidizing agent, and for other components, it is possible to use molten flux that has been melted and ground in whole or in part. I can do it.

造粒法としては、原料粉と水ガラスを混練した後、円筒
形あるいは皿形造粒機等で転動造粒する方法とか、原料
粉と水ガラスとを高速攪拌羽根式混合機で混和して造粒
する方法等があげられる。
Granulation methods include kneading the raw material powder and water glass and then rolling granulation using a cylindrical or dish-shaped granulator, or mixing the raw material powder and water glass with a high-speed stirring blade mixer. Examples include a method of granulation.

以下に実施例により本発明の効果についてさらに明白に
する。実施例 混合粉末原料を水ガラスを固着剤として造粒・焼成し表
3のF−1〜F−9に示すような組成の9種類の焼成形
フラツクスを試作した。
The effects of the present invention will be further clarified by examples below. EXAMPLE Nine types of sintered fluxes having the compositions shown in Table 3, F-1 to F-9, were produced by granulating and sintering the mixed powder raw materials using water glass as a binder.

この場合の造粒は高速攪拌羽根式造粒機で撹拌混合した
ものであり、焼成条件は500′CX2hrである。
The granulation in this case was carried out by stirring and mixing using a high-speed stirring blade type granulator, and the firing conditions were 500'CX2hr.

又、フラツ.クズは造粒後、12X100メツシユに整
粒し、嵩密度(JlSK672l)は0.90〜1.0
0V/Crilであつた。表3のフラツクスのうちF−
1〜F−5は本発明例であり、F−6およびF−9は比
較例である。次にF−1〜F−9のフラツクスを用い、
又表1、表2のワイヤおよび鋼板により表5、左欄に示
すようなフラツクス、ワイヤおよび鋼板の組み合わせに
より横向潜弧溶接を行なつた。開先形状、積層要領およ
び溶接条件は第5図および表4に示すようである。裏側
の溶接は表側の溶接を終了後、アークエアガウジングで
裏はつりを行なつてから実施した。以上の溶接の結果、
即ちビード外観の評価、溶接部についての機械的性質試
験(縦ビード曲げ試験、衝撃試験)、染色浸透探傷試験
および酸素分析試験は表5右欄に示すよラであつた。
Also, flats. After granulation, the waste is sized into a 12x100 mesh, with a bulk density (JlSK672l) of 0.90 to 1.0.
It was 0V/Cril. Among the fluxes in Table 3, F-
1 to F-5 are examples of the present invention, and F-6 and F-9 are comparative examples. Next, using fluxes F-1 to F-9,
Further, using the wires and steel plates shown in Tables 1 and 2, transverse submerged arc welding was performed using the combinations of fluxes, wires, and steel plates shown in the left column of Table 5. The groove shape, lamination procedure and welding conditions are as shown in FIG. 5 and Table 4. Welding on the back side was performed after welding on the front side was completed, and after lifting the back side using arc air gouging. As a result of the above welding,
That is, the evaluation of the bead appearance, the mechanical property test (longitudinal bead bending test, impact test) of the welded part, the dye penetrant test, and the oxygen analysis test were as shown in the right column of Table 5.

F−1〜F−5のフラツクスを用いた場合は、本発明の
効果により総て良好な結果が得られた。
When fluxes F-1 to F-5 were used, good results were obtained in all cases due to the effects of the present invention.

−方、比較例A6では弗化物の添加量が不足し、かつ、
脱酸剤が不適正のため機械的性質および染色浸透探傷試
験において不満足であつた。又屈7の場合は弗化物過剰
でスラグの流動性が大きくビードが垂れる傾向を示し、
最終パスではアンダーカツトが発生し満足な横向ビード
外観が得られなかつた。又脱酸剤の添加も不適正であり
、屋6と同様、染色浸透探傷検査および縦ビード曲げ試
験で欠陥が発生した。比較例屋8および屈9においては
フラツクス中の脱酸剤の粒度が粗く、本発明の効果が得
られないため、縦ビード曲げおよび染色探傷試験におい
て欠陥が発生した。
- On the other hand, in Comparative Example A6, the amount of fluoride added was insufficient, and
Due to an inappropriate deoxidizing agent, the mechanical properties and dye penetrant testing were unsatisfactory. In the case of 7, the fluidity of the slag is large due to excessive fluoride, and the beads tend to sag.
In the final pass, an undercut occurred and a satisfactory horizontal bead appearance could not be obtained. Also, the addition of deoxidizing agent was inappropriate, and defects occurred in dye penetrant inspection and longitudinal bead bending test, as in case No. 6. In Comparative Examples Ya 8 and Ku 9, the particle size of the deoxidizing agent in the flux was coarse, and the effects of the present invention could not be obtained, so defects occurred in the longitudinal bead bending and dyeing flaw detection tests.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第4図はフラツクス中のAlおよびSiの含有量
と溶接金属の性質の関係を示すグラフであり、第5図は
実施例において適用した開先形状および積層要領を示す
正面図、第6図はフラツクス中のFe−Al+Fe−S
iの粒度範囲とフラツクス中のFe分析値との関係を示
す図である。
1 to 4 are graphs showing the relationship between the content of Al and Si in flux and the properties of weld metal, and FIG. 5 is a front view showing the groove shape and lamination procedure applied in the example. Figure 6 shows Fe-Al+Fe-S in flux.
It is a figure which shows the relationship between the particle size range of i and the Fe analysis value in flux.

Claims (1)

【特許請求の範囲】[Claims] 1 全フラックス重量に対しCaF_2、BaF_2、
NaF、AlF_3およびMgF_2のうち1種又は2
種以上の合計を20〜80%、脱酸剤としてAlもしく
はAlおよびSiの両者を2.5%≦Al+0.5Si
≦5.5%およびSi≦4%の範囲で含有し、かつ、A
lおよびSiを含む金属粉の粒度構成は100メッシュ
より細かいものが70%以上である事を特徴とする横向
潜弧溶接用焼成形フラックス。
1 CaF_2, BaF_2,
One or two of NaF, AlF_3 and MgF_2
20 to 80% of total of species or more, 2.5% of Al or both Al and Si as deoxidizer ≦Al + 0.5Si
Contains in the range of ≦5.5% and Si≦4%, and A
A sintered flux for horizontal submerged arc welding, characterized in that the particle size composition of the metal powder containing L and Si is 70% or more of particles finer than 100 mesh.
JP9367978A 1978-08-02 1978-08-02 Sintered flux for horizontal submerged arc welding Expired JPS5944959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9367978A JPS5944959B2 (en) 1978-08-02 1978-08-02 Sintered flux for horizontal submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9367978A JPS5944959B2 (en) 1978-08-02 1978-08-02 Sintered flux for horizontal submerged arc welding

Publications (2)

Publication Number Publication Date
JPS5522407A JPS5522407A (en) 1980-02-18
JPS5944959B2 true JPS5944959B2 (en) 1984-11-02

Family

ID=14089084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9367978A Expired JPS5944959B2 (en) 1978-08-02 1978-08-02 Sintered flux for horizontal submerged arc welding

Country Status (1)

Country Link
JP (1) JPS5944959B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895608A (en) * 1981-11-30 1983-06-07 Toshiba Corp Production of ceramic powder
JPS59178196A (en) * 1983-03-26 1984-10-09 Nippon Steel Corp Baked flux for three o'clock submerged arc welding
JP5417098B2 (en) * 2009-09-11 2014-02-12 日鐵住金溶接工業株式会社 Submerged arc welding method for low temperature steel

Also Published As

Publication number Publication date
JPS5522407A (en) 1980-02-18

Similar Documents

Publication Publication Date Title
EP2295197B1 (en) Flux-cored wire for welding of duplex stainless steel which enables the miniaturization of solidified crystal particles
US3162751A (en) Welding electrode
GB2136021A (en) Flux-cored wire electrode
US20020003135A1 (en) Flux-cored wire for gas-shielded Arc welding of heat resisting steel
JPH03166000A (en) Metal core electrode
US3107176A (en) Nickel-copper alloy welding electrode
WO2014021097A1 (en) Coated arc-welding bar
CN104889609A (en) Alkaline flux-cored wire for welding austenitic stainless steel
US3924091A (en) Welding method and materials
JPS5944959B2 (en) Sintered flux for horizontal submerged arc welding
US4439498A (en) Corrosion resistant stainless steel covered electrode
JP3824143B2 (en) Manufacturing method of flux for submerged arc welding and submerged arc welding joint.
EP0067494B1 (en) Welding electrode
JP2565831B2 (en) Flux-cored wire with Ni-based alloy as outer skin
JPS5847959B2 (en) Low hydrogen coated arc welding rod
Slania et al. Welding of austenitic, acid-resistant steels with flux-cored wires in shields of gas mixtures
JPS6397396A (en) Iron powder flux cored wire
JPS6358077B2 (en)
JPH09277088A (en) Flux cored wire for gas shielded metal-arc welding
JP2592951B2 (en) Flux cored wire for ultra-fine diameter self-shielded arc welding
US4561914A (en) Submerged arc welding flux
JPH0378197B2 (en)
JPS5853393A (en) Covered arc welding rod generating low hydrogen atmosphere
JPH07251294A (en) Low hydrogen type coated electrode
JPH0244636B2 (en)