JPS5944875A - Semiconductor device having beam structure - Google Patents

Semiconductor device having beam structure

Info

Publication number
JPS5944875A
JPS5944875A JP15482682A JP15482682A JPS5944875A JP S5944875 A JPS5944875 A JP S5944875A JP 15482682 A JP15482682 A JP 15482682A JP 15482682 A JP15482682 A JP 15482682A JP S5944875 A JPS5944875 A JP S5944875A
Authority
JP
Japan
Prior art keywords
layer
movable beam
film
semiconductor device
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15482682A
Other languages
Japanese (ja)
Other versions
JPH0472190B2 (en
Inventor
Shigeo Hoshino
重夫 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15482682A priority Critical patent/JPS5944875A/en
Publication of JPS5944875A publication Critical patent/JPS5944875A/en
Publication of JPH0472190B2 publication Critical patent/JPH0472190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Abstract

PURPOSE:To unnecessitate the positioning of super high accuracy by a method wherein a supporting base composed of poly Si is formed on an insulation film, and a movable beam composed of poly Si is supported thereon. CONSTITUTION:A fixed electrode layer 13 is formed on the surface of the semiconductor substrate 11 by a diffused layer 14 of the reverse conductive semiconductor as the substrate 11 or by a conductive thin film. Next, the surface of the substrate 11 is coated with the alkali etching resistant insulation film 12, and the supporting base 14 composed of alkali etching poly Si is formed at a fixed position on the insulation film. Then, the movable beam composed of alkali etching resistant poly Si doped with a P type impurity 15 at high density is so constructed on this supporting base as to be supported in an integral body.

Description

【発明の詳細な説明】 この発明は、半導体基板上に振動司能な梁を形成し1.
:梁構造体を有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following methods: 1. A beam capable of vibration is formed on a semiconductor substrate;
:Relating to a semiconductor device having a beam structure.

この種の梁(111造体を右する半導体装『1は、基本
的に、半導体基板上に一端または両端が支持され、振動
部位が該基板面にほぼ平行で、その振動部位に一体的に
電極層を含んだ可動梁と、この可動梁に対向して−り記
半導体基板面に設りられ、上記電極層とともにコンデン
リーを形成する固定電極層とを備える。
This type of beam (111) A semiconductor device (1) is basically supported at one end or both ends on a semiconductor substrate, the vibrating part is almost parallel to the surface of the board, and the vibrating part is integrally connected to the vibrating part. The semiconductor device includes a movable beam including an electrode layer, and a fixed electrode layer provided on the surface of the semiconductor substrate opposite to the movable beam and forming a condenser together with the electrode layer.

この挿の半導体装置につい−C1先に本発明茜哲は、第
1図に示す構造のものを開発し試(乍しlこ。
Regarding this semiconductor device, Akane Tetsu, the inventor of the present invention, first developed and tested a device with the structure shown in FIG.

第1図に示した梁1111造体を右りる半導体装置の先
行例について、その製造工程順にMi2明する。この装
置はN型(100) 3 i基板1を用いたもので、ま
ず基板1の所定位置に1]型不純物を高′fAIσに埋
め込んだP”1Ff2を形成し、次に単板1の全面にエ
ビタギシャル成長によりN型(100)SiIFJ3を
形成し、次に該エピタキシ1ノル層3の」−面に熱酸化
3i Qz膜4をコーティングし、次(、:P+層2に
達Jるコンタク1〜孔7を工・ソチング【こより常設し
、次に基板1の表面側全面にΔUを蒸着した後、不必要
な部分の△Uをゴーツブングにより除去し、所定パター
ンの△11電極配線55を形!戊し、次に可動梁6の形
成部分の周囲の3 i 021!+!4をエツチングに
より除去する。その後、可暇J’l+CGとなるべき部
分の周囲および直下に41′/、 +賀りるN型(10
0)Stエピタキシトル層3を工・ノチングで除去し、
堀込部8を形成することにJ、す、SiO2膜4と△1
1電極5の2層構造からなる可動梁6を片持ち状態で残
置形成づる。
The preceding example of a semiconductor device based on the beam 1111 structure shown in FIG. 1 will be explained in order of its manufacturing process. This device uses an N-type (100) 3i substrate 1. First, P''1Ff2, in which 1]-type impurities are buried at a high fAIσ, is formed at a predetermined position on the substrate 1, and then the entire surface of the single substrate 1 is An N-type (100) SiIFJ3 is formed by epitaxial growth, and then a thermally oxidized 3iQz film 4 is coated on the - face of the epitaxial 1N layer 3, and then a contact layer 1 is formed to reach the P+ layer 2. ~ Holes 7 are drilled and soched (permanently installed), and then ΔU is deposited on the entire surface side of the substrate 1, and unnecessary portions of ΔU are removed by goutsbung to form a predetermined pattern of Δ11 electrode wiring 55. !, and then remove 3 i 021!+!4 around the forming part of the movable beam 6 by etching.After that, 41'/, +! Ruru N type (10
0) Remove the St epitaxial layer 3 by etching and notching,
To form the digging part 8, J, S, SiO2 film 4 and △1
A movable beam 6 having a two-layer structure of one electrode 5 is left in a cantilevered state.

十記堀込部8の形成について詳述する。N型(100)
Stエピタキシャル1関3のエツチングには顕茗な異方
性を示Jアルカリエツチンク液(例えばエヂレンジアミ
ン千ピロカテコール1−水の混合液〉によって行なわれ
る。Tビタキシャル層3がエツチングされて可1’、I
J梁6が形成されるようすを第2図に示している。
The formation of the ten-dimensional digging portion 8 will be described in detail. N type (100)
Etching of the St epitaxial layer 3 is carried out using a J alkaline etching solution (for example, a mixture of ethylenediamine, 1,000 pyrocatechol and water) which exhibits remarkable anisotropy. 1', I
FIG. 2 shows how the J beam 6 is formed.

第2図は可動梁6およびその周辺部分の平面図である。FIG. 2 is a plan view of the movable beam 6 and its surrounding area.

第2図のように、可動梁6となるべき部分の周囲には口
字形にS + 02膜4を除去してなるエツチング窓部
が形成されている。この=1字形]−ツチング窓部の各
辺は<110>方向でできている。また深さ方向に関し
ては、1′ツブーングがP+埋込層2に達すると深さ方
向のエツチングスピードが極端に遅くなり、P+埋込層
2は]−ツチングストツパとして作用する。また< 1
10 :>方向。
As shown in FIG. 2, an etched window portion formed by removing the S + 02 film 4 in a square shape is formed around the portion that is to become the movable beam 6. Each side of this =1 character shape]-touching window is made of <110> directions. Regarding the depth direction, when the 1'-cutting reaches the P+ buried layer 2, the etching speed in the depth direction becomes extremely slow, and the P+ buried layer 2 acts as a ]-etching stopper. Also < 1
10 :> direction.

の辺に沿ったエツチング側面は(111)面となり、エ
ツチングスピードが遅くなる。エツチングがある程度進
行すると、可動梁6の先端に(100)面が表れ、(1
00)面の一1ツブングスピードが(111)面の約3
0倍と大きく、イのため可動梁6の直下の二[ピッキシ
1フル闇3は可1jl 梁C3の先端部から矢印へ方向
にエツチングされて行さ、司?JJ梁6の直下まで完全
に空洞化した堀込部8が形成され、その結果として片持
状の可iI!IJ梁6が完成づる。
The etched side surface along the side becomes a (111) plane, and the etching speed becomes slow. When etching progresses to a certain extent, a (100) plane appears at the tip of the movable beam 6, and a (100) plane appears at the tip of the movable beam 6.
The speed of the 00) plane is about 3 that of the (111) plane.
It is 0 times larger, and because of A, it is etched in the direction of the arrow from the tip of the beam C3 to the two directly below the movable beam 6. A completely hollow trench 8 is formed right below the JJ beam 6, resulting in a cantilevered structure. IJ beam 6 is completed.

しかしながら、l二連した半導体装置の先行例にあって
は、固定電極層をエツチングスピードバとしても働<1
−)十埋込層2で形成し、エビ全4−シレル層3を異方
性のアルカリエツチング液によって−[ッチングして堀
込部8を形成し、可動梁6を残置づ°る形で形成するも
のであるため、次のような問題点を牛り゛る。
However, in the previous example of a semiconductor device in which 1 is connected, the fixed electrode layer also serves as an etching speed bar.
-) Formed with 10 buried layers 2, etched all 4 Schiller layers 3 with an anisotropic alkaline etching solution to form trenches 8, and left movable beams 6. As such, the following problems arise.

まり゛第1に、1ビタキシトル層が必要であるため、製
造コストが高くなる。また、3i阜板が(100)面に
限定され、しかも可動梁を作る一■ッチング窓のパター
ンの各辺を<110>方向に正確に合Uる必要があるた
め、つ1ハに−1(’1.5度という高い精度で基準辺
(オリ]−ン7−ションフラット)を設Gフな()れば
ならず、製造が面倒である。更に、第2図で詳細に説明
したように、可動梁6の直下部分の1ビタキシャル層3
は可動梁6の先端方向からのみ1−ツブングされないた
め、アルカリエツチング液が(100)面に対して30
μm7′時のエツチングレートをもっていても、例えば
300μmの長さの可動梁を作るのに約10時間という
長時間を要する。このため、アルカリエツチング液に対
して0.1〜0.2膜1m/時のエツチングレートを持
つ安価4にΔ℃膜を電極材料として使用できず、先に説
明したようにAuを電極材Y1として使用しなりればな
らず、この点でも装置をコスト高にしてしまう。
First, since one bitaxitol layer is required, manufacturing costs are high. In addition, since the 3i square plate is limited to the (100) plane, and each side of the pattern of the single-cutting window that makes the movable beam must be precisely aligned in the <110> direction, -1 (It is necessary to set the reference side (orientation flat) with a high precision of 1.5 degrees ( ), which makes manufacturing complicated. Furthermore, as explained in detail in Figure 2, 1 bitaxial layer 3 directly below the movable beam 6 as shown in FIG.
is not etched only from the tip direction of the movable beam 6, so the alkaline etching solution is
Even with an etching rate of 7' μm, it takes a long time of about 10 hours to make a movable beam with a length of, for example, 300 μm. For this reason, it is not possible to use a Δ℃ film as an electrode material for an inexpensive 4 film with an etching rate of 0.1 to 0.2 film 1 m/hour for an alkaline etching solution, and as explained earlier, Au is used as an electrode material Y1. This also increases the cost of the device.

この発明は上述した従来の問題点に鑑みなされたもので
あり、その目的は、半導体基板としてSi  (100
)基板に限定されず、−1″ピタキシトルが必要なく、
エツチングの異方性に合せた超高精度な位置合U゛が不
必要で、可動梁の形成のためのTツチング時間が短く、
電極月料として安価なA1等も使用でき、より合理的な
プ[IL?スて+jA’rりすることのできる梁IM逍
体を右Mる半導体装置を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to use Si (100
) Not limited to substrates, -1″ pitaxitol is not required,
There is no need for ultra-high precision positioning U'' that matches the anisotropy of etching, and the T etching time for forming a movable beam is short.
Cheap A1 etc. can also be used as a monthly electrode charge, making it a more reasonable option. It is an object of the present invention to provide a semiconductor device having a beam IM body that can be rotated from one side to the other.

上記の目的を速成ηるために、この発明(,1、固定電
極層を形成した半導体基板の表面を耐アル7JIJ J
ニツヂ性の絶縁膜r被覆するとともに、この絶縁謹上の
所定位置にアルカリエッチ性のポリシリコンからなる支
持台を形成し、この支持台の上面にP型不純物を高温度
に添加した耐アルカリエッチ性のポリシリコンからなる
iil動梁が一体的に支持されるように構成したことを
特徴とする。
In order to quickly achieve the above object, the present invention (1) made the surface of a semiconductor substrate on which a fixed electrode layer was formed with an aluminum-resistant material.
In addition to coating with an insulating film R, a support base made of alkali-etchable polysilicon is formed at a predetermined position to ensure insulation, and P-type impurities are added to the top surface of this support base at high temperature to provide alkali etch resistance. It is characterized in that it is constructed so that the II moving beam made of polysilicon is integrally supported.

以下、この発明の実施例を図面に基づいて訂細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図はこの発明を適用した梁構造体を右する半導体装
置の製造工程を示づ図であり、第4図は第3図の製造工
程を経て完成したこの発明に係る半導体装置を示してい
る。以下Cの半導体装置について各工程(A)〜(+−
1)に従って順番に説明する。
FIG. 3 is a diagram showing the manufacturing process of a semiconductor device for a beam structure to which the present invention is applied, and FIG. 4 is a diagram showing the semiconductor device according to the present invention completed through the manufacturing process of FIG. 3. There is. Below, each process (A) to (+-
1) will be explained in order.

(A)・・・まず、例えば抵抗率5−8ΩcmGl) 
N型81基板11を用意し、イの表面を酸化し、例えば
5000人程麿の熱酸化Si 02膜12を全面に形成
し、上述した固定電極層を形成リベき領域のSi 02
膜12を1ツヂングにより除去し、その除去部分に10
00表押度の熱酸化S ! 02膜を形成でるとともに
、その部分の3i基板11表面にイオン注入法によりボ
[1ンを注入し、薄いF)型層13を作る。
(A)...First, for example, resistivity 5-8 ΩcmGl)
Prepare an N-type 81 substrate 11, oxidize its surface, form a thermally oxidized Si02 film 12 of, for example, about 5,000 layers over the entire surface, form the above-mentioned fixed electrode layer, and remove Si02 in the exposed area.
The film 12 is removed by 1 tweezing, and the removed part is 10
00 level thermal oxidation S! At the same time as the 02 film is formed, a thin F) type layer 13 is formed by implanting boron[1] into the surface of the 3i substrate 11 in that area by ion implantation.

(B)・・・次に上)ホした熱酸化S! 02膜をフッ
酸により除去した後、再度表面を酸化して、例えば50
00人桿度の熱酸化Si 02膜にJ、り絶縁膜121
)を形成する。その後に、例えば減圧CV]〕法ニJ:
す5il−I4を約620”C’r熱分解し、例えば3
〜5μmの不純物を含まないポリシリコン層14を形成
ηる。この1稈の酸化時の熱処理によって、」−記薄い
[〕型層13は1μm以上の深さを持つICP型膚13
bとなる。
(B)...Next above) Hot thermal oxidation S! After removing the 02 film with hydrofluoric acid, the surface is oxidized again to give a
Insulating film 121 on thermally oxidized Si 02 film
) to form. After that, for example, reduced pressure CV]] Law J:
5il-I4 is pyrolyzed at about 620"C'r, e.g.
An impurity-free polysilicon layer 14 of ~5 μm is formed. By this heat treatment during oxidation of one culm, the ICP type layer 13 with a depth of 1 μm or more is formed.
It becomes b.

(C)・・・次に、例えばイオン注入法によってボロン
を加速電圧60KeVで5X10+6個/ CI Pi
!度注入し、1000℃で1時間程度熱処理することに
J、す、上記ポリシリコンIH14の表面に1×102
0個/Gl♂以十の[〕型型層相麿ポリシリ=lン層1
5を0.5ノμm稈度の厚みに形成1ノる。
(C)...Next, for example, by ion implantation, boron is implanted into 5X10+6 pieces/CI Pi at an acceleration voltage of 60 KeV.
! The surface of the above-mentioned polysilicon IH14 was injected with 1×102
0/Gl♂ or more [] type layer phase polysilicon = ln layer 1
5 to a thickness of 0.5 μm culm.

(1) )・・・次に、−■−ツヂングにより可動梁形
成領域以外の部分のポリシリ:1ノ層14 J3J、び
その表面のP型層′m度ボリシリニ1ン[台15を除去
する。
(1) )...Next, the polysilicone layer 14J3J in the portion other than the movable beam forming area and the P-type polysilinine layer 15 on the surface thereof are removed by -■- twisting.

D図に示す例では、2回の)7I]〜1ニツヂングを行
ない、ポリシリコンFi1/Iの外周部に2段に段;?
:をイ」けている。
In the example shown in Figure D, nipping is performed twice) to form two stages on the outer periphery of the polysilicon Fi1/I.
: is being written.

([)・・・次に、全表面に八lを例えば1 、 !5
 IImの厚みに蒸着した後、フA1〜]−ツヂングに
J、り不要部分のA乏を除去し、ijJ動梁に繋がるΔ
!配線16と固定電極層である1膜型層131)に繋が
る△l配線17を形成づ゛る。]〕図のようにポリシリ
コン層14の周囲に2段に段差をfJけた理由は、上記
Δ℃配線16の断線を防ぐためである。
([)...Next, add 8l to the entire surface, for example 1,! 5
After evaporating to a thickness of IIm, remove unnecessary portions of A from A1 to J, and remove Δ that connects to ijJ moving beam.
! A Δl wiring 17 is formed which connects the wiring 16 and the one-film type layer 131) which is a fixed electrode layer. ]] The reason why two steps fJ are provided around the polysilicon layer 14 as shown in the figure is to prevent the Δ° C. wiring 16 from being disconnected.

(F)・・・次に、全表面に例えばCVD法により3i
l−14を約400℃で低温酸化し、その際に燐を含有
させて例えば厚さ1.5fzmのP S G膜18をデ
ポジションした後、フ1l−IツヂングにJ、つてボン
アイングパットおよび町動梁領域十のPS G If賛
180) 膜厚を3000=5000大稈磨ニ薄くでる
。。
(F)...Next, the entire surface is coated with 3i by CVD method, for example.
After low-temperature oxidation of l-14 at about 400° C. and phosphorus being added thereto to deposit a PSG film 18 with a thickness of, for example, 1.5 fzm, a bonding pad is applied to the film l-1 with J. And PS G If 180 in the town moving beam area) The film thickness is 3000 = 5000 culm thinner. .

(G)・・・上記P S G膜18を更にフ第1〜エツ
ヂングし、可動梁領域」二のl〕S G膜を完全に除去
する。このとさ、jj1動梁の支持端側に薄いP S 
G膜19を残す。
(G)...The PSG film 18 is further etched to completely remove the SG film in the movable beam area. In this case, there is a thin P S on the supporting end side of the jj1 moving beam.
G film 19 is left.

(+−1)・・・次に、強アルカリ水溶液(例えばエチ
レンジアミン」−ピロカテコール→−水の混合液)をJ
−ツヂング液どして全体をI−ツヂングMる。すると、
3iのエツチング時度の不純物依存性によって、ポリシ
リコン14がエツチングされ、ボ[1ンが高濃度に入っ
たP型層淵度ポリシリコン層15が残り可動梁1511
がひぎる。また、ポリシリ:1ノ層14が全てエツチン
グされでしまう訳でなく、1) S G膜18でマスク
されている部分のポリシリコン層14が残り、この部分
がP壁高a庶ポリシリコンからなるiiJ動梁15hの
支持台1411どして残る。
(+-1)...Next, add a strong alkaline aqueous solution (e.g. ethylenediamine-pyrocatechol→-water mixture) to J
- Dip the entire body in I-Tsting liquid. Then,
Due to the impurity dependence during etching of 3i, the polysilicon 14 is etched, leaving a P-type deep polysilicon layer 15 with a high concentration of boron 15 remaining as the movable beam 1511.
Gahigiru. In addition, the polysilicon layer 14 is not entirely etched away; 1) the portion of the polysilicon layer 14 that is masked by the SG film 18 remains, and this portion is made of polysilicon with a P wall height of a ii) The support stand 1411 of the J moving beam 15h remains.

最1艷にボンディングパ・ンドと可1IiJI梁15h
lの薄くなっている部分50の1) S G膜の19み
分だ()全面のPSG膜18をエツチングし、第4図に
示づ半導体装置が完成づる。
Bonding pad and 1IiJI beam 15h at most
The PSG film 18 is etched over the entire surface of the thinned portion 50 (1) of the 19th part of the SG film (), and the semiconductor device shown in FIG. 4 is completed.

なお、可動梁151)の形状は、[〕図の1稈のフA1
〜エツチングで自由に作ることができる。例えば、q(
動梁1511の形状を長さ方向中央J、り先端側に重心
が移るように覆ることもできるし、あるいは、可動梁1
511の長さ方向中央に細長い穴を開口し、1−1図の
1稈のエツチング時に一1記穴から)′ルカリエッチン
グ液が浸透し、可動梁i51+の直下のポリシリコン層
14のIニツチング時間を短縮するJ:うにすることも
できる。
The shape of the movable beam 151) is the same as the one-culm frame A1 in the figure [].
~ Can be made freely by etching. For example, q(
The shape of the movable beam 1511 can be covered so that the center of gravity shifts to the tip side in the longitudinal direction, or the shape of the movable beam 1511 can be
An elongated hole is opened in the center in the length direction of 511, and when etching one culm in Figure 1-1, the alkaline etching solution permeates through hole 11, and the I-nitching of the polysilicon layer 14 directly under the movable beam i51+ is performed. Shorten the time J: You can also do this.

ここで、第4図の半導体装置の応用についで一応説明す
る。例えば、当該装置に(幾械振動がJJI目つり、そ
の振動数が可動梁15hの固イ1振0J数に等しいと、
可動梁1511は大きく共振し、可動梁1511とP型
層13bとの間隔が大きく変化りる。
Here, the application of the semiconductor device shown in FIG. 4 will be briefly explained. For example, if the mechanical vibration in the device is JJI, and its frequency is equal to the number of 0J per vibration of the movable beam 15h,
The movable beam 1511 resonates greatly, and the distance between the movable beam 1511 and the P-type layer 13b changes greatly.

P型層濃度ポリシリコン層からなる可動梁1511はそ
れ自身が電極層となってJjす、P型層131)はこれ
に対向する固定電極層であり、両者にJ〜ンて一つのコ
ンデンリ−が形成されている。イして、可動梁1511
が振動して[〕型層13bとの間隔変化が大きくなると
、上記」ンデンザの容量も振動振幅に応じて人さく変化
杖る。また当然であるが、可動梁1511の固有振動数
より大きく外れた振動が加わっても該R15IIは共振
ゼす、従って上記コンデンサの容量変化(5未小さい。
The movable beam 1511 made of a P-type layer-concentrated polysilicon layer itself becomes an electrode layer, and the P-type layer 131) is a fixed electrode layer opposing it. is formed. Then move the movable beam 1511
When the vibration occurs and the distance from the mold layer 13b increases, the capacitance of the capacitor also changes according to the vibration amplitude. Also, as a matter of course, even if a vibration that deviates significantly from the natural frequency of the movable beam 1511 is applied, the R15II will not resonate, and therefore the capacitance of the capacitor will change (less than 5%).

従って、可動梁1 E5 IIどト)型層1311との
間の容量変化を検出りる回路を設()れば、その回路の
出力から可動梁1511にその固有振動数に相当Jる振
動が加わ−)でいるかどうかを判定覆ることができる。
Therefore, if a circuit is provided to detect the capacitance change between the movable beam 1 and the E5 II type layer 1311, the output of the circuit will cause the movable beam 1511 to vibrate at a frequency corresponding to its natural frequency. It is possible to overturn the judgment of whether or not the addition -) is present.

この容量変化の検出回路は梁構造体を右する半導体装置
に一体的に集積形成することができる。
This capacitance change detection circuit can be integrally formed on the semiconductor device that supports the beam structure.

上)ホのように、この発明に係る半導体装置は例えば振
動分析装置として使用できるもので、具体的な応用例の
一つとして、自動車エンジンのノッキング検出への応用
が考えられている。ノッキング発生時にはエンジンから
顕著に約7 K fizの振動が発生するが、上記可動
梁の固有振動数を約7に+17.にしてお【プば、この
ノッキング検出を11なうことが【′さる。約7 K 
+12の固41+振動数を持つ可動梁は、本発明のよう
に梁祠どしCポリシリ−1ンを使用した場合、梁の厚み
を0.55μ■どりるど児′の長さは約330μmであ
る。このように、微小イイ半導体装直に゛C機機械型気
変換器どしこのは能と周波数弁別機能を右する装置を実
現り゛ることがC゛きる。また他の応用例とし−Cは、
iiJ動梁の水甲部に垂直に1ノ1目〕る加′a度や遠
心力による容量変化を検出するようにして、加速度ピン
リや回転旧へ応用りることし可能である。
As shown in (a) above, the semiconductor device according to the present invention can be used, for example, as a vibration analysis device, and one specific example of its application is considered to be application to the detection of knocking in an automobile engine. When knocking occurs, the engine generates a noticeable vibration of about 7 Kfiz, but the natural frequency of the movable beam is increased to about 7 + 17. If you set it to 11, you can set this knocking detection to 11. Approximately 7K
For a movable beam with a vibration frequency of +12, when C polysilicon is used as in the present invention, the thickness of the beam is 0.55 μm, and the length of the beam is approximately 330 μm. It is. In this way, it is possible to realize a device that performs the functions and frequency discrimination functions of a mechanical type air converter directly on a microscopic semiconductor device. Another application example - C is
By detecting changes in capacitance due to acceleration and centrifugal force perpendicular to the water height part of the J moving beam, it is possible to apply this method to detect acceleration errors and rotation errors.

以上訂細に説明したように、この発明に係る県゛構造体
を有する半導体装置は、半導体単板表面に、基板と半休
導電形の拡散層あるいは導電性簿++qにJ、って固定
電極層を形成し、該半導体基板表面に耐アルカリ]ツチ
性の絶縁膜をコーi〜し、この絶縁股上の所定位置にア
ルカリエッチ性のポリシリコンからなる支持台を形成し
、この支持台の上面にP型不純物を高i1i!度に添加
した耐アルカリ土ツヂ性のポリシリコンからなる可動梁
が一体的に支持されるように構成したものである/)1
1ら、第1図および第2図に示した先行例の半導体′3
A首のようにエピタキシIlル層が不必要で、半導体基
板もSi  (100)塁仮に限定されず、可動梁の直
下およびその周囲がポリシリコンであり、このポリシリ
コンはアルカリエツチング液により全方向からエツチン
グが進行りることから、長さ100μ■稈度の梁でも2
時間程度のエツチングでこれを形成することができる。
As explained in detail above, the semiconductor device having the predetermined structure according to the present invention has a fixed electrode layer on the surface of the semiconductor single plate, with a substrate and a semi-conductive diffusion layer or a conductive layer ++q. A support base made of alkali-etchable polysilicon is formed at a predetermined position on the insulating layer, and a support base made of alkali-etchable polysilicon is formed on the top surface of the support base. High i1i of P-type impurities! It is constructed so that a movable beam made of polysilicon that is resistant to alkaline earth and is added at the same time is integrally supported/)1
1 et al., the semiconductor '3 of the prior example shown in FIGS. 1 and 2
There is no need for an epitaxial layer like in the A-neck, and the semiconductor substrate is not limited to a Si (100) substrate; the area directly below and around the movable beam is polysilicon, and this polysilicon is etched in all directions with an alkaline etching solution. Since etching progresses from the beginning, even a beam with a length of 100μ
This can be formed by etching for about an hour.

このJ:うに短いJツヂング時間で済むことからアルカ
リエツチング液に対して多少のエラチングレー1へを有
づるΔ℃を電極材料として容易に使用でき、また同様な
意味で安価なPSG膜を保護膜材!l’31として使用
り゛ることができる。また、可動梁の形成のためにエツ
チングの異方性を利用しでないので、つ1ハに超高精度
な基準辺を設りる必要しない。このように本発明によれ
ば、より合J!目的なブC1ヒスでもって安価に梁構造
体を有する半導体装置を実現することができる。
This J: Since it requires a much shorter J etching time, it is possible to easily use ∆℃ as an electrode material, which has a slight elatinating gray level of 1 compared to an alkaline etching solution.In the same sense, an inexpensive PSG film can be used as a protective film material ! It can be used as l'31. Furthermore, since the anisotropy of etching is not used to form the movable beam, there is no need to provide ultra-high precision reference sides on each beam. As described above, according to the present invention, Yorigo J! A semiconductor device having a beam structure can be realized at low cost with the desired beam C1 hiss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は梁414造体を右1゛る31′導体装置の先i
j例を示づ断面図、第2図は第1図の装置にJ3 LJ
る梁形成工程を示す部分平面図、第3図はこの発明に係
る梁構造体を右Jる半導体装置の製迄丁稈を示す図、第
1図は第3図の工程を経て完成された本発明に係る半導
体装置の断1r1j図である。 11・・・・・・半導体基板 12.121)・・・・・・酸化膜 13、.13b・・・・・・固定電極層となる[〕型層
14・・・・・・ポリシリコン層 15・・・・・・P型層8F1度ポリシリ」ン層15h
・・・・・・可動梁 1411・・・・・・支持台 18・・・・・・A℃配線電極 特許出願人 [1産自動車株式会ネ1
Figure 1 shows the end of the 31' conductor device located one inch to the right of the beam 414 structure.
Figure 2 is a cross-sectional view showing an example of J3 LJ in the device shown in Figure 1.
FIG. 3 is a partial plan view showing the process of forming a beam according to the present invention, and FIG. 1r1j is a cross-sectional view of the semiconductor device according to the present invention. FIG. 11... Semiconductor substrate 12, 121)... Oxide film 13, . 13b...[] type layer 14...Polysilicon layer 15...P type layer 8F 1 degree polysilicon layer 15h
......Movable beam 1411...Support stand 18...A℃ wiring electrode patent applicant [1san Jidosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の表面が耐アルカリ−Iニッチ性の絶
縁膜で被覆され、この絶縁股上の所定位置にアルカリ土
ツヂ竹のポリシリコンからなる支持台が形成され、この
支持台の上面に1〕型不純物を高温度に添加した耐jフ
ルカリニI−ツチ性のポリシリコンからなる可動梁が一
体的に支持されていることを特徴と−する梁構造体を右
Jる半導体装置。
(1) The surface of the semiconductor substrate is coated with an alkali-resistant niche insulating film, and a support base made of alkaline earth, polysilicon, and bamboo is formed at a predetermined position on the insulation film. 1] A semiconductor device having a beam structure characterized in that a movable beam made of polycrystalline silicon resistant to high temperatures and doped with type impurities is integrally supported.
JP15482682A 1982-09-06 1982-09-06 Semiconductor device having beam structure Granted JPS5944875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15482682A JPS5944875A (en) 1982-09-06 1982-09-06 Semiconductor device having beam structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15482682A JPS5944875A (en) 1982-09-06 1982-09-06 Semiconductor device having beam structure

Publications (2)

Publication Number Publication Date
JPS5944875A true JPS5944875A (en) 1984-03-13
JPH0472190B2 JPH0472190B2 (en) 1992-11-17

Family

ID=15592720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15482682A Granted JPS5944875A (en) 1982-09-06 1982-09-06 Semiconductor device having beam structure

Country Status (1)

Country Link
JP (1) JPS5944875A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100627A (en) * 1984-10-24 1986-05-19 Yokogawa Hokushin Electric Corp Vibration type strain sensor
JPH01320470A (en) * 1988-06-21 1989-12-26 Fujikura Ltd Semiconductor acceleration sensor
JPH04192370A (en) * 1990-11-26 1992-07-10 Nissan Motor Co Ltd Semiconductor acceleration sensor
WO1994006024A1 (en) * 1992-09-04 1994-03-17 Murata Manufacturing Co., Ltd. Acceleration sensor
JP2007121107A (en) * 2005-10-27 2007-05-17 Nec Lcd Technologies Ltd Pressure sensor
USRE40347E1 (en) 1992-04-27 2008-06-03 Denso Corporation Acceleration sensor and process for the production thereof
US7578162B2 (en) 1989-12-28 2009-08-25 Kazuhiro Okada Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
JP2009294225A (en) * 2009-09-17 2009-12-17 Denso Corp Semiconductor dynamic quantity sensor
US7866210B2 (en) 1992-08-21 2011-01-11 Denso Corporation Semiconductor mechanical sensor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100627A (en) * 1984-10-24 1986-05-19 Yokogawa Hokushin Electric Corp Vibration type strain sensor
JPH0554706B2 (en) * 1984-10-24 1993-08-13 Yokogawa Electric Corp
JPH01320470A (en) * 1988-06-21 1989-12-26 Fujikura Ltd Semiconductor acceleration sensor
US7578162B2 (en) 1989-12-28 2009-08-25 Kazuhiro Okada Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
JPH04192370A (en) * 1990-11-26 1992-07-10 Nissan Motor Co Ltd Semiconductor acceleration sensor
USRE40347E1 (en) 1992-04-27 2008-06-03 Denso Corporation Acceleration sensor and process for the production thereof
USRE40561E1 (en) 1992-04-27 2008-11-04 Denso Corporation Acceleration sensor and process for the production thereof
USRE41047E1 (en) 1992-04-27 2009-12-22 Denso Corporation Acceleration sensor and process for the production thereof
USRE41213E1 (en) 1992-04-27 2010-04-13 Denso Corporation Dynamic amount sensor and process for the production thereof
USRE42083E1 (en) 1992-04-27 2011-02-01 Denso Corporation Acceleration sensor and process for the production thereof
US7866210B2 (en) 1992-08-21 2011-01-11 Denso Corporation Semiconductor mechanical sensor
WO1994006024A1 (en) * 1992-09-04 1994-03-17 Murata Manufacturing Co., Ltd. Acceleration sensor
JP2007121107A (en) * 2005-10-27 2007-05-17 Nec Lcd Technologies Ltd Pressure sensor
JP2009294225A (en) * 2009-09-17 2009-12-17 Denso Corp Semiconductor dynamic quantity sensor

Also Published As

Publication number Publication date
JPH0472190B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US5616514A (en) Method of fabricating a micromechanical sensor
JP2582229B2 (en) Method of manufacturing silicon diagram and silicon pressure sensor
US5578755A (en) Accelerometer sensor of crystalline material and method for manufacturing the same
KR100515423B1 (en) Rotational speed sensor manufacturing method
KR100414570B1 (en) Isolation Method for Single Crystalline Silicon Micro Structure Using Triple Layers
KR100348177B1 (en) Isolation Method for Single Crystalline Silicon Micro Machining using Deep Trench Dielectric Layer
CN1935632A (en) Method of manufacturing a nanowire device
JP3762928B2 (en) Micromechanical sensor and manufacturing method thereof
JPH0453267B2 (en)
JPS5944875A (en) Semiconductor device having beam structure
JP4271751B2 (en) Electronic device and method for forming a membrane for an electronic device
JP4081868B2 (en) Manufacturing method of micro device
JP2000155030A (en) Manufacture of angular velocity sensor
JPH0481868B2 (en)
JPH02218172A (en) Manufacture of semiconductor acceleration sensor
JPH01222489A (en) Manufacture of semiconductor device
JPS6267880A (en) Manufacture of semiconductor device
JP4122572B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
JP2002148278A (en) Semiconductor kinetic quantity sensor and its manufacturing method
JP3506795B2 (en) Manufacturing method of capacitance type acceleration sensor
JP4175309B2 (en) Semiconductor dynamic quantity sensor
JPH11220138A (en) Semiconductor dynamic quantity sensor and manufacture thereof
JP3638470B2 (en) Semiconductor acceleration sensor
JP3638469B2 (en) Semiconductor acceleration sensor
KR100578259B1 (en) Electronic device and film formation method for electronic device