JPS5944751A - Ion source - Google Patents

Ion source

Info

Publication number
JPS5944751A
JPS5944751A JP15565682A JP15565682A JPS5944751A JP S5944751 A JPS5944751 A JP S5944751A JP 15565682 A JP15565682 A JP 15565682A JP 15565682 A JP15565682 A JP 15565682A JP S5944751 A JPS5944751 A JP S5944751A
Authority
JP
Japan
Prior art keywords
reservoir
substance
filament
leadout
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15565682A
Other languages
Japanese (ja)
Inventor
Norimichi Anazawa
穴沢 紀道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP15565682A priority Critical patent/JPS5944751A/en
Publication of JPS5944751A publication Critical patent/JPS5944751A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/26Ion sources; Ion guns using surface ionisation, e.g. field effect ion sources, thermionic ion sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To generate stable ion beam for a long period of time by providing a heating means which heats a reservoir to which substance to be ionized is reserved, a pair of leadout electrodes attached to the end of reservoir and a means for causing electron beams to collide with the end of reservoir. CONSTITUTION:A heater 12 is uniformly wound around a reservoir 1 in which substance 4 to be ionized is reserved and the heater 12 is heated by a power source 13. A temperature of reservoir 1 is measured, for example, by a thermocouple 14 and a voltmeter 15 and is kept at the specified value in accordance with a kind of substance 4 through the feedback to the power source 13. A plug 16 hermetically seals the reservoir 1, except for a fine hole 3. When the temperature reservoir 1 reaches the preset value, an acceleration voltage and leadout voltage are applied to each electrode from the acceleration voltage source 10 and leadout voltage source 11 and moreover the filament 7 is heated by the filament voltage source not shown in the figure. Thereby, the end 2 of reservoir 1 is excited by electrons. The electron beam generated from the filament 7 is concentrated to the end portion 2 and thereby the ion beam in a heavy current can be stably obtained at the leadout electrode 5.

Description

【発明の詳細な説明】 本発明は金属イオン源に関し、特に長時間安定したイオ
ンビームを発生さヒることができるイオン源に関りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal ion source, and particularly to an ion source that can generate a stable ion beam for a long period of time.

第1図は従来の金属イオン源を示しており、1はタンタ
ルあるいはタングステンの如き金属で形成され、先端部
2には例えば0.1mm程麿0細孔3を有し、内部に例
えばヨウ化[シウムの如きイオン化物質4が貯溜された
り1アーバである。5はリザ・−バ1の先端部2に対向
して配置され、該リザーバ1に対し負の電位に保たれ、
開口6を有する引出し電極である。7は引出し電極5の
該リザーバ1とは反対側に配置された螺旋状のフィラメ
ントである。8はイオンビームI 13を加速でるため
の接地電位にされた加速電極であり、該電極8にはイオ
ンビームIB(7)射出角を制限り°る絞り板9が固定
されている。10はりff−バ1に高電圧VIを印加り
−る加速電源であり、11はり1アーバ1と引出し電極
5との間に引出し電圧V2を与える引出し電源である。
Figure 1 shows a conventional metal ion source, in which reference numeral 1 is made of metal such as tantalum or tungsten, the tip 2 has a 0.1 mm pore 3, and the inside contains, for example, iodide. [The ionized substance 4, such as lithium, is stored in an arbor. 5 is placed opposite the tip 2 of the reservoir 1 and is kept at a negative potential with respect to the reservoir 1;
This is an extraction electrode having an opening 6. Reference numeral 7 denotes a spiral filament disposed on the side of the extraction electrode 5 opposite to the reservoir 1. Reference numeral 8 denotes an acceleration electrode set to a ground potential for accelerating the ion beam I13, and a diaphragm plate 9 is fixed to the electrode 8 to limit the exit angle of the ion beam IB (7). 10 is an acceleration power source that applies a high voltage VI to the beam ff-bar 1; 11 is an extraction power source that applies an extraction voltage V2 between the beam 1 arbor 1 and the extraction electrode 5;

上tした如き構成において、リザーバ1には例えばヨウ
化しシウムの如きイオン化物賀4が入れられる。ここで
、リザーバ1と引出し電極5との間の電位差(V+−V
2)は例えば数百ボルトにされており、リザーバ1の正
・電位による電界の影響が引出し電極5の開口6を通っ
てフィラメント側に及んでおり、更に、該リリ゛−バ1
の周辺の電界は細くされた先端部2の近傍に集中してい
る。
In the configuration as described above, the reservoir 1 is filled with an ionized substance 4, such as, for example, sium iodide. Here, the potential difference (V+-V
2) is set to several hundred volts, for example, and the influence of the electric field due to the positive potential of the reservoir 1 extends to the filament side through the opening 6 of the extraction electrode 5.
The electric field around the tip is concentrated near the tapered tip 2.

その結果、フィラメント7を図示しない加熱餉源によっ
て加熱すると、フィラメント7から発生した電子はリザ
ーバ1と引出し電極5との電界によって収束され、更に
加速されて電界が集中している先端部2に衝突しその部
分を加熱でる。これにより、リザーバ1内のイオン化物
質4の温度が上昇して溶融する。そして、その一部は細
孔3を通ってリザーバ1の先端部2に流れ出す。リザー
バ1の先端部2に達したイオン化物質の液体は、リザー
バ1と引出し電極5との間に印加されている電圧によっ
て生じる電界による静′電ツノと液体自身の表面張力と
の均衝を保つ形状となる。ここで、所謂プーラコーン(
T aylor co’ne)と称する円錐を形成し、
その先端においてイオン化物質4は加熱されて蒸発し、
電子と衝突してイAン化し、更に加速電極8によって加
速されてイオンビームIBとなって取り出される。
As a result, when the filament 7 is heated by a heating source (not shown), the electrons generated from the filament 7 are focused by the electric field between the reservoir 1 and the extraction electrode 5, are further accelerated, and collide with the tip 2 where the electric field is concentrated. Heat the perilla part. This causes the temperature of the ionized substance 4 in the reservoir 1 to rise and melt. Then, a part of it flows out through the pore 3 to the tip 2 of the reservoir 1 . The ionized substance liquid that has reached the tip 2 of the reservoir 1 maintains a balance between the electrostatic horn caused by the electric field generated by the voltage applied between the reservoir 1 and the extraction electrode 5 and the surface tension of the liquid itself. It becomes a shape. Here, the so-called Pula cone (
It forms a cone called a Taylor cone.
At its tip, the ionized substance 4 is heated and evaporated,
The ion beam collides with electrons and becomes ions, and is further accelerated by the accelerating electrode 8 and extracted as an ion beam IB.

ところで、第1図に示した従来装置においては、りず−
バ1の加熱やイオン化はフィラメント7による電子衝突
にJζつ(行って、13す、リリ゛−バ1を十分に加熱
することは困テ1[であった。もちろ/υ、リザーバ1
を小さな容積のもにすれば比較的容易に加熱することか
できるが、イオン源の使用可能時間の延長を図る上では
リザーバは大きな容積のものを採用した方が望ましい。
By the way, in the conventional device shown in FIG.
The heating and ionization of the reservoir 1 was caused by the electron collisions caused by the filament 7, and it was difficult to heat the reservoir 1 sufficiently.
If the reservoir has a small volume, it can be heated relatively easily, but in order to extend the usable time of the ion source, it is preferable to use a reservoir with a large volume.

又リザーバ1の平均的な加熱(均−渇ri >は、次に
述べる点で重要である。即ち、リザーバ1の先端部2側
から加熱づるど、リザーバ1の底部にあるイオン化物質
4が加熱され、液化し、更には気化して■1孔3より放
出されるが、一方ではその気化したイオン化物質4の蒸
気の一部はリザーバ1.F部の空間に移動する。この時
、すIアーム1上部の温度はイオン化物質4の融点より
低くなっているため、蒸気の一部はリザーバ1内壁に凝
結して付着りる。この状態でイオン源を長時間動作さけ
ると、この凝結は更に進みリザーバ1内壁の低温部分の
厚い再結晶層を形成してしまう。従って、この分のイオ
ン化物質4は細孔3より放出さlることができり゛、イ
オン源の使用可能時間を短縮さけ、又安定したイオンビ
ームをfiることは難しい。
In addition, the average heating of the reservoir 1 (uniform depletion r i The vaporized ionized substance 4 is liquefied, liquefied, and further vaporized and released from the hole 3 of the ionized substance 4. On the other hand, a part of the vapor of the vaporized ionized substance 4 moves into the space of the reservoir 1.F. Since the temperature at the top of the arm 1 is lower than the melting point of the ionized substance 4, some of the vapor condenses and adheres to the inner wall of the reservoir 1. If the ion source is not operated for a long time in this state, this condensation will continue. This leads to the formation of a thick recrystallized layer on the low-temperature part of the inner wall of the reservoir 1. Therefore, this amount of ionized substance 4 can be released from the pores 3, thereby reducing the usable time of the ion source. Also, it is difficult to produce a stable ion beam.

本発明は以上に鑑みてなされたもので先端部に細孔を有
しその内部にイオン化される物質が入れられ、該細孔以
外の部分を密封し得るリザーバと、該リザーバの略全体
を一定温度に保つ加熱手段と、該リザーバの先端部に対
向して配置された引出し電極と、該リザーバ先端部に電
子ビームを衝撃することを特徴といている。
The present invention has been made in view of the above, and includes a reservoir that has a pore at its tip, into which a substance to be ionized is placed, and a portion other than the pore that can be sealed; It is characterized by a heating means for maintaining the temperature, an extraction electrode disposed opposite to the tip of the reservoir, and an electron beam bombarding the tip of the reservoir.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例であるイオン源の断面略図で
ある。図において、第1図と同一部分には同一符号を付
してその説明を省略りる。図中12はり1f−バ1の周
囲に均一に巻回された例えばヒータで、該ヒータ12は
ヒータ電源13により加熱されるが、リザーバ1の温度
が実質的に均一となるように形成されている。す1f−
バ1の温度は、たとえば熱電対14と電圧側15によっ
て測定され、その出力をヒータ電源13にフィードバッ
クすることによりあらかじめ設定された一定の温度に保
たれる。16は、リザーバ1を密閉し内部の気化した蒸
気を外部に逃がさないための栓である。
FIG. 2 is a schematic cross-sectional view of an ion source that is an embodiment of the present invention. In the figure, the same parts as in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted. In the figure, the beam 12 1f is, for example, a heater that is uniformly wound around the bar 1. The heater 12 is heated by a heater power source 13, and is formed so that the temperature of the reservoir 1 is substantially uniform. There is. 1F-
The temperature of the bar 1 is measured, for example, by a thermocouple 14 and a voltage side 15, and its output is fed back to the heater power source 13 to maintain a preset constant temperature. 16 is a stopper for sealing the reservoir 1 and preventing vaporized vapor inside from escaping to the outside.

以上の様に構成された実施例装詔において、まずヒータ
12をヒータ電源13ににり加熱しリザーバ1を加熱覆
る。リザーバ1の温度は、熱電対14と電圧i115に
よつC一定温度に保たれるが、この設定温度は使用され
るイオン化物質40種類によって異り、例えばヨウ化セ
シウムの場合には630℃前後が適当である。この渇瓜
を保つと内部のイオン化物質4は液化し一部は気化する
が、り量アーム1の底部の細孔33以外は密封されてい
るためり1f−バ1内部はその温度で飽和蒸気圧が保た
れる。リザーバ1の細孔3は、図では誇張して大きく描
かれでいるが、実際には直径Q、1mm以トと極めUl
llかくされている。このため、すIJ” −バ1内の
液化されたイオン化物質4が急激に放出されることはな
い。又りIJ’−バ1は設定温度に達した後は、常に一
定温度にコントロールされるため気化したイオン化物質
4の1部がリザーバ1の内壁に(=I着し−Cも凝結す
ることはなく、従って結晶層を形成Jることもない。リ
ザーバ1が設定温度に達J−るど、加速電源10及び引
出し電源11より各電極に加速電圧V1引出し電圧V2
を印加し、更に図示しないフィラメント電源によって、
フィラメント7を加熱して先端部2を電子衝撃する。こ
の際′VJ![電子の大多数を先端部2附近に集中させ
る。この場合従来装置においては、リザーバ1の広い範
囲を電子衝撃によって加熱する必要があったため、電子
束をある程度拡散させなければならず、必然的にリザー
バ先端部2に照射さゼる電子ビーム電流は少くなり、結
果として発生ずるイオンビームmも少くなったが上述し
た実施例においてはヒータ12によってリザーバ1を加
熱覆るようにしているため、フィラメント7から発生し
た電子ビームを先端部2のみに集中させることができ、
効率的に細孔3からのイオン化物質を蒸発さけ、イオン
化することができるため、大電流のイオンビームを得る
ことができる。更に従来、該リザーバの温度制御を衝撃
電子の集束、拡散を制御することによって行っており、
このため引出し電圧Vz(7gしくはノイラメン1〜7
に与えるバイアス電圧)が制御されていたが、これは同
時に電子ビーム自身のエネルギを変えることにJ、す、
該電子ビームの1ネルギの変化に伴いイオン電流も変化
づることから、結果的にイオンビームは不安定となって
いた。本実施例装閤では、リザーバ1全体の加熱とイオ
ン化のための電子衝撃とを分離することにより、リリ゛
−バ1の温度を電子ビームの衝撃とは独X′Lに」ン]
−1」−ル出来るにうにしているため、安定したイオン
ビームを得ることができる。
In the embodiment configured as described above, first, the heater 12 is heated by the heater power source 13 to heat the reservoir 1. The temperature of the reservoir 1 is maintained at a constant C temperature by a thermocouple 14 and a voltage i115, but this set temperature varies depending on the 40 types of ionized substances used; for example, in the case of cesium iodide, it is around 630 degrees Celsius. is appropriate. If this dehydration is maintained, the ionized substance 4 inside will liquefy and some will be vaporized, but since the pores 33 at the bottom of the metering arm 1 are sealed, the inside of the chamber 1f-bar 1 will remain saturated steam at that temperature. Pressure is maintained. Although the pores 3 of the reservoir 1 are exaggeratedly drawn in the figure, they actually have a diameter Q of 1 mm or less, which is extremely large.
It's hidden. Therefore, the liquefied ionized substance 4 in the IJ'-bar 1 is not released suddenly. Also, after the IJ'-bar 1 reaches the set temperature, it is always controlled at a constant temperature. Therefore, a part of the vaporized ionized substance 4 (=I) adheres to the inner wall of the reservoir 1, and the -C is not condensed, so no crystal layer is formed.When the reservoir 1 reaches the set temperature, Acceleration voltage V1 extraction voltage V2 is applied to each electrode from acceleration power source 10 and extraction power source 11.
is applied, and further by a filament power supply (not shown),
The filament 7 is heated and the tip 2 is bombarded with electrons. At this time, 'VJ! [The majority of electrons are concentrated near the tip 2.] In this case, in the conventional device, since it was necessary to heat a wide area of the reservoir 1 by electron impact, the electron flux had to be diffused to some extent, and the electron beam current irradiated to the reservoir tip 2 was inevitably reduced. As a result, the number of ion beams m generated also decreased, but in the above-described embodiment, since the reservoir 1 is heated and covered by the heater 12, the electron beam generated from the filament 7 is concentrated only on the tip 2. It is possible,
Since the ionized substance from the pores 3 can be efficiently evaporated and ionized, an ion beam with a large current can be obtained. Furthermore, conventionally, the temperature of the reservoir has been controlled by controlling the focusing and diffusion of impact electrons.
Therefore, the extraction voltage Vz (7g or Noiramen 1 to 7
The bias voltage applied to the
Since the ion current also changes as the energy of the electron beam changes, the ion beam becomes unstable as a result. In the device of this embodiment, by separating the heating of the entire reservoir 1 and the electron impact for ionization, the temperature of the reservoir 1 can be made independent of the impact of the electron beam.]
A stable ion beam can be obtained because the

第3図は、第2図の実施例装置の細孔3を貝通し乙、た
とえばタングスデン製からなる剣状部材17を設(プた
ものである。この場合には、すIJ”−バ1内の液化さ
れたイオン化物質4は、針状部材17の表面を先端部1
8に向(〕(移送し、先端部18の強電界によって所謂
テーラ−=1−ンの円錐を形成し電界蒸発してイオンビ
ームを取り出づことができる。この場合にもリリ゛−バ
1の温度と電子束の集束とを独立に二1ン1〜D−ル出
来るため同様な効果を得ることができる。
FIG. 3 shows a case in which a sword-shaped member 17 made of, for example, tungsden is inserted through the pore 3 of the device of the embodiment shown in FIG. The liquefied ionized substance 4 inside the needle-like member 17 touches the tip end 1.
8, the strong electric field at the tip 18 forms a so-called Taylor-1 cone, and the ion beam can be extracted by electric field evaporation. Similar effects can be obtained because the temperature of 1 and the focusing of electron flux can be adjusted independently.

以トの様に本発明はリザーバ先端部を電子衝撃すること
によりリザーバを加熱し、リザーバ内部のイオン化物質
を加熱溶融りるど共にイオン化り−るよう構成された装
置において、リザーバ内部の加熱とイオン化のための電
子衝撃とを分離し、リザーバの温度と電子束の集束とを
独立に]ン1〜ロールすることにより、イオン源の使用
可能時間を延長し安定したイオンビームを得ることがで
きる。
As described above, the present invention heats the reservoir by bombarding the tip of the reservoir with electrons, thereby heating and melting the ionized substance inside the reservoir and ionizing it at the same time. By separating the electron impact for ionization and independently controlling the temperature of the reservoir and the focusing of the electron flux, it is possible to extend the usable time of the ion source and obtain a stable ion beam. .

【図面の簡単な説明】 第1図は従来のイオン源の構成断面略図、第2図は本発
明の一実施例の構成断面略図、第3図は本発明の一実施
例装置の部分拡大図である。 1:リザーバ、2:先端部、3:細孔、4:イオン化物
質、5:引出し電極、6:間口、7:フイラメン1〜.
8:加速電極、9;絞り板、10:加速電源、11:引
出し電源、12:ヒータ、13:ヒータ電源、1/I:
熱電対、15:電圧泪、16:枠、17:剣状部材、1
8二針状部材先端部。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic cross-sectional view of the configuration of a conventional ion source, FIG. 2 is a schematic cross-sectional view of the configuration of an embodiment of the present invention, and FIG. 3 is a partially enlarged view of an apparatus according to an embodiment of the present invention. It is. 1: reservoir, 2: tip, 3: pore, 4: ionized substance, 5: extraction electrode, 6: frontage, 7: filament 1-.
8: accelerating electrode, 9: aperture plate, 10: accelerating power source, 11: drawing power source, 12: heater, 13: heater power source, 1/I:
Thermocouple, 15: Voltage, 16: Frame, 17: Sword-shaped member, 1
8 Two-needle member tip.

Claims (1)

【特許請求の範囲】 1、先端部に細孔を有しその内部にイオン化される物質
が入れられ、該細孔以外の部分を密封し得るリリ“−バ
と、該リザーバの略全体を一定温度に保つ加熱手段と、
該リザーバの先端部に対向して配置された引出し電極と
、該す1f−バ先端部に電子ビームを衝撃するだめの電
子発生手段を備えたイオン源。 2、該リリ“−バの細孔を貫通して剣状部材が配置され
ている特許請求の範囲第1項記載のイオン源。
[Scope of Claims] 1. A reservoir having a pore at its tip, into which a substance to be ionized is placed, and a portion other than the pore can be sealed; heating means for maintaining the temperature;
An ion source comprising an extraction electrode disposed opposite to the tip of the reservoir, and an electron generating means for bombarding the tip of the 1f-bar with an electron beam. 2. The ion source according to claim 1, wherein a sword-shaped member is disposed passing through the pore of the reliever.
JP15565682A 1982-09-06 1982-09-06 Ion source Pending JPS5944751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15565682A JPS5944751A (en) 1982-09-06 1982-09-06 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15565682A JPS5944751A (en) 1982-09-06 1982-09-06 Ion source

Publications (1)

Publication Number Publication Date
JPS5944751A true JPS5944751A (en) 1984-03-13

Family

ID=15610731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15565682A Pending JPS5944751A (en) 1982-09-06 1982-09-06 Ion source

Country Status (1)

Country Link
JP (1) JPS5944751A (en)

Similar Documents

Publication Publication Date Title
US2131204A (en) Indirectly heated thermionic cathode
US5243638A (en) Apparatus and method for generating a plasma x-ray source
US4318029A (en) Liquid metal ion source
JPS5838906B2 (en) metal ion source
US3436584A (en) Electron emission source with sharply defined emitting area
JPH0572698B2 (en)
JPS6322406B2 (en)
JPH0456761A (en) Thin film forming device
JPS5944751A (en) Ion source
US3229157A (en) Crucible surface ionization source
US3911311A (en) Field desorption ion source and method of fabrication
JPS6322405B2 (en)
US4983845A (en) Apparatus operating with contact ionization for the production of a beam of accelerated ions
JPS6340013B2 (en)
JPH051895Y2 (en)
JPS6240344Y2 (en)
Sakai et al. Compact metal-ion beam source using thermal contact ionizer
EP3716308A1 (en) Gas cluster ion beam apparatus and analyzing apparatus
JPH05117843A (en) Thin film forming method
US4171462A (en) Linear electron beam gun evaporator having uniform electron emission
Cocca et al. Grid controlled plasma electron beam
US4924102A (en) Apparatus for generating negatively charged species
JP2618006B2 (en) Negative charge generator
JPS602745B2 (en) ion source device
JP2000173531A (en) Vacuum forming method and high melting point metal use getter pump