JPS5944646A - Method for evaluating purity of semiconductor sealing resin - Google Patents

Method for evaluating purity of semiconductor sealing resin

Info

Publication number
JPS5944646A
JPS5944646A JP15518582A JP15518582A JPS5944646A JP S5944646 A JPS5944646 A JP S5944646A JP 15518582 A JP15518582 A JP 15518582A JP 15518582 A JP15518582 A JP 15518582A JP S5944646 A JPS5944646 A JP S5944646A
Authority
JP
Japan
Prior art keywords
rays
chlorine
resin
semiconductor
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15518582A
Other languages
Japanese (ja)
Inventor
Momoko Takemura
竹村 モモ子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15518582A priority Critical patent/JPS5944646A/en
Publication of JPS5944646A publication Critical patent/JPS5944646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Abstract

PURPOSE:To measure the purity of a sealing resin by irradiating X-rays, electron rays or gamma-rays to a semiconductor sealing resin material and detecting the intrinsic X-ray intensity generated by the chlorine atom in the material. CONSTITUTION:An element sealed with an epoxy resin for semiconductor sealing as a sample is polished of its surface with sand paper, whereafter the element is cleaned with ethyl alcohol. X-rays are irradiated to the surface thereof, and the intrinsic X-ray (ClKalpha ray) of chlorine of 4.73Angstrom wavelength in the generated X-rays is separated by a germanium single crystal. The intensity thereof is detected with a proportional counter and the content of chlorine is detected. The sample may be powder which is a raw material for molding or may be the material after formed into the element. The detection of the chlorine content up to 10ppm with the sample of about 30mm. diameter produced by pressure molding of resin powder and up to 50ppm with the same of about 5mm. width sealed therein with a semiconductor is possible.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、半導体封止樹脂の純度を評価する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for evaluating the purity of semiconductor encapsulation resin.

[発明の技術的背景とその問題点] 現在半導体封止に最も多用されている封止材料は、エポ
キシ系樹脂、シリコーン系樹脂などの合成樹脂でるる。
[Technical Background of the Invention and its Problems] The encapsulating materials most commonly used for semiconductor encapsulation at present are synthetic resins such as epoxy resins and silicone resins.

これらの封止樹脂材料の純度は、封止されている半導体
素子の寿命を決定する主要因のひとつであることが知ら
れている。即ち、樹脂中に含まれているNaclなどの
不純物は、水との共存によりイオン化し半導体素子の表
面のアルミニウム配線を腐食する直接的原因となってい
る。
It is known that the purity of these encapsulating resin materials is one of the main factors that determines the lifespan of the encapsulated semiconductor element. That is, impurities such as NaCl contained in the resin are ionized by coexistence with water and become a direct cause of corrosion of the aluminum wiring on the surface of the semiconductor element.

また1 これらイオン性不純物は半導体の電気的特性を
劣化させる一因ともなっている。
In addition, these ionic impurities also contribute to the deterioration of the electrical characteristics of semiconductors.

第1表は、封止@脂材料中に含まれる不純物含量と、素
子の良・不良との関連性を示1−もので、表から明らか
なように、不純物台1よと、この樹脂材料を用いて製造
した素子の不良品の発生には明らかな相関性がある。
Table 1 shows the relationship between the impurity content contained in the sealing resin material and whether the element is good or defective.As is clear from the table, the impurity level 1 and the resin material There is a clear correlation between the occurrence of defective products in devices manufactured using this method.

第1表 (単位Pi’m ) そこで、半導体封止用樹脂材料の開発、製造においては
、イオン化しやすい不純物成分の低減化、およびその評
価、管W技術が重壁となっている。
Table 1 (Unit: Pi'm) Therefore, in the development and manufacture of resin materials for semiconductor encapsulation, the reduction of impurity components that are easily ionized, their evaluation, and tube W technology are critical issues.

−4だ、こす1に伴い晶品質封止樹脂材料の選択1品η
管理のための純度評価方法が極めて型費になってきてい
る。
-4, selection of crystal quality sealing resin material 1 item η according to strain 1
Purity evaluation methods for control are becoming extremely expensive.

従来の制止4Mi脂不純物評価法とし2ては、封市街脂
を破壊、溶液化し、不純物成分を宇量する方法が知らi
]ているが、この方法は、封止樹脂が種々成分より成る
複合材料であるため非常に煩雑であると共に9険精度が
不十分である。また、他の方法としては、加熱あるいけ
加圧条件下で不純物を水抽出し、抽出水について原子吸
光分析法、あるいは吸光光度分析法等により各種イオン
を9旬する方法が知られている。(日経エレクトロニク
ス。
As a conventional method for evaluating fat impurities, a method is known in which the sealing fat is destroyed, turned into a solution, and the impurity components are removed.
] However, this method is very complicated because the sealing resin is a composite material made of various components, and the accuracy is insufficient. Another known method is to extract impurities with water under heated or pressurized conditions, and then extract various ions from the extracted water using atomic absorption spectrometry or spectrophotometry. (Nikkei Electronics.

1978 、11.27.  )’、145〜161)
この方法は多数の不純物を抽出分離し、9餉することに
より封止樹脂拐料の評価を行なうものでを)るが、多数
の不純物の抽出定量は、鳩雑で時間がか〃・す実用的で
はなかった。
1978, 11.27. )', 145-161)
This method evaluates the sealing resin particles by extracting and separating a large number of impurities and evaporating them.However, extraction and quantitative determination of a large number of impurities is cumbersome and time-consuming. It wasn't on point.

このような背景のもとに、半導体封止後の封止樹脂乃至
、封止前の封止樹脂材料粉体について、短時間で手際よ
く、高精度で純度評価できる方法が望まれていた。
Against this background, there has been a desire for a method that can quickly, efficiently, and highly accurately evaluate the purity of the encapsulating resin after semiconductor encapsulation or the encapsulating resin material powder before encapsulation.

[発明の目的] 本グI−明は、生導体耐止用樹脂材料の純度rF価法に
おける従来技術の欠点を改良すべくなされたものであっ
て、高精度でかつ簡便な評価方法′5!:提供すること
を目的と−4るものである。
[Purpose of the Invention] The present invention was made to improve the shortcomings of the prior art in the purity rF value method of resin materials for resisting live conductors, and provides a highly accurate and simple evaluation method '5. ! : The purpose is to provide -4.

[発明の概要] 本発明の半導体制止樹脂の純度評価方法は、樹脂材料に
、X線、電子線又はγ線等の放射線を照射(2、材料中
の塩素原子より発生する塩素の固有xHを検出し2、そ
の強度により、封止樹脂の純度を測定することを特徴と
するものでp〕る。
[Summary of the Invention] The method for evaluating the purity of a semiconductor inhibiting resin of the present invention involves irradiating a resin material with radiation such as X-rays, electron beams, or γ-rays (2. The method is characterized in that the purity of the sealing resin is measured based on the detected intensity.

すなわち、樹脂に放射線を照射すると■づ脂を構成する
成分に起因する波長成分からなるX線が発生する。本発
明においては、かかるX囮のうちから塩素原子に起因す
る波長成分IJIIち堵5素の同宿X線を分離検出し、
その強度を測定し7て不純物含量の指標とし」・j正位
+ II!の純度評価をするものである。
That is, when a resin is irradiated with radiation, X-rays are generated having wavelength components caused by the components constituting the resin. In the present invention, from among such X decoys, the same wavelength component IJII-5 elements caused by chlorine atoms is separated and detected,
Measure its strength and use it as an index of impurity content. It evaluates the purity of

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

d・(料となる封止樹脂は、成形原料である粉末状でも
、素子形成後のものであっても差支えない。成形原料粉
末を測定する場合には、原料粉体自体、あるいは更に粉
砕し7たものを、底面にポリエステルあるいはポリプロ
ピレン等の薄膜を張設した液体試ネ・1測定容器に入れ
、測定に供する。他の方法と1−2ては、樹脂材料粉末
を加圧成形し、だものを測定し7てもよい。また、封止
後の樹脂を測定するKは、素子そのものを測定1.でも
よいが、表面を溶剤で洗浄−rる/μ、あるいはサンド
ペーパーで表面を研削すれば、更に再現性のよい結果が
得られる。
d. (The sealing resin used as the raw material may be in powder form as a molding raw material or in the form of a molded raw material after the element has been formed. When measuring molding raw material powder, the raw material powder itself or further crushed powder may be used.) 7 is placed in a liquid test container with a thin film of polyester or polypropylene stretched on the bottom for measurement. In addition, to measure the resin after sealing, the element itself may be measured in step 1. However, the surface may be washed with a solvent or rubbed with sandpaper, or the surface may be sandpapered with sandpaper. Grinding provides even more reproducible results.

この試料にX線、電子線、γ線のような放射線を照射し
て、成分元素の固有Xiを発生きせる6、結晶分光ある
いは半導体検出器によるエネルギー分散など従来公知の
分光技術によυ塩素原子に起因する固有X線を分離し、
その頻度を測戻し、得られる測定値を、予じめ設定しで
ある基準値と比較して不純物含量の評価を行なうことが
できる。
This sample is irradiated with radiation such as X-rays, electron beams, and γ-rays to generate the inherent Xi of the component elements. Separate the characteristic X-rays caused by
The impurity content can be evaluated by measuring back the frequency and comparing the obtained measured value with a preset reference value.

本発明において、純IW指標として塩素を採用したのは
、次のような見解による。
The reason why chlorine was adopted as a pure IW indicator in the present invention is based on the following opinion.

すなわち、前述の表Jからも明らかなように抽出不純物
含有量の傾向は、不純物成分に依存することなく皆はと
んど同じであり、し、かも塩素の量が最も多い。捷だ塩
素は一般的に金属層1食の9因となる仁とが知られてお
り、半導体AI配線事故でも小数部分から高濃度検出さ
れる頻度が高い。
That is, as is clear from Table J above, the tendency of the extracted impurity content is almost the same regardless of the impurity component, and the amount of chlorine is the largest. Chlorine is generally known to be one of the 9 causes of metal layer corrosion, and high concentrations are often detected in the decimal part of semiconductor AI wiring accidents.

こわ、らの見知から、現在の半導体制止樹脂では純度指
標を塩素とするのが最も妥当なことは明らかとなった1
、またさらに種々の実験の積みルねの結果、−例と[2
て第1図に示し7たように、抽出塩素とがわさっている
。従って半導体不良発生と、抽出塩素量との相関は、総
塩素箪と置きかえることができ、総塩累量を純度指標と
するのは極めて有効である。即ち、総塩素魚に対応する
塩素固有X線強度int+定により、制止樹脂の純度肝
価を行なうことができる。
From the knowledge of Kowa et al., it has become clear that it is most appropriate to use chlorine as the purity indicator for current semiconductor inhibiting resins1.
, and the results of various experimental runs, - Examples and [2
As shown in Figure 1, there is a difference between extracted chlorine and extracted chlorine. Therefore, the correlation between the occurrence of semiconductor defects and the amount of extracted chlorine can be replaced with the total amount of chlorine, and it is extremely effective to use the total cumulative amount of salt as a purity index. That is, the purity value of the inhibitor resin can be determined by the chlorine-specific X-ray intensity int+, which corresponds to the total chlorine fish.

[発明の効:!k ] l/Tφ近の制止樹脂は改良が進み、不純物#度がかな
り低いが、本発明の方法によれば樹脂粉末を加用成形し
、た直径30朋程度の大きさの試料では10 ppm−
4で、半導体封止したliJ 5 ml!はどのもので
も、50 pprnまでの塩素量を検出定量することが
できるので、Rj′近の高純度樹脂についても迅速に評
価ず・Lことができる。また、評価対象試料として原料
粉末、・成形後の素子のいずf′1.も*fi 4’−
な方法で非破壊分析でき、その工業的価値は犬である1
、[発明の実施例] 市販の7種類の半導体制止用エボギシ樹脂で封止した素
子を試料とシフ、その表面をサンドペーパーで研削した
後、エチルアルコールで洗沖した。
[Efficacy of invention:! k ] Restraint resins near l/Tφ have been improved and have a considerably low impurity level, but according to the method of the present invention, resin powder is added and molded, and a sample with a diameter of about 30 mm has a concentration of 10 ppm. −
4, 5 ml of semiconductor-sealed liJ! Any of these can detect and quantify chlorine amounts up to 50 pprn, so even high purity resins near Rj' can be quickly evaluated. In addition, as samples to be evaluated, the raw material powder and the element f'1 after molding were used. Mo*fi 4'-
It can be analyzed non-destructively using a method of
, [Example of the Invention] Elements sealed with seven types of commercially available epoxy resins for semiconductor blocking were mixed with a sample, and the surface thereof was ground with sandpaper and then washed with ethyl alcohol.

次いで、その表面KX線を照射し7、発生1.だX線の
うち、波長4.73人の塩素の固有X線(CIKα線)
4に1 をゲルマニウム単結晶により分離し比卵目[数官でその
強度〒検出し、塩素・ざ右扉を算出した。比較のために
、水抽出による不純物量測定法により同じ試料の不純物
量を測定した。本発明方法の測定には約10公費したの
に対して、比較方法の実施には約3時間を要した。
Next, the surface is irradiated with KX-rays 7, and generation 1. Of the X-rays, the wavelength is 4.73, and the unique X-rays of chlorine (CIKα rays)
4 to 1 was separated using a germanium single crystal, and its intensity was detected using a number function, and the chlorine and zombination were calculated. For comparison, the amount of impurities in the same sample was measured using an impurity amount measurement method using water extraction. The measurement using the method of the present invention required approximately 10 public expenditures, while the comparative method required approximately 3 hours.

本発明実施例の結果を第2表に示す。The results of the examples of the present invention are shown in Table 2.

また、同表に半導体素子寿命の加速試験方法であるプレ
ッシャークツカーバイアス試験の結果を併せて示す。
The same table also shows the results of a pressure puller bias test, which is an accelerated test method for semiconductor device life.

同表にみられるように、本発明方法によれば、封止樹脂
の不純物濃度を極めて正確に、かつ短時間で検知するこ
とが可能であり、しかもその結果は素子寿命との相関性
が大きく、封止樹脂の評価方法として優れていることが
明らかとなった。
As shown in the table, according to the method of the present invention, it is possible to detect the impurity concentration of the sealing resin extremely accurately and in a short time, and the results are highly correlated with the element life. It has become clear that this method is an excellent method for evaluating sealing resins.

眼、丁亥9 第2表 事 ※累積不良率50%までの時間(median 1if
e )
Eye, Dinghai 9 2nd table ※ Time to cumulative defective rate 50% (median 1if
e)

【図面の簡単な説明】[Brief explanation of drawings]

代理人弁理士 則 近 憲 佑(はが1名)第1図 Representative Patent Attorney Noriyuki Chika (1 person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体封止樹脂に、放射線を照射し、半導体封止樹脂中
の塩素原子よ多発生する固有X線を検出
Semiconductor encapsulation resin is irradiated with radiation and unique X-rays, which are generated more frequently than chlorine atoms in semiconductor encapsulation resin, are detected.
JP15518582A 1982-09-08 1982-09-08 Method for evaluating purity of semiconductor sealing resin Pending JPS5944646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15518582A JPS5944646A (en) 1982-09-08 1982-09-08 Method for evaluating purity of semiconductor sealing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15518582A JPS5944646A (en) 1982-09-08 1982-09-08 Method for evaluating purity of semiconductor sealing resin

Publications (1)

Publication Number Publication Date
JPS5944646A true JPS5944646A (en) 1984-03-13

Family

ID=15600336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15518582A Pending JPS5944646A (en) 1982-09-08 1982-09-08 Method for evaluating purity of semiconductor sealing resin

Country Status (1)

Country Link
JP (1) JPS5944646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810776A (en) * 1986-07-14 1989-03-07 Ciba-Geigy Corporation Process for producing epoxy resin having a low-EHC-content from chlorine-substituted crude epoxy resin of high EHC-content and apparatus for automatically controlling such process
JPH02226057A (en) * 1989-02-27 1990-09-07 Ngk Insulators Ltd Measurement of amount of dirt in insulator
JPH02227646A (en) * 1989-02-28 1990-09-10 Ngk Insulators Ltd Measuring instrument for quantity of dirt of insulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810776A (en) * 1986-07-14 1989-03-07 Ciba-Geigy Corporation Process for producing epoxy resin having a low-EHC-content from chlorine-substituted crude epoxy resin of high EHC-content and apparatus for automatically controlling such process
JPH02226057A (en) * 1989-02-27 1990-09-07 Ngk Insulators Ltd Measurement of amount of dirt in insulator
JPH02227646A (en) * 1989-02-28 1990-09-10 Ngk Insulators Ltd Measuring instrument for quantity of dirt of insulator

Similar Documents

Publication Publication Date Title
JP5981543B2 (en) Substance detection and / or classification
Wobrauschek et al. TXRF with synchrotron radiation Analysis of Ni on Si-wafer surfaces
US2722609A (en) Radiation analysis
JPS5944646A (en) Method for evaluating purity of semiconductor sealing resin
Van Heerden A new apparatus in nuclear physics for the investigation of β-and γ-rays. Part I
US4431766A (en) Coded polymeric material and method
JP2928688B2 (en) Pollution element analysis method and device
Al-Merey et al. X-ray fluorescence analysis of geological samples: exploring the effect of sample thickness on the accuracy of results
Becker et al. Precision measurements of nuclide half-lives
US2890344A (en) Analysis of materials by x-rays
Bramlitt Gamma-Gamma Coincidence Counting Applied to Chlorine Analysis by Neutron Activation.
Vis et al. The capabilities of proton induced X-ray fluorescence in analytical chemistry
Kunzendorf et al. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry
Yoshinaga et al. Application of inductively coupled plasma mass spectrometry (ICP-MS) to multi-element analysis of human organs
El Samad et al. Radiation baseline levels in Lebanon: environmental survey and public dose assessment
Reed Determination of Ni, Ga, and Ge in iron meteorites by X‐ray fluorescence analysis
Muller et al. TSC in HgI2 crystals grown by solution and vapor phase techniques
Zikovsky et al. Use of computer simulated γ-ray spectra in activation analysis
Farley Half-period of th232
Uffelmann Quantitative XRF of solid samples using an iterative matrix correction code
Ciftcioglu et al. A gamma-backscatter density gauge with differential-mode counting
Klyavin et al. Investigation of the concentration gradient and extraction of helium atoms from copper deformed in a liquid-helium medium
Kondrik Effect of defects originating under the proton irradiation on the electrophysical and detector properties of CdTe: Cl and CdZnTe
Rusu et al. Determination of long-lived radionuclides in water by alpha spectrometry
Saleh et al. Enhancement effects in XRF analysis