JPS5944645B2 - solar power supply - Google Patents

solar power supply

Info

Publication number
JPS5944645B2
JPS5944645B2 JP51113477A JP11347776A JPS5944645B2 JP S5944645 B2 JPS5944645 B2 JP S5944645B2 JP 51113477 A JP51113477 A JP 51113477A JP 11347776 A JP11347776 A JP 11347776A JP S5944645 B2 JPS5944645 B2 JP S5944645B2
Authority
JP
Japan
Prior art keywords
solar
power
solar cell
output
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51113477A
Other languages
Japanese (ja)
Other versions
JPS5338994A (en
Inventor
武 折井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP51113477A priority Critical patent/JPS5944645B2/en
Publication of JPS5338994A publication Critical patent/JPS5338994A/en
Publication of JPS5944645B2 publication Critical patent/JPS5944645B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は多数個の太陽電池を直・並列に電気的に組合せ
られた太陽電池パネルとエネルギー蓄積素子(蓄電池)
および電力制御器を主体とする電源装置に関するもので
ある。
[Detailed Description of the Invention] The present invention provides a solar cell panel and an energy storage element (storage battery) in which a large number of solar cells are electrically combined in series and parallel.
The present invention also relates to a power supply device mainly consisting of a power controller.

太陽電池を電力発生源として使用する電源装置において
は、一時的な大電力負荷や、太陽電池に光が入射しない
時における対策として蓄電池を太陽電池と組合わせて使
用するのが普通である。
In a power supply device that uses a solar cell as a power generation source, a storage battery is usually used in combination with the solar cell as a countermeasure against a temporary large power load or when no light is incident on the solar cell.

従来の太陽電池電源装置は、第1図のブロック図に示す
様なシャント回路方式の電源装置が一般的であつた。す
なわち、多数個の太陽電池1を直列・並列に電気的に接
続した太陽電池パネル2とこれより発生した電力を消費
する負荷3とこの負荷3が太陽電池パネル2の出力より
大きい時や太陽電池パネル2の出力がない時に電力を負
荷3へ供給する蓄電池4と太陽電池パネル2の余剰電力
を消費するシャント回路5と、太陽電池パネル2の出力
を負荷3へ供給したり、蓄電池4へ充電したり、シャン
ト回路5で余剰電力を消費させたり又は蓄電池4の電力
を負荷3へ供給したりする電力制御器6から構成されて
いる。従つて、従来の方式では太陽電池パネルで発生す
る電力自体を制御するのではなく、発生してしまつた電
力を処理する方式であるために、負荷3の消費電流IL
と蓄電池4に必要な電流IBATの合計(IL+IBA
T)が太陽電池パネル2で発生した出力電流IBusよ
り少くない場合、すなわち1Bus>1L+IBATな
る関係にある場合はIBus−(IL+IBAT)=
[ sHuNTなる電流が余る事になる。
Conventional solar battery power supplies have generally been shunt circuit type power supplies as shown in the block diagram of FIG. In other words, there is a solar panel 2 in which a large number of solar cells 1 are electrically connected in series and parallel, a load 3 that consumes the power generated from the solar panel 2, and when the load 3 is larger than the output of the solar panel 2, the solar cell A storage battery 4 that supplies power to the load 3 when there is no output from the panel 2, a shunt circuit 5 that consumes surplus power from the solar panel 2, and a shunt circuit 5 that supplies the output of the solar panel 2 to the load 3 and charges the storage battery 4. The power controller 6 includes a power controller 6, which causes the shunt circuit 5 to consume surplus power, or supplies power from the storage battery 4 to the load 3. Therefore, since the conventional method does not control the power generated by the solar panel itself, but processes the power that has already been generated, the current consumption IL of the load 3 is reduced.
and the total current IBAT required for storage battery 4 (IL+IBA
If T) is not less than the output current IBus generated in the solar panel 2, that is, if the relationship is 1Bus>1L+IBAT, then IBus-(IL+IBAT)=
[There will be a surplus of current called sHuNT.

従来の方式では、余剰電流の量を電力制御器6で検出し
、それに比例した信号をシャント回路5へ送り、この余
剰電流IsHuNTをシャント回路5に流し、シャント
回路5を構成した電力型の抵抗Rにより消費させる。
In the conventional method, the amount of surplus current is detected by the power controller 6, a signal proportional to the detected amount is sent to the shunt circuit 5, this surplus current IsHuNT is passed through the shunt circuit 5, and the power type resistor that constitutes the shunt circuit 5 is connected. It is consumed by R.

このため、シャント回路5ではI2SHUNTXRの電
力が消費する事から、I2SHUNTXRの電力のほと
んどが熱に変換される事になる。1例として、本方式を
人工衛星に使用する場合には、シャント回路部からの発
熱による熱が人工衛星内に蓄積されて、衛星全体の温度
が上昇し衛星に実装されているサブシステムの許容温度
以上に衛星温度が高くなつてサブシステムの故障を生じ
せしめる事があつた。
Therefore, since the shunt circuit 5 consumes the power of I2SHUNTXR, most of the power of I2SHUNTXR is converted into heat. As an example, when this method is used in an artificial satellite, heat generated from the shunt circuit is accumulated inside the satellite, raising the temperature of the entire satellite and lowering the tolerance of the subsystems installed in the satellite. There have been cases where the satellite's temperature has become higher than the actual temperature, causing a subsystem failure.

また、シャント回路の抵抗は、信頼性等の面からディレ
ィヤングや冗長を考慮する必要がある事と太陽電池パネ
ルの発生電力とほぼ同等の電力を消費出来るものである
事などから、シャント回路の寸法はかなり大きいものと
なり、衛星の実装上人きな制約を生じせしめている事や
、シャント回路の発熱に対する衛星の熱設計上の考慮も
必要となつていた事などの欠点が生じていた。本発明は
、これらの欠点を解決するために太陽電池パネルに実装
されている太陽電池の1部又は全体とパネルとの間に、
極めて薄い電気エネルギーを熱エネルギーに交換するヒ
ーターを設け、太陽電池パネルの出力が余つた時それに
対応する電気信号をヒーターに供給し、太陽電池の温度
を上昇せしめる事により、太陽電池パネル出力を減少さ
せる事を特徴とした太陽電池電源装置にある。
In addition, the resistor of the shunt circuit needs to consider delay and redundancy from the viewpoint of reliability, etc., and the resistance of the shunt circuit can consume almost the same amount of power as the power generated by the solar panel. The dimensions were quite large, which resulted in disadvantages such as severe restrictions on satellite mounting and the need to consider the heat generated by the shunt circuit in the satellite's thermal design. In order to solve these drawbacks, the present invention provides a structure in which a part or all of the solar cells mounted in a solar cell panel and the panel are connected to each other.
A heater is installed that exchanges extremely thin electrical energy into thermal energy, and when there is excess output from the solar panel, a corresponding electrical signal is supplied to the heater to increase the temperature of the solar cells, thereby reducing the solar panel output. This is a solar battery power supply device that is characterized by the ability to

以下に図面について詳細に説明する。第2図は、本発明
の実施例のブロツク図であつて、8は太陽電池パネル、
3は負荷、4は蓄電池、9は太陽パネル8の出力を負荷
3や蓄電池4へ又は蓄電池4の出力を負荷3へ供給する
と同時に余剰電力分を太陽電池パネル8の発生電力自体
を減少させるために必要な信号を太陽電池パネル8のヒ
ータ−7へ送り出す電力制御器である。
The drawings will be explained in detail below. FIG. 2 is a block diagram of an embodiment of the present invention, in which 8 is a solar panel;
3 is a load, 4 is a storage battery, and 9 is for supplying the output of the solar panel 8 to the load 3 or the storage battery 4, or the output of the storage battery 4 to the load 3, and at the same time reducing the power generated by the solar panel 8 by using surplus power. This is a power controller that sends the necessary signals to the heater 7 of the solar panel 8.

太陽電池パネル8の出力電流1Bo8が負荷3の電流1
Lと蓄電池への充電電流■BATの合計より大きい時、
すなわちIBu8〉IL+IBATの場合、IBu8−
(IL+IBAT沖余剰電流分を太陽電池パネル8の出
力電流1Bu8自体で減少させる様に、すなわちIBu
8=■L+■BATになる様に、余剰電流量を電力制御
器9で検出し、この信号により太陽電池パネル8に実装
されている太陽電池1との間に設けた極めて薄い、電気
エネルギーに変換するヒータ7に一部の余剰電力を供給
し、太陽電池自体の温度を上昇せしめる事により太陽電
池の温度が上昇すればする程、出力が低下する特性を利
用した太陽電池パネル8の発生出力を減少させるもので
ある。
The output current 1Bo8 of the solar panel 8 is the current 1 of the load 3
When larger than the sum of L and the charging current to the storage battery ■BAT,
In other words, if IBu8>IL+IBAT, IBu8-
(IBu
The amount of surplus current is detected by the power controller 9 so that 8=■L+■BAT, and this signal is used to convert the electrical energy into the extremely thin electrical energy provided between the solar cell 1 mounted on the solar cell panel 8. The generated output of the solar cell panel 8 takes advantage of the characteristic that the output decreases as the temperature of the solar cell increases by supplying some of the surplus power to the heater 7 to be converted and raising the temperature of the solar cell itself. This reduces the

第3図に太陽電池パネルのV−■特性(電圧電流特性)
の温度変化特性図を示す。
Figure 3 shows the V-■ characteristics (voltage-current characteristics) of the solar panel.
A temperature change characteristic diagram is shown.

まず太陽電池パネルの温度が低い時カーブaの■−■特
性を有し、開放電圧をVoo、短絡電流を[8。とする
と太陽電池パネルの動作電圧が■BU8の時出力電流■
BU8はA点になる。ところがパネルの温度が高くなる
にしたがつて■ooが小さくなり[scが高くなつて■
−1カーブがb→c→dと変化し動作電圧VBU8はB
点→C点→D点と大きく変化する事が判る。従つて動作
電圧■Bu,に対し適当な太陽電池の直列数(例えば■
Bu8−20■の時は、si太陽電池を約5千直列数に
する)を選べば、太陽電池の温度を適当に変える事によ
り太陽電池自体の発生出力電流を自由に制御出来る。第
4図aは太陽電池パネル8の分解斜視図および第4図b
がその断面図を示したもので、太陽電池1を多数個直並
列に組合せられた太陽電池と基板10との間に、例えば
50μ程度のカプトンシート12に銅とニツケルの合金
で作つた電極板11を貼付た様なヒータ−7を実装し、
各ヒーターの出力は電力制御器と接続した構成のもので
ある。
First, when the temperature of the solar panel is low, it has the ■-■ characteristics of curve a, the open circuit voltage is Voo, and the short circuit current is [8. Then, when the operating voltage of the solar panel is ■BU8, the output current■
BU8 becomes point A. However, as the temperature of the panel increases, ■oo becomes smaller [sc becomes higher and ■
-1 curve changes from b → c → d, and the operating voltage VBU8 is B
It can be seen that there is a large change from point → point C → point D. Therefore, for the operating voltage ■Bu, the appropriate number of solar cells in series (for example ■
When selecting Bu8-20■, the number of Si solar cells connected in series is about 5,000), the output current generated by the solar cell itself can be freely controlled by appropriately changing the temperature of the solar cell. Figure 4a is an exploded perspective view of the solar panel 8, and Figure 4b is
shows a cross-sectional view of the same, in which an electrode plate made of an alloy of copper and nickel on a Kapton sheet 12 of about 50μ, for example, is placed between the solar cells 1 in which a large number of solar cells 1 are combined in series and parallel and the substrate 10. Implement heater 7 like 11 pasted,
The output of each heater is configured in connection with a power controller.

従つてヒータ−7で太陽電池パネルの余剰出力の一部を
、従来のシヤント回路と同様に電力を消費させる一方、
その発熱により太陽電池自体の温度を土昇せしめて、太
陽電池パネル自体の発生出力を減少させる。例えば本装
置を人工衛星に使用した場合には、太陽電池パネルは衛
星の1番外側に実装されるため、太陽電池の温度が上昇
しても衛星内部のサブシステムの影響はなくなる一方、
逆に太陽電池パネルの出力を増加せしめたい場合には、
電力制御器の信号によりヒーターへの電力供給を停止す
ると衛星の外側の宇宙は約3°K(絶対温度)の極低温
のため太陽電池の熱が宇宙にすばやく発散されて、ただ
ちに温度が下がり従つて、パネル出力を増加させる事が
出来る。
Therefore, while using the heater 7 to consume a portion of the surplus output of the solar panel as in the conventional shunt circuit,
The heat generated causes the temperature of the solar cell itself to rise, reducing the output generated by the solar cell panel itself. For example, when this device is used in an artificial satellite, the solar panel is mounted on the outermost part of the satellite, so even if the temperature of the solar battery increases, it will not affect the subsystems inside the satellite.
Conversely, if you want to increase the output of your solar panel,
When the power supply to the heater is stopped by a signal from the power controller, the space outside the satellite is at an extremely low temperature of approximately 3°K (absolute temperature), so the heat from the solar cells is quickly dissipated into space, and the temperature immediately drops. Therefore, the panel output can be increased.

以土説明した様に太陽電池パネルの発生出力自体をヒー
ターにより太陽電池の温度を土昇させる事により制御出
来る事から従来方式の様な余剰電力を消費せしめるシヤ
ント回路が不要になり、かつシヤント回路の発熱による
温度上昇もなくなる利点がある。
As explained above, since the output of the solar panel itself can be controlled by raising the temperature of the solar cells using a heater, there is no need for a shunt circuit that consumes excess power as in the conventional method, and the shunt circuit This has the advantage of eliminating temperature rise due to heat generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池電源装置のブロツク図、第2図
は本発明の太陽電池電源装置の実施例のブロツク図、第
3図は太陽電池の特性図、第4図a,bは第2図の部分
拡大分解図と断面図である。 図において1・・・・・・太陽電池、2,8・・・・・
・太陽電池パネル、3・・・・・・負荷、4・・・・・
・蓄電池、5・・・・・・シヤント回路、6,19・・
・・・・電力制御器、7・・・・・・ヒーター、10・
・・・・・基板、11・・・・・・電極板、12・・・
・・・絶縁シートである。
Fig. 1 is a block diagram of a conventional solar cell power supply device, Fig. 2 is a block diagram of an embodiment of the solar cell power supply device of the present invention, Fig. 3 is a characteristic diagram of the solar cell, and Figs. FIG. 2 is a partially enlarged exploded view and a sectional view of FIG. 2; In the figure, 1... solar cell, 2, 8...
・Solar panel, 3...Load, 4...
・Storage battery, 5... Shunt circuit, 6, 19...
...Power controller, 7...Heater, 10.
... Substrate, 11 ... Electrode plate, 12 ...
...It is an insulating sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の太陽電池とこれを配設する太陽電池パネル
との間に設けた薄板状ヒータと、該太陽電池出力の余剰
電力信号を検出しこの信号を該ヒータに供給する電力制
御器とから構成され、該余剰電力によつて、該ヒータを
発熱させ、これにより太陽電池の温度を上昇させ、これ
によつて太陽電池出力を減少させることを特徴とする太
陽電池電源装置。
1. A thin plate heater provided between a plurality of solar cells and a solar cell panel on which the solar cells are arranged, and a power controller that detects a surplus power signal from the output of the solar cells and supplies this signal to the heater. 1. A solar cell power supply device comprising: using the surplus power, the heater generates heat, thereby increasing the temperature of the solar cell, and thereby reducing the output of the solar cell.
JP51113477A 1976-09-21 1976-09-21 solar power supply Expired JPS5944645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51113477A JPS5944645B2 (en) 1976-09-21 1976-09-21 solar power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51113477A JPS5944645B2 (en) 1976-09-21 1976-09-21 solar power supply

Publications (2)

Publication Number Publication Date
JPS5338994A JPS5338994A (en) 1978-04-10
JPS5944645B2 true JPS5944645B2 (en) 1984-10-31

Family

ID=14613253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51113477A Expired JPS5944645B2 (en) 1976-09-21 1976-09-21 solar power supply

Country Status (1)

Country Link
JP (1) JPS5944645B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736320A (en) * 1980-08-14 1982-02-27 Nec Corp Power supply unit using solar battery
JPS5749328A (en) * 1980-09-08 1982-03-23 Fuji Electric Co Ltd Control device for converter driven by solar battery
US4555586A (en) * 1984-08-06 1985-11-26 Energy Conversion Devices, Inc. Photovoltiac device having long term energy conversion stability and method of producing same
JPS61197512A (en) * 1985-02-27 1986-09-01 Tsuneo Yasuda Method of making bath liquid by utilizing green mandarin oranges and mixing the juice with 1/100 of orange brandy as a yeast
JPS61157343U (en) * 1985-03-20 1986-09-30

Also Published As

Publication number Publication date
JPS5338994A (en) 1978-04-10

Similar Documents

Publication Publication Date Title
JP3214107B2 (en) Battery mounted integrated circuit device
CN103701186B (en) Mobile communication terminal
JP2005500792A (en) Improvement of photovoltaic cells
CN108899613A (en) A kind of self-heating circuit of power battery
JPS5944645B2 (en) solar power supply
KR100339109B1 (en) Power circuits and portable electronic devices
EP1950873A1 (en) Apparatus comprising low voltage power source
CN100379115C (en) Capacitor device and wiring pattern
CN108075210B (en) Self-heating battery and self-heating method thereof
TW200814489A (en) System for energy harvesting and/or generation, storage, and delivery
JP2001167753A (en) Storage battery connecting system
CN211790897U (en) Battery device, battery power supply device, and electronic apparatus
JP2833045B2 (en) Solar cell power supply
Srivastava et al. Modular power system and bus bar scheme in high power communication satellite
CN220324251U (en) Precision resistor and battery protection board
JP4066733B2 (en) Battery control device
CN110336460B (en) Energy chip and packaging preparation method and application thereof
KR102242906B1 (en) Thermal battery, thermal battery module and thermal battery system
JPS5879434A (en) Solar battery power source
JPS6211167Y2 (en)
US6430111B1 (en) Electronic timepiece
JP2004355948A (en) Fuel cell system
JPS5942891B2 (en) solar power supply
JPS60147152A (en) Solar battery panel
Chitnis et al. A Battery/Supercapacitor Hybrid Combination in Uninterruptible Power Supply (UPS)