JPS5944572B2 - Vehicle axle load measuring device - Google Patents

Vehicle axle load measuring device

Info

Publication number
JPS5944572B2
JPS5944572B2 JP12877776A JP12877776A JPS5944572B2 JP S5944572 B2 JPS5944572 B2 JP S5944572B2 JP 12877776 A JP12877776 A JP 12877776A JP 12877776 A JP12877776 A JP 12877776A JP S5944572 B2 JPS5944572 B2 JP S5944572B2
Authority
JP
Japan
Prior art keywords
vehicle
detector
load
axle load
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12877776A
Other languages
Japanese (ja)
Other versions
JPS5355063A (en
Inventor
廣之 泉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP12877776A priority Critical patent/JPS5944572B2/en
Priority to BR7707100A priority patent/BR7707100A/en
Publication of JPS5355063A publication Critical patent/JPS5355063A/en
Publication of JPS5944572B2 publication Critical patent/JPS5944572B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は車両の軸重計測装置に関するものである。[Detailed description of the invention] The present invention relates to a vehicle axle load measuring device.

従来走行中の車両の軸重値、輪重またはこれらを加算し
て重量を計測するのに、路面に応答の速い電気式荷重検
出器を設置し、検出した出力を種紳の方法により処理し
、軸車値とする方法が用いられていた。
Conventionally, to measure the axle load value, wheel load, or weight by adding these together, a fast-response electric load detector is installed on the road surface, and the detected output is processed using a sophisticated method. , the axle value was used.

その際、検出器は構造上、経済上の理由から走行方向の
長さが約1メ一トル程度のものを用い、軸重よたは輪重
を測定する。
At this time, for structural and economical reasons, a detector with a length of about 1 meter in the running direction is used to measure the axle load or wheel load.

第1図aは車輪が検出器上を通過する状態を示す図で、
1は車両の車輪を概略的1こ表わし、2は載荷板、3
a t 3 bは荷重変換器群であり、2および3 a
t 3 b等を総称して検出器と言う。
Figure 1a is a diagram showing the state in which the wheel passes over the detector.
1 schematically represents the wheels of the vehicle, 2 represents the loading plate, and 3
a t 3 b is a load transducer group, 2 and 3 a
t 3 b and the like are collectively called a detector.

その上を車輪が通過すると、荷重変換器群3 a t
3 bの出力は、それぞれ第1図すの5a、5bおよび
その合成波5の高さが真の荷重で、波形としては台形波
が期待される。
When the wheel passes over it, the load transducer group 3 a t
For the output of 3b, the heights of 5a and 5b in Figure 1 and their composite wave 5 are the true loads, and the waveform is expected to be a trapezoidal wave.

しかし検出器の上を通過する車両には振動があり、その
振幅および位相は必ずしも一定ではなく、検出器の出力
は第2図の7または第3図の8のような波形となり、真
の荷重第1図すの4と異なる。
However, there is vibration in the vehicle passing over the detector, and its amplitude and phase are not necessarily constant, so the output of the detector has a waveform like 7 in Figure 2 or 8 in Figure 3, which is the true load. It is different from Figure 1, No. 4.

そして車両はほとんどの場合、第2図に点線で示す6の
ようなほぼ正弦的定常振動をしながら検出器の上を通過
する。
In most cases, the vehicle passes over the detector while making a substantially sinusoidal steady vibration as indicated by the dotted line 6 in FIG.

第4図a、b、c″は荷重変換器群の出力より(1)ピ
ークホールド方式、(11)分割積分ピークホールド力
式、(i++)積分方式のそれぞれの方式により、軸重
値の求め力を示す図で、9は出力波形、10は出力波形
を分割積分力式により処理を行った波形、11は出力波
形を槓分力式により処理を行った波形であり、第5図a
、bは荷重変換器群の出力波形より積分方式により軸重
値の求め力を示す図で、12,13は出力波形を積分方
式により処理を行った波形である。
Figure 4 a, b, and c'' show axle load values determined from the outputs of the load transducer group using the following methods: (1) peak hold method, (11) divisional integral peak hold force method, and (i++) integral method. In the figure showing the force, 9 is the output waveform, 10 is the waveform obtained by processing the output waveform using the division integral force equation, and 11 is the waveform obtained by processing the output waveform using the integral force equation.
, b are diagrams illustrating the force determined by the integral method from the output waveforms of the load converter group, and 12 and 13 are waveforms obtained by processing the output waveforms by the integral method.

従来は検出器の出力から次のような処理により求めた値
を軸重値としていた。
Conventionally, the axle load value was determined from the output of the detector through the following processing.

(I)検出器出力波形の最大値(例えば第2図のICま
たは第3図の8c)をとらえ、その値を軸重値とするい
わゆるピークホールド力式。
(I) A so-called peak hold force formula that captures the maximum value of the detector output waveform (for example, IC in FIG. 2 or 8c in FIG. 3) and uses that value as the axle load value.

(II) 第4図aの9の検出器出力波形を第4図す
の10のよ゛うに、一定の時間間隔で分割し、分割され
た各時間の波形の面積平均化を行い、その最大値をとら
え、軸重値とするいわゆる分割積分ピークホールド方式
(II) Divide the detector output waveform at 9 in Figure 4a at regular time intervals as shown at 10 in Figure 4, average the area of the waveform at each divided time, and calculate the maximum The so-called split-integration peak hold method captures the value and uses it as the axle load value.

(Il[) 第4図aの9の検出器出力波形を第4図C
の11のように、車輪が検出器上に完全に載り、車輪に
かかる車両の重量いわゆる軸重のすべてが荷重変換器群
上にある状態11aから11b間の面積平均化した値を
軸重値とするいわゆる積分方式。
(Il[) The output waveform of the detector 9 in Fig. 4a is
The axle load value is the area averaged value between states 11a and 11b, where the wheels are completely placed on the detector and all of the weight of the vehicle, so-called axle load, applied to the wheels is on the load converter group, as shown in step 11. The so-called integral method.

これらの方式にはそれぞれ次のような欠点があった0 ピークホールド力式(I)は、車両の振動加速度および
ノイズ等外乱が出力波形にのった場合、その影響をも荷
重変換器群3 a t 3 bに受ける。
Each of these methods had the following drawbacks.0 The peak hold force formula (I) also uses the load transducer group 3 to account for the effects of disturbances such as vehicle vibration acceleration and noise on the output waveform. Receive at a t 3 b.

分割積分ピークホールド方式(n)は、尖頭ノイズの影
響がかなり緩和するが、車両の振動加速度の影響を緩和
するまでには到らない。
Although the division-integration peak hold method (n) considerably alleviates the influence of peak noise, it does not reach the level of alleviating the influence of vibration acceleration of the vehicle.

積分方式(Ill)は、第5図aのように検出波形の有
効波形内(12aと12b間月こ車両の振動加速度の数
サイクル以上を含む低速走行の場合は有効であるが、第
5図すのように尚速走行の場合は効力を発揮できない。
The integral method (Ill) is effective in the case of low-speed running that includes several cycles or more of vibration acceleration of the vehicle within the effective waveform of the detection waveform (between 12a and 12b) as shown in Fig. 5a. It will not be effective if you are driving at a high speed like this.

等の欠点があり、いずれも車両加速度の影響を消去し、
正しい軸車を測定し得るものではなかった。
There are disadvantages such as, all of them eliminate the influence of vehicle acceleration,
It was not possible to measure the correct axle.

不発明は動荷重Wから加速度gを算出し、荷重補正を行
うことを%徴とし、その目的は真の荷重Woとの誤差が
きわめて・卦さい軸重を計測することにある諷下図面に
より本発明の詳細な説明する。
The non-invention is to calculate the acceleration g from the dynamic load W and perform load correction, and the purpose is to measure the axle load with a very small error from the true load Wo. The present invention will be described in detail.

検出器で得られる動荷重Wが車両の振動の位相関係によ
り異なる二つの例を第6図の出力波形14および第7図
の出力波形15に示す。
Two examples in which the dynamic load W obtained by the detector differs depending on the phase relationship of vibrations of the vehicle are shown in the output waveform 14 in FIG. 6 and the output waveform 15 in FIG. 7.

動加重w(才車両の上下加速度!!tこよる変動分き真
の荷重(静荷重)Woの和である。
It is the sum of the dynamic load w (vertical acceleration of the vehicle!!t) and the true load (static load) Wo.

いま上下加速度を重力の加速度の単位を用い、kを振幅
、θを位相、tを時間、fを前記加速度の周波数とし1
.9=ksin(2πft十〇) −・−
・・−(1)とするさ、動荷重wi! vv−W’ o + k W−o s+n (2πfT
+θ)−・・−(2)と表わすことができる。
Now, the vertical acceleration is expressed using the unit of gravitational acceleration, where k is the amplitude, θ is the phase, t is the time, and f is the frequency of the acceleration.
.. 9=ksin(2πft10) −・−
...-(1), the dynamic load wi! vv-W' o + k W-o s+n (2πfT
+θ)−···−(2).

第6図の出力波形14において、任意の時刻t1.t2
.t3における検出動荷重をそれぞれWl 、 W2
、 w3とすると、(2)式より連立方程式 が成立し、これを解けは、 が得られる。
In the output waveform 14 in FIG. 6, at an arbitrary time t1. t2
.. The detected dynamic loads at t3 are Wl and W2, respectively.
, w3, a simultaneous equation is established from equation (2), and by solving this, the following is obtained.

すなわち車両の上下加速度の周波数fと動荷重を検出す
るサンプリング時刻tljt2jt3が決まれば、真の
荷重W。
That is, once the frequency f of the vertical acceleration of the vehicle and the sampling time tljt2jt3 for detecting the dynamic load are determined, the true load W is determined.

が求まる。これらf t t+t t2t tsのうち
、tljt2tt3についてはそのサンプリング間隔を
常に一定にして計算処理上は定数として扱うか、または
測定のつど、適当な方法で車速に応じた間隔とし、計算
の過福で、その値を用いて処理することができる。
is found. Among these f t t+t t2t ts, for tljt2tt3, the sampling interval is always constant and treated as a constant in the calculation process, or the interval is set according to the vehicle speed using an appropriate method each time the measurement is made, so that the calculation is not too complicated. , can be processed using that value.

また車両の上下加速度の周波数fは特に計測の対象とな
る重量車の載荷状態では、3 I−(z前後であること
が経験的に仰られて2す、従ってこイtをほぼ定数とし
て扱うこともできるし、検出器近傍に振動計を設置して
、これにより車両振動に起因する周波数を検出して、(
6)式に代入すべきfを得ることもできる。
Furthermore, it has been empirically said that the frequency f of the vertical acceleration of the vehicle is approximately 3I-(z), especially when the heavy vehicle being measured is loaded, so t is treated as a nearly constant. It is also possible to install a vibration meter near the detector and use it to detect the frequency caused by vehicle vibration.
6) It is also possible to obtain f to be substituted into the equation.

また、前述のように3点でなく、4点のデータを取って
4連立方程式とし、fを未知数とし、θ、に、w−(、
と同様に演算で求めることも可能である。
Also, as mentioned above, we take data from 4 points instead of 3 points to create 4 simultaneous equations, let f be an unknown, and set θ to w−(,
It is also possible to obtain it by calculation in the same way as .

いずれにしても(6)式の右辺はこれらの設定値または
検出値で構成されることになり、目的とする真の荷重W
In any case, the right side of equation (6) will be composed of these set values or detected values, and the target true load W
.

を求めることができる。can be found.

さらに(6)式右辺にはθを含まないので、位相に無関
係となり、第7図の出力波形15の場合も、・・記と同
じ条件で考えれば、第6図の出力波形14と全く同じ結
果が得られることは明白である。
Furthermore, since the right side of equation (6) does not include θ, it is unrelated to the phase, and the output waveform 15 in Figure 7 is exactly the same as the output waveform 14 in Figure 6 if considered under the same conditions as... It is clear that the results are obtained.

またf=F1t2−11=t3−t2=T1t3−11
=2Tとし、これらを一定数とみなしたときf!、(6
)式より次式が得られる。
Also, f=F1t2-11=t3-t2=T1t3-11
= 2T, and if these are considered as constant numbers, then f! , (6
), the following equation is obtained.

さらにC1=1/(22cos2πFT)C2=cos
2πFT/(1−cos2πFT)とすると、Fお、よ
びTが一定数であるから、C1およびC2が定数となり
、 W =CI(W1+W3) C2W2 °°曲(
8)(8)式は(6)式と異なり、三角関数を含まない
四則演算式となり、計算が極めて簡単となる。
Furthermore, C1=1/(22cos2πFT)C2=cos
2πFT/(1-cos2πFT), since F and T are constant numbers, C1 and C2 are constants, and W = CI(W1+W3) C2W2 °° (
8) Unlike equation (6), equation (8) is a four-arithmetic equation that does not include trigonometric functions, making calculation extremely simple.

第8図は本発明の一実施例の構成図である。FIG. 8 is a block diagram of an embodiment of the present invention.

第8図において、検出器に含まれる変換器群16aおよ
び16bの出力を増幅器17a 、17bで独立して増
幅し、加算器18で増幅器17a、17bの出力(すな
わち第6図の14a、14b)を、第6図の出力波形1
4のように合成する。
In FIG. 8, the outputs of converter groups 16a and 16b included in the detector are independently amplified by amplifiers 17a and 17b, and the outputs of amplifiers 17a and 17b (i.e., 14a and 14b in FIG. 6) are amplified by an adder 18. , the output waveform 1 in Figure 6
Combine as in 4.

また19は比較器であり、あらかじめ比較器19の動作
点を、抵抗により所望の位置に設定しておき、増幅器1
7 a t 17 bの出力を、この比較器で比較して
第6図の11(または第7図の1+)を検出する。
Reference numeral 19 is a comparator, and the operating point of the comparator 19 is set in advance at a desired position using a resistor, and the amplifier 1
The outputs of 7 a t 17 b are compared by this comparator to detect 11 in FIG. 6 (or 1+ in FIG. 7).

21.22はタイマであり、比較器19で検出された時
点t1から任意に設定された時点t2jt3をそれぞれ
検出し、加算器18のアナログ出力をA/D変換器23
でデジタル化し、メモリ24.25,26でそれぞれ比
較器19、タイマ21.22の指令に基づき、第6図の
wl9w21w3の値を記録する。
21 and 22 are timers that detect arbitrarily set times t2jt3 from the time t1 detected by the comparator 19, and send the analog output of the adder 18 to the A/D converter 23.
The values of wl9w21w3 in FIG. 6 are recorded in the memories 24, 25 and 26 based on the commands of the comparator 19 and timer 21, 22, respectively.

20は比較器であり、第6図の出力波形14が任意に設
定した値Wに達した時点pを検出し、演算器27が演算
準備の状態となり、第6図の出力波形14がWの値より
小さくなる時点qを検出し、演算器2Tがメモリ24〜
25のデータと任意に設定された定数とにより、(8)
式により忠実に演算を実行する。
20 is a comparator, which detects the time point p when the output waveform 14 in FIG. The arithmetic unit 2T detects the time point q when the value becomes smaller than the value
With 25 data and arbitrarily set constants, (8)
Execute calculations faithfully using formulas.

なおf 2 tt) t2) tを定数とせず、車両の
振動様態、走行速度に応じて定め、(6)式により真の
荷重W。
Note that f 2 tt) t2) t is not a constant, but is determined according to the vibration mode and traveling speed of the vehicle, and the true load W is determined by equation (6).

を求める方法もある。演算結果W。There is also a way to find out. Operation result W.

は表示器28により表示されるとともに、記録器29に
より記録される。
is displayed on the display 28 and recorded on the recorder 29.

以上説明したように、本発明の車両の軸重計測装置は車
両の振動加速度による荷重変動があっても、真の荷重に
きわめて近い計測値を得ることができる利点がある。
As explained above, the vehicle axle load measuring device of the present invention has the advantage of being able to obtain a measurement value that is extremely close to the true load even if there is load variation due to vibration acceleration of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図alt車輪が検出器上を通過する状態を示す図、
第1図すは第1図aの検出器の上を車輪が通過するとき
の荷重変換器群の出力波形図、第2図および第3図は車
両振動の1位相の相異による荷重変換器群の出力波形図
、第4図ayb、cは荷重変換器群の出力より(i)ピ
ークホールド方式、(1[)分割積分ピークホールド方
式、(面積分力式のそれぞれの方式により軸重値の求め
方を示す図、第5図apbは荷重変換器群の出力波形よ
り積分方式により軸重値の求め力を示す図、第6図、第
7図は荷重変換器群の出力波形図、第8図は本発明の一
実施例の構成図である。 1・・・・・・車輪、2・・・・・・載荷叡、3 a
t 3 b・・・・・・荷重変換器群、4・・・・・・
真の荷重、5.5 a ) 5 b ・・・・・・荷重
変換器群の出力波形、6・・・・・・車両の上下加速度
の想像波形、?、8,9・・・・・・出力波形、10・
・・・・・出力波形を分割積分力式により処理を行った
波形、11.12,13・・・・・・出力波形を積分方
式により処理を行った波形、14,15・・・・・・出
力波形、16a、16b・・・・・・荷重変換器群、1
7a、17b・・・・・・増幅器、18・・・・・・加
算器、19.20・・・・・・比較器、2L22・・間
タイス23・・・・・・A/D変換器、24,25,2
6・・・・・・メモリ、27・・・・・・演算器、28
・・・・・・表示器、29・・・・・・記録器。
Fig. 1 is a diagram showing a state in which the alt wheel passes over the detector,
Figure 1 is an output waveform diagram of the load transducer group when a wheel passes over the detector in Figure 1a, and Figures 2 and 3 are load transducers due to a difference in one phase of vehicle vibration. The output waveform diagram of the group, Figure 4 ayb and c, shows the axle load value calculated from the output of the load transducer group using each of the following methods: (i) peak hold method, (1[) division integral peak hold method, and (area component force formula). Figure 5 apb is a diagram showing how to determine the axle load value using the integral method from the output waveform of the load transducer group, Figures 6 and 7 are output waveform diagrams of the load transducer group, Fig. 8 is a configuration diagram of an embodiment of the present invention. 1... Wheels, 2... Loading device, 3 a
t 3 b...Load transducer group, 4...
True load, 5.5 a) 5 b...Output waveform of load converter group, 6...Imaginary waveform of vehicle vertical acceleration, ? , 8, 9... Output waveform, 10.
...Waveform obtained by processing the output waveform using the division integral force formula, 11.12,13... Waveform obtained by processing the output waveform using the integral method, 14,15...・Output waveform, 16a, 16b...Load converter group, 1
7a, 17b...Amplifier, 18...Adder, 19.20...Comparator, 2L22...Tice 23...A/D converter ,24,25,2
6...Memory, 27...Arithmetic unit, 28
...Display device, 29...Recorder.

Claims (1)

【特許請求の範囲】 1 車両の通過する路面に電気式荷重検出器を設置し、
この検出器上に車輪が完全にのった状態で、時間t、、
t2)tsにおける検出器の出力Wl。 w2.W3を測定し、fを車両の上下加速度の周波数と
して、 なる式より、軸重値W。 を求めることを特徴とする車両の軸重計測装置。 2 車両の通過する路面に電気式荷重検出器を設置し、
この検出器上に車輪が完全にのった状態で、時間t1.
t2.t3における検出器の出力Wljw2 、 W3
を測定し、かつ t2−t1=t3 t2=T、t3 tl=2Tとし
、fを車両の上下加速度の周波数とし、かつf=Fとし
て、TおよびFを一定数とし、 C,=1/(2−2cos2πFT)、C2=cos2
πFT/ (1−cos27rFT)として、Wo=C
I(W1+W3) C2W2なる式より軸重値W。 を求めることを特徴とする車両の軸重計測装置。
[Claims] 1. An electric load detector is installed on the road surface where the vehicle passes,
With the wheel fully placed on this detector, time t,...
t2) Detector output Wl at ts. w2. Measure W3, set f to the frequency of the vertical acceleration of the vehicle, and use the following formula to determine the axle load value W. A vehicle axle load measuring device characterized by determining . 2 Install an electric load detector on the road surface where vehicles pass,
With the wheel completely resting on this detector, time t1.
t2. Detector output Wljw2, W3 at t3
and t2-t1=t3 t2=T, t3 tl=2T, f is the frequency of the vertical acceleration of the vehicle, and f=F, T and F are constant numbers, C,=1/( 2-2cos2πFT), C2=cos2
As πFT/ (1-cos27rFT), Wo=C
Axle load value W from the formula I(W1+W3) C2W2. A vehicle axle load measuring device characterized by determining .
JP12877776A 1976-10-28 1976-10-28 Vehicle axle load measuring device Expired JPS5944572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12877776A JPS5944572B2 (en) 1976-10-28 1976-10-28 Vehicle axle load measuring device
BR7707100A BR7707100A (en) 1976-10-28 1977-10-25 WEIGHT MEASURING APPLIANCE ON AXLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877776A JPS5944572B2 (en) 1976-10-28 1976-10-28 Vehicle axle load measuring device

Publications (2)

Publication Number Publication Date
JPS5355063A JPS5355063A (en) 1978-05-19
JPS5944572B2 true JPS5944572B2 (en) 1984-10-30

Family

ID=14993200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877776A Expired JPS5944572B2 (en) 1976-10-28 1976-10-28 Vehicle axle load measuring device

Country Status (2)

Country Link
JP (1) JPS5944572B2 (en)
BR (1) BR7707100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192347A (en) * 2008-02-14 2009-08-27 Kyowa Electron Instr Co Ltd Device for measuring axle load of traveling vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121119A (en) * 1979-03-12 1980-09-18 Yazaki Corp Load gauge for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192347A (en) * 2008-02-14 2009-08-27 Kyowa Electron Instr Co Ltd Device for measuring axle load of traveling vehicle

Also Published As

Publication number Publication date
BR7707100A (en) 1978-07-18
JPS5355063A (en) 1978-05-19

Similar Documents

Publication Publication Date Title
US5948961A (en) Apparatus and method for detecting friction characteristics
JPS5944572B2 (en) Vehicle axle load measuring device
US3927561A (en) Method and apparatus for determining tire quality
JP3686184B2 (en) Vehicle wheel load measuring device
JP5494047B2 (en) Chassis dynamometer system for evaluating body vibration and method for evaluating body vibration
US20220364842A1 (en) Bridge displacement calculating apparatus, bridge displacement measuring apparatus, bridge displacement calculating method, bridge displacement measuring method, and non-transitory computer-readable recording medium
JPH0477244B2 (en)
JPH08254476A (en) Balance measuring method and device for propeller shaft
JPH10311752A (en) Vehicle weight metering device
JP2000221096A (en) Balancing machine and balancing test method
US4554833A (en) Method and apparatus for determining the unbalance of wheels mounted on the drive axle of an automobile
JP2010043940A (en) Apparatus for testing power transmission system and its control method
JP2710785B2 (en) Method and apparatus for measuring stationary weight of running vehicle
JPH09311066A (en) Method and apparatus for measurement of axle load
JP3481701B2 (en) Weight measuring device
US3238785A (en) Wheel unbalance detection
JPS60122327A (en) Investigating method of load-dependent oscillation of rotary machine
JP5191855B2 (en) Wheel / axle weight measurement system
JP3131201B2 (en) Tire pressure drop detection method and device
RU2526508C1 (en) Method to assess dynamic characteristics of angular speed sensors
JP2567354B2 (en) Orbital surface displacement measuring device
JPH0569065U (en) Signal processor for crane runout angle detection
JPH0755620A (en) Method for automatically measuring engine inertia
JPH0365858B2 (en)
JP2754821B2 (en) Travel distance measuring device for uneven roads