JPS5944501A - Fluidized-bed boiler plant - Google Patents

Fluidized-bed boiler plant

Info

Publication number
JPS5944501A
JPS5944501A JP15408882A JP15408882A JPS5944501A JP S5944501 A JPS5944501 A JP S5944501A JP 15408882 A JP15408882 A JP 15408882A JP 15408882 A JP15408882 A JP 15408882A JP S5944501 A JPS5944501 A JP S5944501A
Authority
JP
Japan
Prior art keywords
boiler
fluidized bed
gas turbine
exhaust gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15408882A
Other languages
Japanese (ja)
Inventor
祐介 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP15408882A priority Critical patent/JPS5944501A/en
Publication of JPS5944501A publication Critical patent/JPS5944501A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、コンプレッサを作動させてblj、 両層ボ
イラ内に燃焼空気を圧入して該ボイラ内の粒子を流動化
させ、ボイラ内の流動層上に燃料を供給して燃焼させ、
これにより流動層内に配設した伝熱管を加熱して蒸気を
発生させるようにした流動層ボイラプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention operates a compressor to inject combustion air into a double-bed boiler to fluidize particles in the boiler and supply fuel onto the fluidized bed in the boiler. and burn it,
The present invention relates to a fluidized bed boiler plant that generates steam by heating heat transfer tubes disposed within the fluidized bed.

従来の流動層ボイラプラントでは、粒子を流動。In conventional fluidized bed boiler plants, particles are fluidized.

化するのに、その粒子の電量と等しい圧力11失がある
ことから、コンプレッサの定格注力がノ(,76#ζ向
くなり、コンプレッサを作動させるのに大きな駆動力を
必要とし、プラント効率を低下させて経済性確立の障害
となっている。
Since there is a loss of pressure equal to the amount of charge of the particles when the particles are heated, the rated power of the compressor changes to This has become an obstacle to establishing economic efficiency.

そこで本発明はかかる問題点を解消した流動層ボイラプ
ラントを提供するものであって、その特徴とするところ
は、コンプレッサを作動させるためのガスタービンを設
け、流動層ボイラ内の排ガスをガスタービンに導入する
ための排ガスパイプを設けたことにある。かかる構成に
よれば、ボイラ内で発生した排ガスをガスタービンに導
入して、該ガスタービンによりコンプレッサを作動させ
ることができるものであって、プラント効率を上昇させ
、経済性を確立させるものである。
Therefore, the present invention provides a fluidized bed boiler plant that solves these problems, and is characterized by providing a gas turbine for operating a compressor, and directing the exhaust gas in the fluidized bed boiler to the gas turbine. This is because an exhaust gas pipe was installed to introduce the gas. According to this configuration, the exhaust gas generated in the boiler can be introduced into the gas turbine and the compressor can be operated by the gas turbine, which increases plant efficiency and establishes economic efficiency. .

以下、本発明の第1の実施例を第1図に基づいて説明す
る。(1)は流動層ボイラであって、その内部は多孔板
(2)により燃焼空気導入室(3)と燃焼室(4)とに
仕切られ、該多孔板(2)上にドロマイトや石灰石など
からなる粒子を載置しである。(Iりはコンプレッサで
あって、人気(6)を吸引し”Cmm室空気導入室3)
内に熱焼空気を圧入するものである。これにより燃焼空
気が多孔板(2)の孔から吹き上げられ、上記粒子か〃
117両化させられて流動層(7)を形成するものであ
る。(8)は燃料(石炭)であって、流i1i/J K
g(7)上に供給され、燃焼させられるものである。1
(9)はIJIL動層(両層内に配設された伝熱管であ
って、蒸気ドラムQ0に連通している。00は循環ポン
プ、Q′4は燃焼室(4)内の上部に配設された過熱簀
であって、一端は蒸気ドラム0()に連通し、他端は蒸
気タービン03に連コ1°nしている。0ゆは蒸気ター
ビンθ1により作動させられる発電機、09は復水器、
OQは復水ホンス0ηは脱気器、OQはボイラ給水ポン
プ、四は給水加熱器、(ハ)はMj炭2:)、Qυに)
は前記コンプレッサ(5)を作動させる誘導モータとカ
スタービン、ωやはボイラ(1)の上端とガスタービン
(ホ)の吸引口とをつなぐ第1排ガスパイプ、シ4)は
ガスタービンに)の吐出口と節炭器−とをつなぐ第2排
ガスパイプ、に)はifU排ガスパインQす12−vを
つなぐバイパスに設けられたバイパスタンパ、(ハ)は
圧カフ1;す部器であって、誘導モータC1lからの入
力信月とボイラ(])内の圧力信号とを受けて、2+3
1排ガスバイブに)に設けたカバナバルブeθを過賞I
こ制g1)jl/、もって熱焼’!4” (4)内の圧
力を一電子こ保持するものである一上記構成の作用を説
明する。まず誘導モータQOζこよりコンプレッサ(5
ンを作Mmさせる。これにまりボイラ(1)内に燃焼空
気が導入され、流動層(7)が形成さ41.る。ここで
重要なことは、コンプレッサ(5)によるボイラ(])
内への燃焼空気の導入圧力を従来まり大きくしであると
いうことである。すなわち従来では流動層(7)を形成
するのに必要なだけの圧力しか加えなかったのに対し、
この実施例ではそれ以上の圧力を力11えて、いわゆる
力1j圧流動屑ボイラとしである。したがって燃焼室(
4)内の上部は比較的高圧である。かかる状態において
、流動層(7)上に燃料(8ンを供給し、点火する。燃
焼室(4)内の上部の高温高圧状態の排ガスは第1排ガ
スパイプ(ハ)を介してガスタービン磐内lこ導入され
、該ガスタービン(ハ)を作動させる3、これにより、
誘導モータ(2)の作動を停止しても、コンプレッサ(
5)はガスタービンに)fこまりf’s j功させられ
る。なおガスタービンに)の余剰Bib力はんか、リモ
ータQl)により11L力とし゛C回収する。カスター
ビンに)を出たυ1ガスは第2D1:ガスパイブレ、V
を介して節炭器の月ノ」1こ導入、コ・れ、ボイラ給水
を加メ!シしノた龜、大気(ハ)へ放11(さイしる1
、−・方、蒸気ドラム(IOがらfム熱管(9)を通っ
c、IJ11熱され、発止さセられノこ井j(気はj局
Jj6管Q望で渦ハされた後、蒸気タービン(l、9内
lこラリ、人され、発S’l’y 4為(Iやを作動さ
せる。蒸気タービンθ′9がら出た蒸気はj寸水器09
で復水されj5:i、′2、jCΔ気’j’ut O’
l)、給水加1”’・、〜):;すOl jiよび節炭
器e)を介1ノで蒸気ドラムθ(Jに仄さイ[る。
A first embodiment of the present invention will be described below with reference to FIG. (1) is a fluidized bed boiler, the inside of which is partitioned into a combustion air introduction chamber (3) and a combustion chamber (4) by a perforated plate (2), and dolomite, limestone, etc. are placed on the perforated plate (2). Particles consisting of are placed. (The other is the compressor, which sucks the popular (6) "Cmm chamber air introduction chamber 3)"
Hot firing air is forced into the inside. As a result, combustion air is blown up through the holes in the perforated plate (2), and the particles are
117 to form a fluidized bed (7). (8) is fuel (coal), and the flow i1i/J K
g(7) and is combusted. 1
(9) is the IJIL fluidized bed (heat exchanger tubes installed in both layers, and communicates with the steam drum Q0. 00 is a circulation pump, and Q'4 is installed in the upper part of the combustion chamber (4). One end of the superheating tank is connected to the steam drum 0(), and the other end is connected to the steam turbine 03.0 is a generator operated by the steam turbine θ1, 09 is a condenser,
OQ is the condensate hose 0η is the deaerator, OQ is the boiler feed water pump, 4 is the feed water heater, (c) is Mj coal 2:), Qυ)
ω is the first exhaust gas pipe that connects the upper end of the boiler (1) and the suction port of the gas turbine (E); A second exhaust gas pipe connecting the discharge port and the economizer, (c) a bypass tamper provided in the bypass connecting the ifU exhaust gas spine QS12-v, and (c) a pressure cuff 1; , receiving the input signal from the induction motor C1l and the pressure signal in the boiler (), 2+3
The cabana valve eθ installed on the exhaust gas vibrator
This system g1) jl/, it's hot! 4" (4) The operation of the above configuration, which maintains the pressure within one electron, will be explained. First, the compressor (5
Let's make a Mm. Combustion air is introduced into the boiler (1) due to this, and a fluidized bed (7) is formed.41. Ru. The important thing here is that the boiler (]) is powered by the compressor (5).
This means that the pressure at which combustion air is introduced into the combustion chamber has to be increased compared to conventional methods. In other words, whereas in the past only the pressure necessary to form the fluidized bed (7) was applied,
In this embodiment, a pressure higher than 11 is applied to a so-called force 1j pressure fluidized waste boiler. Therefore, the combustion chamber (
4) The upper part of the chamber is under relatively high pressure. In this state, fuel (8 liters) is supplied onto the fluidized bed (7) and ignited. The high-temperature, high-pressure exhaust gas in the upper part of the combustion chamber (4) is sent to the gas turbine via the first exhaust gas pipe (c). 3, which causes the gas turbine (c) to operate.
Even if the induction motor (2) stops operating, the compressor (
5) is applied to the gas turbine. In addition, the excess Bib force (in the gas turbine) and the remoter Ql) are used to recover 11L force and C. The υ1 gas that exited (to the cast turbine) is the 2nd D1: gas pibre, V
Introduced the first energy saver Tsukino through the system, and added water to the boiler! The gun was released into the atmosphere (Ha) 11 (Saishuru 1)
, - - On the other hand, the steam drum (IO) is heated through the heat tube (9), IJ11 is heated, and the steam is heated after being vortexed in the tube (Q). The turbine (l, 9 inside l is turned on, and the steam generator θ'9 is activated. The steam coming out of the steam turbine θ'9 is
The water is condensed at j5:i,'2,jCΔqi'j'ut O'
1), water is added to the steam drum θ (J) via water supply 1"'.

本発明の1.〕2の実、11111例を第2 (’Q’
Jに基づいで説明する。なおL4+ 1の実L1;3例
と同一414)へのfll−分は同一の晶弗°をつけて
説明を省F’;1する。闘はボイラ(1)の上端とガス
タービンψりの吸引口とをつなぐAl14ガスパイプで
あって、途中が2つの分岐部CBOA)(8013)に
枝別れしている。31)盛は各分岐部CBOA)C31
)Iりに介在させられた過熱ン1)と加炭2;)、噸)
(財)は各分岐部(80A)(80B)の下部に設けら
れたモータタンパであって、圧力制純器曽により制御さ
1し、もって燃焼室(4)内の圧力が一定に保持されて
いる、13’ilはバイパスダンパである。なお一方の
分岐部(30A)とガスタービンに)の吐出口とは大気
四〇に連通している。
1. of the present invention. ] The fruit of 2, 11111 cases are the second ('Q'
The explanation will be based on J. Note that the fll- component of L4+1 to the actual L1; 414), which is the same as the 3rd example, is given the same reference and the explanation is omitted as F';1. The pipe is an Al14 gas pipe that connects the upper end of the boiler (1) and the suction port of the gas turbine ψ, and it branches into two branches (CBOA) (8013) in the middle. 31) Mold each branch CBOA) C31
) Intervening superheating 1) and carburization 2;), 噸)
(Foundation) is a motor tamper installed at the bottom of each branch part (80A) (80B), and is controlled by a pressure regulator so that the pressure in the combustion chamber (4) is maintained constant. 13'il is a bypass damper. Note that one of the branch parts (30A) and the discharge port of the gas turbine (to the gas turbine) communicate with the atmosphere 40.

」−記構成において、燃焼室(4)の上部の高温高圧状
IUの排ガスは排ガスパイプ911Jおよび分岐部(R
oB)を介して節炭器0り内に入った後、カスタービン
(ホ)内に導入され、該ガスタービン■を作動させ、コ
ンプレッサ(5)を作動さセる。この場合、誘導モータ
Qυはコンプレッサ(5)の起1’+J月およびイ1(
負ね時の浦助動力として用いられZ、。ガスタービン(
ハ)から出た排ガスは大気−)に放散さ4する。なお低
負荷時hrc j、t、 、RCカスiが但、下するの
で、モータタンパ(財)を全開とし、モータダンパil
lを全閉とする。なおこれでもガスタービンに)の出力
が不足するときには、モータQOを作j「)1させてf
ibうものとする1、ここで例えば、蒸発承16t/h
ボイラで比較すると、モータ呻のみでコンプレッサ(5
)を駆動する場合には、所内動力比1錦、プラント効ヰ
<27.4%多こなるのに対し、本発明の実施例のごと
くガスタービンに)でコンプレッサ(5)を駆動する場
合には、θ[内勤力比7%、プラント効率29,7%と
4Cす、大幅な改善がなさi′シるものである。
In the configuration described above, the high temperature and high pressure IU exhaust gas in the upper part of the combustion chamber (4) is passed through the exhaust gas pipe 911J and the branch part (R
After entering the energy saver 0 via the gas turbine (oB), it is introduced into the gas turbine (e), which operates the gas turbine (2) and the compressor (5). In this case, the induction motor Qυ of the compressor (5) is
Z is used as an auxiliary power when the load is negative. gas turbine(
The exhaust gas emitted from c) is dissipated into the atmosphere -). However, when the load is low, hrc j, t, and RC scrap i drop, so the motor tamper (incorporated) is fully opened and the motor damper il
Let l be fully closed. Note that if the output of the gas turbine ( ) is still insufficient, the motor QO should be operated to
ib 1, where, for example, the evaporation rate is 16t/h.
Comparing with a boiler, the compressor (5
), the in-plant power ratio is 1, and the plant efficiency is <27.4%, whereas when the compressor (5) is driven by a gas turbine as in the embodiment of the present invention, There is no significant improvement in θ [house labor ratio 7%, plant efficiency 29.7%, and 4C].

以上述べたごと(本発明の5ft DJIl )Llボ
イラプラントによれば、ボイラ)=’J−ひ発生したU
1カスをガスタービンに導入して、該カスタービンによ
りコンプレッサを作動8+!ることかできるものであっ
て、プラント効率を上昇させ、経済性を@ ”+’1.
させるものである。
According to the above-mentioned (5ft DJIl) Ll boiler plant of the present invention, boiler)='J-U generated
1 waste is introduced into the gas turbine and the compressor is operated by the waste turbine 8+! It is possible to increase plant efficiency and improve economic efficiency @ ``+'1.
It is something that makes you

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実り4例を4ζ−J’ ll;
’、 B11’+ R’++’、明方、RJ 1図は本
発明のε、72り実施しく」を4、す1(IL略略説明
方ある。 (1)・・・流97))−ボイラ、(5)・・・コンプ
レッサノ、(7)・・・流動層、(8)・・・燃料、(
す)・・・伝熱゛d1@・・・ガスタ・−ビン、に)・
・・船l排ガスパイプ、轡・・・排ガスパイプ代理人 
 森 本 義 弘
FIG. 1 shows four examples of the first fruits of the present invention as 4ζ-J'll;
',B11'+R'++', bright, RJ 1 Figure shows ε, 72 of the present invention and how to implement it. Boiler, (5)...Compressor, (7)...Fluidized bed, (8)...Fuel, (
)...Heat transfer d1@...Gasta-bin, to)...
・・Ship l exhaust gas pipe, 轡・・Exhaust gas pipe agent
Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、 コンプレッサを作動させて流11i11fHボイ
ラ内に燃焼用空気を圧入して該ボイラ内の粒子を流動化
させ、ボイラ内の流動層上に燃料を供給して燃焼させ、
これにより流動層内に配設した伝熱管を加熱して蒸気を
発条させるようにした流動層ボイラプラントにおいて、
」−記コンブレソサを作動させるためのガスタービンを
設け、流動層ボイラ内の排ガスをガスタービンに導入す
るための排ガスパイプを設けたことを特徴とする流動層
ボイラプラント、。
1. Operate the compressor to pressurize combustion air into the Flow 11i11fH boiler to fluidize the particles in the boiler, supply fuel onto the fluidized bed in the boiler and burn it,
In a fluidized bed boiler plant in which steam is generated by heating heat exchanger tubes disposed within the fluidized bed,
- A fluidized bed boiler plant, characterized in that it is provided with a gas turbine for operating the combresor, and an exhaust gas pipe for introducing exhaust gas in the fluidized bed boiler into the gas turbine.
JP15408882A 1982-09-03 1982-09-03 Fluidized-bed boiler plant Pending JPS5944501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15408882A JPS5944501A (en) 1982-09-03 1982-09-03 Fluidized-bed boiler plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15408882A JPS5944501A (en) 1982-09-03 1982-09-03 Fluidized-bed boiler plant

Publications (1)

Publication Number Publication Date
JPS5944501A true JPS5944501A (en) 1984-03-13

Family

ID=15576629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15408882A Pending JPS5944501A (en) 1982-09-03 1982-09-03 Fluidized-bed boiler plant

Country Status (1)

Country Link
JP (1) JPS5944501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264844U (en) * 1985-10-14 1987-04-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264844U (en) * 1985-10-14 1987-04-22

Similar Documents

Publication Publication Date Title
US5375410A (en) Combined combustion and steam turbine power plant
US4841722A (en) Dual fuel, pressure combined cycle
JP3032005B2 (en) Gas / steam turbine combined facility
NL192680C (en) Method of operating a glass melting furnace with recovery of part of the heat
JP2611133B2 (en) Heat recovery unit for combined cycle
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
US2055385A (en) Pulverizing plant
AU600914B2 (en) Improvements in chemical process fired heaters, furnaces or boilers
KR20120102746A (en) Power plant with co2 capture and method to operate such power plant
CN102047039A (en) Method of and system for generating power by oxyfuel combustion
CN106224099A (en) A kind of double fuel cogeneration water filling forward and reverse Gas Turbine Combined-cycle system
US3127744A (en) Combined steam turbine-air turbine power plants
US4637212A (en) Combined hot air turbine and steam power plant
GB1137458A (en) Improvements in and relating to gas/steam turbine plants
US4909029A (en) Firing equipment that can be operated under turbocharge
JP2002508059A (en) An improved heat exchanger for operation in a simple or combined cycle with a combustion turbine
US4154055A (en) Indirect Brayton energy recovery system
JPS5944501A (en) Fluidized-bed boiler plant
US4545208A (en) Method of operating an industrial furnace
JPH08210151A (en) Power plant
CA1047775A (en) Turbine start-up system
US5051040A (en) Fluidized bed combustion system that is controllable under pressure
JPH0688502A (en) Power generating plant
JPH10325336A (en) Gas turbine power generating system
US3159970A (en) Thermal power plant with closed circuit of a gaseous working medium and an open gas-turbine plant