JPS59444B2 - Chitsuso Gasno Seizouhou - Google Patents

Chitsuso Gasno Seizouhou

Info

Publication number
JPS59444B2
JPS59444B2 JP49092773A JP9277374A JPS59444B2 JP S59444 B2 JPS59444 B2 JP S59444B2 JP 49092773 A JP49092773 A JP 49092773A JP 9277374 A JP9277374 A JP 9277374A JP S59444 B2 JPS59444 B2 JP S59444B2
Authority
JP
Japan
Prior art keywords
liquid
tank
air
seizouhou
chitsuso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49092773A
Other languages
Japanese (ja)
Other versions
JPS5120797A (en
Inventor
悦三 岡田
徹馬 小早川
信治 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP49092773A priority Critical patent/JPS59444B2/en
Publication of JPS5120797A publication Critical patent/JPS5120797A/en
Publication of JPS59444B2 publication Critical patent/JPS59444B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0411Chemical processing only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 本発明は、窒素ガスの製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing nitrogen gas.

従来、窒素ガスを製造する方法としては、工業的には液
体空気を分留する方法がある。
Conventionally, as a method for producing nitrogen gas, there is a method of fractionating liquid air industrially.

これは、液体空気を作る装置および液体空気を分留する
装置が必要であり、これらの装置は構造的に複雑である
とともに、規模の大きなものであり、経済的にきわめて
大きな負担がかかる。
This requires a device for producing liquid air and a device for fractionating liquid air, and these devices are structurally complex and large in scale, placing an extremely heavy economic burden on them.

本発明の目的は、上記のような欠点を解決するものとし
て、廃ガス処理を利用し、簡単な装置で純度の高い、か
つ安価な窒素ガスを得る方法を提供せんとするにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for obtaining highly pure and inexpensive nitrogen gas using a simple device by utilizing waste gas treatment in order to solve the above-mentioned drawbacks.

本発明によれば、還元性液体に空気溶解加圧水を加圧下
で混合反応させ、次いで放圧または減圧にすることによ
って、上記目的を達成することができる。
According to the present invention, the above object can be achieved by mixing and reacting air-dissolved pressurized water with a reducing liquid under pressure, and then releasing or reducing the pressure.

本発明において還元性液体とは、廃ガス中に含まれるS
OxおよびNOx等を除去するために、適当な吸収液に
SOXおよびNOx等を吸収させた液体のことである。
In the present invention, the reducing liquid refers to S contained in waste gas.
In order to remove Ox, NOx, etc., it is a liquid obtained by absorbing SOX, NOx, etc. in a suitable absorption liquid.

このような廃ガスを吸収した液体が入手できない場合は
、還元性薬品の溶解液を用いてもよい。
If a liquid that has absorbed such waste gas is not available, a solution containing a reducing chemical may be used.

図面は、本発明の一実施態様であるフローチャートであ
るが、1はコンプレッサー、2は加圧水タンク、3はラ
インミキサー、4は反応槽、5は放圧基、6はミストセ
パレーター、7は循環水ポンプ、8はPH調整槽、9は
貯蔵タンクを示す。
The drawing is a flowchart of one embodiment of the present invention, in which 1 is a compressor, 2 is a pressurized water tank, 3 is a line mixer, 4 is a reaction tank, 5 is a pressure release group, 6 is a mist separator, and 7 is circulating water. A pump, 8 a pH adjustment tank, and 9 a storage tank.

空気は、コンプレッサー1より加圧水タンク2に加圧供
給さね、ヘンリーの法則に準じて水に溶解する。
Air is supplied under pressure from a compressor 1 to a pressurized water tank 2, and is dissolved in water according to Henry's law.

十分に空気を溶解した加圧水はラインミキサー3によっ
て還元性液体と混合され、加圧下の反応槽4で反応し、
溶存酸素を消費する。
Pressurized water in which air has been sufficiently dissolved is mixed with a reducing liquid by a line mixer 3, and reacts in a reaction tank 4 under pressure,
Consumes dissolved oxygen.

好ましい加圧状態は、2〜3気圧である。A preferable pressurized state is 2 to 3 atmospheres.

たさえばボイラー廃ガスを吸収処理した液体は、亜硫酸
ソーダが主組成であり、この還元性液体と空気溶解加圧
水との反応は、次のとおりである。
The main composition of the liquid obtained by absorbing boiler waste gas is sodium sulfite, and the reaction between this reducing liquid and air-dissolved pressurized water is as follows.

空気は、4対1の割合で窒素と酸素から成っているので
、反応によって酸素が消費されると、還元性液体と加圧
水の混合液体中には、窒素だけが残ることになる。
Air consists of nitrogen and oxygen in a 4:1 ratio, so once the oxygen is consumed by the reaction, only nitrogen remains in the mixture of reducing liquid and pressurized water.

したがって、反応後の液体は、放圧するか、あるいは減
圧下におくと、加圧されていた窒素ガスが液体から放散
するのである。
Therefore, when the liquid after the reaction is depressurized or placed under reduced pressure, the pressurized nitrogen gas emanates from the liquid.

この窒素ガスは、水分を含んでいるため、ミストパレー
タ−6を通して貯蔵タンク9に貯蔵する。
Since this nitrogen gas contains moisture, it is stored in a storage tank 9 through a mist parator 6.

一方窒素ガス放散後の液体はPH調整槽8に流入させP
Hを7近辺に調整したのち放流する。
On the other hand, the liquid after nitrogen gas dissipation is caused to flow into the pH adjustment tank 8.
After adjusting H to around 7, discharge.

放流水の一部は、加圧水として再利用できるので循環水
ポンプ7によって加圧水タンク2に還流させる。
A part of the discharged water can be reused as pressurized water, so it is returned to the pressurized water tank 2 by the circulating water pump 7.

本プロセスの特徴は、次のとおりである。The characteristics of this process are as follows.

■空気溶解量はコンプレッサーの加圧圧力および循環水
量によって自在に変えられるので、還元性液体の量およ
び濃度変化に十分追従できる。
■The amount of dissolved air can be freely changed by the pressurizing pressure of the compressor and the amount of circulating water, so it can fully follow changes in the amount and concentration of the reducing liquid.

■液−液反応による酸化反応であるCで、加圧水タンク
と反応槽を分離する。
(2) Separate the pressurized water tank and reaction tank at C, which is an oxidation reaction by liquid-liquid reaction.

そして反応槽は小さくてよく反応槽だけについて耐食性
を考慮すればよい。
The reaction tank may be small and corrosion resistance only needs to be considered.

■酸化還元電位計や溶存酸素計等を組込むことにより、
プロセスの自動化ができる。
■By incorporating an oxidation-reduction potentiometer, dissolved oxygen meter, etc.
Process automation is possible.

次に本発明の理論計算例を示す。Next, an example of theoretical calculation according to the present invention will be shown.

6トンボイラーで仮に3係のイオウを含む重油を燃料に
使用すると、ボイラー廃ガス処理設備より発生する還元
性液体は、濃度約10%の亜硫酸ソーダ溶液3001/
Hrとなる。
If a 6-ton boiler uses heavy oil containing Group 3 sulfur as fuel, the reducing liquid generated from the boiler waste gas treatment equipment will be a sodium sulfite solution with a concentration of about 10%.
It becomes Hr.

この亜硫酸ソーダ溶液を酸化して、硫酸ソーダ溶液とす
るに必要な理論酸素量となる。
The theoretical amount of oxygen required to oxidize this sodium sulfite solution to form a sodium sulfate solution is obtained.

発生する窒素の純度は、前記反応式の常圧での平衡酸化
率と酸素溶解量により決まる。
The purity of the nitrogen generated is determined by the equilibrium oxidation rate at normal pressure and the amount of oxygen dissolved in the reaction equation.

たとえば酸化率99%とし、酸素溶解量が加圧前と放圧
後で同じとすれば生成窒素ガス中の酸素の量は、0.0
27mとなるので、窒素ガスの純度ηは、次の式で求め
られる。
For example, if the oxidation rate is 99% and the amount of dissolved oxygen is the same before pressurization and after pressure release, the amount of oxygen in the produced nitrogen gas is 0.0
27 m, the purity η of the nitrogen gas is determined by the following formula.

故に、その純度は99.5%となる(ただし、水分は除
去したものとする)。
Therefore, its purity is 99.5% (provided that water is removed).

以上本発明によると、複雑かつ特殊な装置を用いずとも
、数気圧というように低い加圧処理条件下で純度が99
係以上の窒素ガスが得られるのである。
As described above, according to the present invention, purity of 99% can be achieved under pressure treatment conditions as low as several atmospheres without using complicated and special equipment.
Nitrogen gas of more than 20% can be obtained.

きらに廃煙、廃ガス処理と併行して実施できるので、−
右二鳥の効果が得られるのである。
Since it can be carried out in parallel with waste smoke and waste gas treatment, -
This gives you two different effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の一実施態様であるフローチャートであ
る。 1はコンプレッサー、2は加圧水タンク、3はラインミ
キサー、4は反応槽、5は放圧塔、6はミストセパレー
ター、7は循環水ポンプ、8はPH調整槽、9は貯蔵タ
ンク。
The drawing is a flowchart of one embodiment of the present invention. 1 is a compressor, 2 is a pressurized water tank, 3 is a line mixer, 4 is a reaction tank, 5 is a pressure relief tower, 6 is a mist separator, 7 is a circulating water pump, 8 is a PH adjustment tank, and 9 is a storage tank.

Claims (1)

【特許請求の範囲】[Claims] 1 還元性液体に空気溶解加圧水を加圧下で混合反応さ
せ、次いで放圧または減圧することを特徴とする窒素ガ
スの製造法。
1. A method for producing nitrogen gas, which comprises reacting a reducing liquid with air-dissolved pressurized water under pressure, and then releasing or reducing the pressure.
JP49092773A 1974-08-15 1974-08-15 Chitsuso Gasno Seizouhou Expired JPS59444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49092773A JPS59444B2 (en) 1974-08-15 1974-08-15 Chitsuso Gasno Seizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49092773A JPS59444B2 (en) 1974-08-15 1974-08-15 Chitsuso Gasno Seizouhou

Publications (2)

Publication Number Publication Date
JPS5120797A JPS5120797A (en) 1976-02-19
JPS59444B2 true JPS59444B2 (en) 1984-01-06

Family

ID=14063726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49092773A Expired JPS59444B2 (en) 1974-08-15 1974-08-15 Chitsuso Gasno Seizouhou

Country Status (1)

Country Link
JP (1) JPS59444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263799A (en) * 1984-06-11 1985-12-27 Mitsubishi Heavy Ind Ltd Ship for transporting low-temperature and high-temperature cargo
JP5657327B2 (en) * 2010-10-04 2015-01-21 パナソニックIpマネジメント株式会社 Waste water treatment method and waste water treatment system

Also Published As

Publication number Publication date
JPS5120797A (en) 1976-02-19

Similar Documents

Publication Publication Date Title
Sun et al. Simultaneous absorption of NOx and SO2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone
Andrew et al. D1. The dynamics of nitrous gas absorption
PL166366B1 (en) Method and instalation for the reduction of nitrogen oxides emissions from the industrial processes
DE2416660A1 (en) PROCEDURE FOR THE REMOVAL OF NITROGEN OXYDE FROM A GAS
US4419333A (en) Process for removal of nitrogen oxides
Wu et al. Removal of NO from flue gas using heat-activated ammonium persulfate aqueous solution in a bubbling reactor
US8486356B2 (en) Alkanolamines for CO2 removal from gas streams
US3932585A (en) Method of removing nitrogen oxides from plant exhaust
US4108969A (en) Process for the removal of SO2 from a stack gas, absorptive medium for use in process and process for preparing the absorptive medium
US4024219A (en) Process for removing nitrogen oxide from a waste gas
JPS59444B2 (en) Chitsuso Gasno Seizouhou
US4387037A (en) Removal of sulfur from waste gas streams
US4372935A (en) NOx Removal from NOx /O2 gaseous feedstreams
Mao et al. Kinetics for the simultaneous absorption of nitric oxide and sulfur dioxide with the hexamminecobalt solution
Long et al. Nitric oxide absorption into cobalt ethylenediamine solution
JPS5836619B2 (en) Treatment method for sulfur oxides in exhaust gas
US4320101A (en) Removal of sulfur from waste gas streams
CN106823747A (en) Calcium and magnesium base desulphurization denitration absorbent
CN103432865A (en) Composite absorbent used for flue gas desulphurization
CN103432883A (en) Compound desulfurizer for flue gas
US4177245A (en) Scale suppression in lime and limestone scrubbers
JPS5278753A (en) Desulfurization of exhaust gas
CN103432864A (en) Organic solution absorbing sulfur dioxide in gas mixture
JPS6386793A (en) Regeneration of absorption liquid for wet desulfurization of coke oven gas
JPS5360880A (en) Wet desulfurizing method for exhaust gas by use of slag