JPS5944052B2 - Ultrasonic diagnostic probe - Google Patents
Ultrasonic diagnostic probeInfo
- Publication number
- JPS5944052B2 JPS5944052B2 JP54170410A JP17041079A JPS5944052B2 JP S5944052 B2 JPS5944052 B2 JP S5944052B2 JP 54170410 A JP54170410 A JP 54170410A JP 17041079 A JP17041079 A JP 17041079A JP S5944052 B2 JPS5944052 B2 JP S5944052B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- radiation surface
- ultrasonic
- focusing
- ultrasonic beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明は超音波診断用探触子、特に探触子の走査方向と
直交する横方向に対して超音波ビームの任意の集束作用
を得ることのできる改良された超音波診断用探触子に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic diagnostic probe, and particularly an improved ultrasonic probe capable of obtaining an arbitrary focusing effect of an ultrasonic beam in the transverse direction orthogonal to the scanning direction of the probe. Regarding a probe for ultrasound diagnosis.
被検体中に超音波ビームを放射し、音響インピーダンス
の差から生じる反射エコーに基づいて臓器等の生体組織
を画像表示する超音波診断装置が周知である。2. Description of the Related Art Ultrasonic diagnostic apparatuses that emit an ultrasonic beam into a subject and display images of living tissues such as organs based on reflected echoes generated from differences in acoustic impedance are well known.
超音波ビームの送受波を行うため、PZT等の電気音響
変換素子から成る振動素子が超音波周波数の電気信号に
より励振されるが、探触子から放射された超音波ビーム
は放射方向に進むに従いビームが拡散し、得られる画像
の分解能が低下することが知られている°前述した超音
波ビームの拡散を抑制し鋭い指向性の超音波ビームを得
るために、従来より種々の改良がなされている。第1図
には、従来の探触子における振動素子の配置が示され、
n個の振動素子10が走査方向(X軸)に配列されてい
る°各振動素子10は走査方向と直交する横方向(Y軸
)に2bなる振動素子長さを有し、振動素子10が励振
されることにより走査方向(X軸)および横方向(Y軸
)の両者に直交する放射方向(Z軸)に超音波ビームを
放射し、各振動素子10の励振を電子的に走査制御する
ことにより、XZ面の走査面を得ることができる。In order to transmit and receive ultrasonic beams, a vibrating element made of an electroacoustic transducer such as PZT is excited by an electric signal at an ultrasonic frequency. It is known that the beam spreads and the resolution of the obtained image decreases. Various improvements have been made in the past in order to suppress the above-mentioned scattering of the ultrasound beam and obtain a sharply directional ultrasound beam. There is. FIG. 1 shows the arrangement of the vibrating elements in a conventional probe.
n vibrating elements 10 are arranged in the scanning direction (X-axis). Each vibrating element 10 has a vibrating element length of 2b in the horizontal direction (Y-axis) orthogonal to the scanning direction, and When excited, an ultrasonic beam is emitted in the radial direction (Z-axis) perpendicular to both the scanning direction (X-axis) and the lateral direction (Y-axis), and the excitation of each vibrating element 10 is electronically scan-controlled. By doing so, a scanning plane in the XZ plane can be obtained.
第2図には、前述した従来の探触子を用いた電子走査作
用が示され、複数の振動素子10から任意に選択された
個数の振動素子、第、2図において、5個ずつの振動素
子群を繰返しパルス100により切換制御して順次励振
することにより、複数本の超音波ビーム200の走査作
用が得られ、図示しない表示部に第2図の断層像300
を得ることができる。FIG. 2 shows an electronic scanning action using the conventional probe described above, in which a number of vibrating elements arbitrarily selected from a plurality of vibrating elements 10, five vibrating elements each in FIG. By switching and sequentially exciting the element group with repeated pulses 100, a scanning action of a plurality of ultrasonic beams 200 is obtained, and a tomographic image 300 in FIG. 2 is displayed on a display section (not shown).
can be obtained.
前述したように、超音波ビームは拡散作用を有し、放射
方向(Z軸)への深度が増加するに従い、断層像300
の分解能が低下するが、従来装置では、各振動素子10
への送受波のタイミングを遅延制御することにより、放
射される超音波ビームを所望の放射深度に集束させ、画
像分解能の低下を防止していたoこのような電子的遅延
制御によれば、走査面すなわちXZ面に対して任意の集
束作用を得ることができ、更に集束点を自動的に近距離
から遠距離まで移動させて広範囲の高分解能超音波ビー
ムを得ることも可能であり、走査面内における指向性を
良好に保つことが可能となる〇しかしながら、前述した
集束作用はXZ面に対してのみ行われ、従来装置におい
ては走査面と直交するYZ面における超音波ビームの拡
散を防止することができず、このために、最終的な画像
品質が低下するという欠点があつた。As mentioned above, the ultrasound beam has a diffusion effect, and as the depth in the radial direction (Z axis) increases, the tomographic image 300
However, in the conventional device, each vibration element 10
By delay-controlling the timing of transmission and reception of waves to It is possible to obtain an arbitrary focusing effect on the plane, that is, the However, the above-mentioned focusing effect is performed only on the XZ plane, and in conventional devices, it is possible to maintain good directivity in the YZ plane, which is perpendicular to the scanning plane. This resulted in a disadvantage that the final image quality deteriorated.
例えば、振動素子長さ2bを10m1!そして超音波の
波長λを0.5詣とすると、超音波ビームの第1零角(
零放射角)αは、となり、この時の振動素子10から放
射される超音波ビームの指向性音場が第3図に示されて
いる〇第3図から明らかなように、放射深度が増大する
に従い、超音波ビームの横方向に対する指向性の低下に
より画像の分解能が著しく低下し、良好な画像品質を確
保することが困難となる。For example, the length of the vibrating element 2b is 10 m1! If the wavelength λ of the ultrasonic wave is 0.5, the first zero angle of the ultrasonic beam (
The directional sound field of the ultrasonic beam emitted from the vibrating element 10 at this time is shown in Figure 3. As is clear from Figure 3, the radiation depth increases. As a result, the lateral directivity of the ultrasonic beam decreases, resulting in a significant decrease in image resolution, making it difficult to ensure good image quality.
従来の改良された探触子として、横方向に凹面の超音波
ビーム放射面を有する探触子が提案され、この探触子に
より横方向の集束作用を得ることが可能となつた0第4
図には弧状の振動素子10により凹面状放射面を形成す
る探触子が示され、また第5図には第1図の振動素子1
0に凹面状放射面を有する音響レンズ12を密着固定し
た構成が示されている0いずれの探触子においても、凹
面状放射面はRなる曲率を有する。As an improved conventional probe, a probe having a laterally concave ultrasonic beam emission surface was proposed, and this probe made it possible to obtain a lateral focusing effect.
The figure shows a probe in which a concave radiation surface is formed by an arc-shaped vibrating element 10, and FIG. 5 shows the vibrating element 1 of FIG.
0 shows a configuration in which an acoustic lens 12 having a concave radiation surface is closely fixed. In each of the probes, the concave radiation surface has a curvature of R.
この改良された従来装置では、横方向における集束作用
が得られ、この集束特性を示すために次式で示されるD
定数が用いられる〇このD定数は集束の強さを表わし、
曲率点における音圧は、となり、例えばD定数を2とす
ると音圧1はほぼ6となり、集束しない第1図の従来探
触子に比べて3倍の音圧を得ることが可能となる0従つ
て、第4図および第5図の従来装置によれば、3倍鋭い
指向性を得ることが可能となる〇第6図にはλ=0.5
1t1,R=751!lそして2b=13闘の探触子に
おける音圧分布特性が示され、この時のD定数はD=1
.1となり、音圧の最大点は放射面からほぼ45W!l
の位置にあるが、図から明らかなように、従来装置にお
いては、所望の集束点以外においては必ずしも良好な集
束作用を得ることができず、このために、探触子を限ら
れた使用態様にしか用いることができないという欠点が
あつた0すなわち、従来の凹面状放射面を有する探触子
はその形状から集束点が定まり、診断深度を変える都度
、探触子を交換しなければならず、取扱いが不便である
という問題を生じていた〇本発明は上記従来の課題に鑑
みなされたもので、その目的は超音波ビームの横方向の
集束特性を任意に可変することができ、単一の探触子に
より種種の診断深度をカバーすることのできる改良され
た超音波診断用探触子を提供することにある〇上記目的
を達成するために、本発明は走査方向に沿つて配列され
た複数の振動素子を含み、前記各振動素子は走査方向と
直交する横方向に対して超音波ビームの集束作用を得る
ために横方向に凹面となる超音波ビーム放射面を有する
超音波診断用探触子において、前記振動子の超音波ビー
ム放射面に該放射面の横方向幅を任意に可変とするため
の音響マスクを着脱自在に装着し、超音波ビームの横方
向の集束特性を任意に選択可能とすることを特徴とする
。With this improved conventional device, a focusing effect in the lateral direction is obtained, and to express this focusing characteristic, D
A constant is used〇This D constant represents the strength of focusing,
The sound pressure at the point of curvature is: For example, if the D constant is 2, the sound pressure 1 becomes approximately 6, making it possible to obtain three times the sound pressure compared to the conventional probe shown in Fig. 1, which does not focus. Therefore, according to the conventional devices shown in FIGS. 4 and 5, it is possible to obtain three times sharper directivity. In FIG. 6, λ=0.5
1t1, R=751! The sound pressure distribution characteristics of the probe with 1 and 2b = 13 are shown, and the D constant is D = 1.
.. 1, and the maximum point of sound pressure is approximately 45W from the radiation surface! l
However, as is clear from the figure, in the conventional device, it is not always possible to obtain a good focusing effect at points other than the desired focusing point. In other words, the conventional probe with a concave radiation surface has a focal point determined by its shape, and the probe must be replaced each time the diagnostic depth is changed. The present invention was developed in view of the above-mentioned conventional problems, and its purpose is to be able to arbitrarily vary the lateral focusing characteristics of an ultrasonic beam, and to An object of the present invention is to provide an improved ultrasonic diagnostic probe that can cover various diagnostic depths with a probe that is arranged along the scanning direction. for ultrasonic diagnosis, including a plurality of vibrating elements, each of the vibrating elements having an ultrasonic beam radiation surface that is concave in the transverse direction to obtain a focusing action of the ultrasonic beam in the transverse direction perpendicular to the scanning direction. In the probe, an acoustic mask is detachably attached to the ultrasonic beam emitting surface of the transducer to arbitrarily change the width of the emitting surface in the lateral direction, so that the lateral focusing characteristics of the ultrasonic beam can be arbitrarily changed. It is characterized by being selectable.
本発明は前記(2)式において、佃率Rが同一であつて
も振動素子長さ2bが変化すればD定数を変化させるこ
とができ、D定数の変化により集束点を変えることがで
きるという特性に着目したものであり、音響マスクによ
つて振動素子の横方向の実効長さを任意に調整すること
により、所望の集束特性を得たものである0本発明によ
れば、音響マスクによる遮蔽量を増加して振動素子の実
効長さを短くするに従い、集束点は放射面に近づき、逆
に振動素子の実効長さを長くすることにより、集束点を
放射面から遠距離に設定することができ、振動素子への
音響マスクの装着位置を任意に選択することにより、所
望の集束作用を得ることが可能となるo以下図面に基づ
いて本発明の好適な実施例を説明する〇第7図には、第
4図の従来装置に本発明を適用した実施例が示され、超
音波ビーム放射面10aに音響マスク14が装着された
状態が示され、同様に第8図には、第5図の従来装置に
おける音響レンズ12の凹面状放射面12aに音響マス
ク14が装着された実施例が示されている0音響マスク
14はゴム板あるいは0.71L11L程度の厚さを有
する発泡ポリエチレン等から成り、図示しない保持装置
により各放射面10a,12aに任意の装着位置で着脱
自在に固定保持されている。In the present invention, in the above equation (2), even if the condensation rate R is the same, the D constant can be changed by changing the vibrating element length 2b, and the focal point can be changed by changing the D constant. According to the present invention, the desired focusing characteristics can be obtained by arbitrarily adjusting the effective length of the vibrating element in the lateral direction using an acoustic mask. By increasing the amount of shielding and shortening the effective length of the vibrating element, the focal point approaches the radiation surface, and conversely, by increasing the effective length of the vibrating element, the focal point is set farther away from the radiation surface. By arbitrarily selecting the mounting position of the acoustic mask on the vibrating element, it is possible to obtain a desired focusing effect. FIG. 7 shows an embodiment in which the present invention is applied to the conventional device shown in FIG. 4, in which an acoustic mask 14 is attached to the ultrasonic beam emission surface 10a, and similarly, FIG. FIG. 5 shows an example in which an acoustic mask 14 is attached to the concave radiation surface 12a of the acoustic lens 12 in the conventional device. etc., and is removably fixed to each radiation surface 10a, 12a at an arbitrary mounting position by a holding device (not shown).
音響マスク14は超音波振動エネルギを高い効率で吸収
し、音響マスク14が装着されている放射面からは超音
波ビームが被検体中に放射されることがなく、この結果
、各放射面10a,12aは音響マスク14の装着によ
りその実効長さが短くなり、(2)式に示されるD定数
を任意の値に変化することが可能となる〇第9図には、
2b=1.4關、λ=0.5mmおよびR=80m1の
探触子に本発明に係る音響マスクを装着した時の音圧分
布特性の変化が示され、特性401は音響マスク14を
装着しない状態であり、この時のD定数はほぼ1.2と
なり、音圧最大点すなわち集束点は放射面から約52鰭
の位置に生じる0これに対し、特性402は3m1幅の
音響マスク14を放射面の両側に装着して振動素子10
の実効長さを8に短縮した状態が示され、この時のD定
数は0.4となり、この結果、音圧最大点すなわち集束
点は約24の位置に移動することが理解される0第9図
の特性から明らかなように、音響マスク14の装着によ
り近距離の診断深度において良好な集束作用を得ること
が可能となり、このことから、本発明において音響マス
ク14による放射面の調整によつて任意の音圧分布特性
を得ることが可能となるo以上のように、本発明によれ
ば、音響マスクを超音波ビーム放射面に所望位置で装着
することにより、超音波ビームの横方向の集束特性を任
意に選択することが可能となり、単一の探触子を用いて
広範囲の診断深度に対して所望の集束特性を有する超音
波ビーム放射を行うことが可能となり、超音波診断装置
の利用範囲を著しく増大し、分解能の高い良質な画像を
得ることが可能となる〇The acoustic mask 14 absorbs ultrasonic vibration energy with high efficiency, and the ultrasonic beam is not emitted into the subject from the radiation surface on which the acoustic mask 14 is attached. As a result, each radiation surface 10a, By attaching the acoustic mask 14, the effective length of 12a becomes shorter, making it possible to change the D constant shown in equation (2) to an arbitrary value.
2b = 1.4 mm, λ = 0.5 mm, and R = 80 m1 The change in sound pressure distribution characteristics when the acoustic mask according to the present invention is attached to the probe is shown, and characteristic 401 shows the change in the sound pressure distribution characteristic when the acoustic mask 14 is attached. At this time, the D constant is approximately 1.2, and the maximum sound pressure point, that is, the focal point, occurs at a position approximately 52 fins from the radiation surface.In contrast, the characteristic 402 indicates that the acoustic mask 14 with a width of 3 m1 is Vibration elements 10 are mounted on both sides of the radiation surface.
The state in which the effective length of is shortened to 8 is shown, and the D constant at this time is 0.4, and as a result, it is understood that the maximum sound pressure point, that is, the focal point, moves to the 0th position of approximately 24. As is clear from the characteristics shown in FIG. 9, by attaching the acoustic mask 14, it is possible to obtain a good focusing effect at the diagnostic depth of a short distance, and for this reason, in the present invention, adjustment of the radiation surface by the acoustic mask 14 is effective. As described above, according to the present invention, by attaching the acoustic mask to the ultrasonic beam radiation surface at a desired position, it is possible to obtain arbitrary sound pressure distribution characteristics. It is now possible to arbitrarily select the focusing characteristics, and it is now possible to emit an ultrasound beam with the desired focusing characteristics over a wide range of diagnostic depths using a single probe. It significantly increases the range of use and makes it possible to obtain high-quality images with high resolution.
第1図は従来の横方向集束のない探触子を示す斜視図、
第2図は第1図の探触子を用いたリニア電子走査作用を
示す説明図、第3図は第1図の探触子における横方向の
超音波ビーム拡散作用を示す説明図、第4図は放射方向
の集束作用を行うことのできる従来の改良された探触子
の斜視図、第5図は音響レンズにより放射方向の集束作
用を行うことのできる従来の他の探触子を示す斜視図、
第6図は第4図および第5図の従来探触子における音圧
分布特性図、第7図は第4図の従来装置に本発明を適用
した好適な実施例を示す斜視図、第8図は第5図の従来
装置に本発明を適用した好適な実施例を示す斜視図、第
9図は第7図および第8図の実施例における集束特性調
整作用を示す特性図である〇10・・・・・・振動素子
、10a・・・・・・放射面、14・・・・・・音響マ
スク。FIG. 1 is a perspective view of a conventional transversely focused transducer;
Fig. 2 is an explanatory diagram showing the linear electron scanning effect using the probe of Fig. 1, Fig. 3 is an explanatory diagram showing the lateral ultrasonic beam diffusion effect of the probe of Fig. 1, and Fig. The figure is a perspective view of a conventional improved probe capable of performing a radial focusing action, and FIG. 5 shows another conventional probe capable of performing a radial focusing action using an acoustic lens. Perspective view,
6 is a sound pressure distribution characteristic diagram of the conventional probe shown in FIGS. 4 and 5, FIG. 7 is a perspective view showing a preferred embodiment in which the present invention is applied to the conventional device shown in FIG. 4, and FIG. The figure is a perspective view showing a preferred embodiment in which the present invention is applied to the conventional device shown in Fig. 5, and Fig. 9 is a characteristic diagram showing the focusing characteristic adjustment effect in the embodiment shown in Figs. 7 and 8.〇10 ... Vibration element, 10a ... Radiation surface, 14 ... Acoustic mask.
Claims (1)
、前記各振動素子は走査方向と直交する横方向に対して
超音波ビームの集束作用を得るために横方向に凹面とな
る超音波ビーム放射面を有する超音波診断用探触子にお
いて、前記振動子の超音波ビーム放射面に該放射面の横
方向幅を任意に可変とするための音響マスクを着脱自在
に装着し、超音波ビームの横方向の集束特性を任意に選
択可能とすることを特徴とする超音波診断用探触子。1. An ultrasonic beam including a plurality of vibrating elements arranged along the scanning direction, each of the vibrating elements having a concave surface in the transverse direction in order to obtain a focusing action of the ultrasonic beam in a transverse direction perpendicular to the scanning direction. In an ultrasonic diagnostic probe having a radiation surface, an acoustic mask is removably attached to the ultrasound beam radiation surface of the transducer to arbitrarily vary the width of the radiation surface in the lateral direction. An ultrasonic diagnostic probe characterized in that the transverse focusing characteristics of the probe can be arbitrarily selected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54170410A JPS5944052B2 (en) | 1979-12-28 | 1979-12-28 | Ultrasonic diagnostic probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54170410A JPS5944052B2 (en) | 1979-12-28 | 1979-12-28 | Ultrasonic diagnostic probe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5695038A JPS5695038A (en) | 1981-08-01 |
JPS5944052B2 true JPS5944052B2 (en) | 1984-10-26 |
Family
ID=15904400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54170410A Expired JPS5944052B2 (en) | 1979-12-28 | 1979-12-28 | Ultrasonic diagnostic probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5944052B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0347585B2 (en) * | 1984-12-03 | 1991-07-19 | Mitsubishi Electric Corp |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6295396U (en) * | 1985-12-03 | 1987-06-18 |
-
1979
- 1979-12-28 JP JP54170410A patent/JPS5944052B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0347585B2 (en) * | 1984-12-03 | 1991-07-19 | Mitsubishi Electric Corp |
Also Published As
Publication number | Publication date |
---|---|
JPS5695038A (en) | 1981-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5678554A (en) | Ultrasound transducer for multiple focusing and method for manufacture thereof | |
US20070197917A1 (en) | Continuous-focus ultrasound lens | |
US5743855A (en) | Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof | |
JP2004089311A (en) | Ultrasonic transmission/reception device | |
KR20110139643A (en) | Ultrasonic diagnosis apparatus | |
KR20080093281A (en) | Ultrasound diagnostic probe | |
US5971925A (en) | Broadband phased array transducer with frequency controlled two dimensional aperture capability for harmonic imaging | |
US10743839B2 (en) | Device and method for hybrid optoacoustic tomography and ultrasonography | |
JP4740770B2 (en) | Ultrasonic probe and ultrasonic imaging apparatus | |
WO2015015848A1 (en) | Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program | |
JP4334032B2 (en) | Ultrasonic diagnostic equipment | |
JP6925815B2 (en) | Ultrasonic diagnostic equipment | |
US5976091A (en) | Limited diffraction broadband phased array transducer with frequency controlled two dimensional aperture capability | |
JPS5944052B2 (en) | Ultrasonic diagnostic probe | |
JPH021263B2 (en) | ||
JPS649012B2 (en) | ||
JPH0226189B2 (en) | ||
JPH06125894A (en) | Ultrasonic probe | |
JP5016782B2 (en) | Ultrasonic diagnostic equipment | |
JPH05285140A (en) | Ultrasonic device | |
JP7415785B2 (en) | Ultrasonic probe and ultrasonic diagnostic equipment | |
JPS58127642A (en) | Ultrasonic probe | |
JP3644876B2 (en) | Ultrasonic probe and ultrasonic diagnostic apparatus | |
JPH0127740B2 (en) | ||
Nomura et al. | Low-frequency parametric ultrasound imaging using pulse compression with maximum-length sequence excitation |