JPS5944001A - Prism type solar light condensing device - Google Patents

Prism type solar light condensing device

Info

Publication number
JPS5944001A
JPS5944001A JP57153971A JP15397182A JPS5944001A JP S5944001 A JPS5944001 A JP S5944001A JP 57153971 A JP57153971 A JP 57153971A JP 15397182 A JP15397182 A JP 15397182A JP S5944001 A JPS5944001 A JP S5944001A
Authority
JP
Japan
Prior art keywords
prism
triangular prism
angle
sunlight
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57153971A
Other languages
Japanese (ja)
Inventor
Chikatsu Okagawa
岡川 千勝
Michiko Okagawa
岡川 「みち」子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57153971A priority Critical patent/JPS5944001A/en
Publication of JPS5944001A publication Critical patent/JPS5944001A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain titled prism type solar light condensing device which is a fixed type, but capable of condensing solar light optically by using a prism as a light condenser. CONSTITUTION:One side face 2 of a triangular prism 1 is confronted the sun and another side face 3 serves as a reflecting surface. A photodetecting plate 7 is brought into tight contact with a bottom surface 6 optically. Plane reflecting mirror 12 are placed at both ends of the prism 1 at right angles to a vertex 4. Another triangular prism 8 is placed in contact with the side face 2. Further, another couple of triangular prisms 1' and 8' are situated facing the prism 1. The whole of this light condensing device is installed on the surface 14 of a base stand 13 and side faces 2 and 2', 9 and 9', and 10 and 10' are made anti- reflective. When the altitude of the sunlight 15 is within an incidence range, the sunlight 15 is always made incident to the prism 1 through the side face 10 after being refracted by the side face 9 of the prism 8 firstly. The sunlight refracted in the prism 1 is reflected by the side face 3 and totally reflected by the side face 2 repeatedly to reach the bottom surface 6, so that it is photodetected by the photodetecting plate 7.

Description

【発明の詳細な説明】 この発明はプリズムによって広い111)四からI)C
射されろ太陽)′(7を受光して光学的に6゛1斐縮す
る構造がj、’i’i Qi、で改良された太1’lJ
光隼光装拗に19,1する。
DETAILED DESCRIPTION OF THE INVENTION This invention is wide by prism 111) 4 to I) C
The structure that optically contracts by 6゛1 upon receiving light from the sun)' (7) is improved by j, 'i'i Qi,
Hikaru Hayabusa becomes 19.1.

地上へ到する太陽光のもつエネルへ−゛−は[6的に却
富でλ”、)つてもそのエネルギー密度は1平カメ−ト
ル当り平均してIKWと小さい。従来技術のりも固定式
の平板壁太陽9光受光器は太陽光を濃縮せ一4゛に受光
するもので構造が簡Qi 、、c、あるが、イF+l’
g)れる温度/】を低く用途は温水用に市まるごとが欠
点である。
Even though the energy of sunlight that reaches the ground is λ'', the energy density is small at IKW per square meter on average.Conventional technology Glue fixed type The flat-wall solar 9-ray receiver condenses sunlight and receives it at 14°, and its structure is simple.
g) The disadvantage is that it has a low temperature and is used for hot water.

高いエネルギー密度を必要とする暖房用、冷房用、太陽
熱発電用、太陽光発電用1.cどの用途には太陽光を光
学的に濃縮することが必腑である。従来技術のうち太陽
光を光学的に娘縮する集光型太陽光受光?:÷は太陽を
ノQ尾し放物面鏡あるいはレンスを用いて太陽光を集光
する移動式のもので集光器の他に太陽追尾装置を必要と
づ−る。太陽追尾装置〆1゛(よ414造が煩雑で高仙
1なことが欠点である。
For heating, cooling, solar thermal power generation, and photovoltaic power generation that require high energy density 1. c. Optical concentration of sunlight is essential for many applications. Of the conventional technologies, concentrating solar light reception that optically condenses sunlight? :÷ is a mobile type that follows the sun and focuses sunlight using a parabolic mirror or lens, and requires a solar tracking device in addition to a concentrator. The drawback is that the solar tracking device is complicated and expensive.

本発明は集光器としてプリズムを用いろことによって固
定式でありながら太陽光を光学的に濃縮出来る太陽光集
光装置バーを提供ずろことを目的としている。
An object of the present invention is to provide a solar light concentrator bar that is fixed but capable of optically concentrating sunlight by using a prism as a light concentrator.

以下実施例に従い本発明の詳細な説明する。The present invention will be described in detail below with reference to Examples.

第1図において三角柱体プリズム1の−っの1ltll
 17ii2を・太陽の方向に向け、他の1II11面
6を反射内とする。受光板7を底面6に光学的に密着さ
ぜる。
In Figure 1, the triangular prism 1 - 1ltll
Point 17ii2 toward the sun, and set the other 1II11 surface 6 within the reflection. The light receiving plate 7 is optically brought into close contact with the bottom surface 6.

三角柱体プリズム1の両端11に頂点4と垂直に平面反
射極、12を置く。側面2と接してもう−っの圧用柱体
プリズム8を1行く。三角柱体ブリズノ、1と向(・合
ぜの形でもう一組の三角柱体プリズム1′と8′を設置
する。この集光装置全体を架台16の架台面14の上に
設置剃る側面2と2′、9と9′。
Planar reflective poles 12 are placed at both ends 11 of the triangular prism 1 perpendicular to the apex 4. The other pressure column prism 8 is in contact with the side surface 2. Another set of triangular prisms 1' and 8' is installed in the same direction as the triangular prisms 1 and 1. This entire condensing device is installed on the pedestal surface 14 of the pedestal 16. 2', 9 and 9'.

10と10’は通常の方法で反射防止をほどこす。10 and 10' are anti-reflective in the usual way.

太陽光15の高度が後に述べる入射範囲内であれば先ず
三角柱体プリズム8の側面9で屈折され側面10を経て
三1ス]柱体プリズム1に入射する。
If the altitude of the sunlight 15 is within the incident range described later, it is first refracted by the side surface 9 of the triangular prism 8 and enters the triangular prism 1 via the side surface 10.

三角柱体プリズム、1内に屈折された太陽光は側面ろで
反射、側面2で全反射を繰返(7て底面乙に達し、受光
板7によって受光される。
The sunlight refracted into the triangular prism 1 is reflected at the side surface 2, and is repeatedly totally reflected at the side surface 2 (7, reaching the bottom surface A, where it is received by the light receiving plate 7.

実施例 1 第1図の集光装置の三角柱体ヅリズA iの頂点4を東
西方向に向は架台面14を水it’而からその地点の緯
度の角度(東京では65.6°)に傾は南の方間に回け
て架台16に設置1才る。
Example 1 The apex 4 of the triangular prism A i of the condensing device shown in FIG. It was moved to the south and installed on pedestal 16 for one year.

屈折率が1,8のガラス製σ用目角5が6°で高さ50
CTL、長さ180cTLの三角柱体プリズム1を架台
面14上に置き一つの側面ろを通常の技術で反射鏡面に
加]二ずろ。側面2を架台面140法線から66.6°
傾けて架台面14上に設置Itする。底面6のl]は4
.4 cmである。底面乙にri〕が4.5 cmより
大きい半円形断面の銅パイプにml熱性のシリコーンの
グリースを塗り光学的に密着さ拷て取付は受光板7とす
る。この三角柱体プリズム1の上に屈折率が1.8のガ
ラス製の頂角が10”で高さが50cIrL。
Made of glass with a refractive index of 1.8, the eye angle 5 for σ is 6° and the height is 50
CTL, a triangular prism 1 with a length of 180 cTL is placed on the pedestal surface 14, and one side surface is added to the reflective mirror surface using a conventional technique. Side 2 is 66.6° from the normal to the mount surface 140
It is tilted and installed on the pedestal surface 14. l of the bottom surface 6 is 4
.. It is 4 cm. A copper pipe having a semicircular cross section with a diameter of 4.5 cm or more on the bottom surface is coated with ml thermal silicone grease and optically brought into close contact with the copper pipe to be attached to the light receiving plate 7. On top of this triangular prism 1 is a glass plate with a refractive index of 1.8, an apex angle of 10'' and a height of 50 cIrL.

長さ180鋼の三角柱体プリズム8を設置ず/、、)。A triangular prism 8 of length 180 steel is installed.

三1r1柱体プリズム8の太陽に向いた側面9を架台1
(+14の法線かも46.6°傾けて架台上に設置ずろ
Mount 1 on the side 9 facing the sun of the 31r1 columnar prism 8.
(The normal of +14 should be tilted 46.6 degrees and installed on the stand.

イ、う一組の三角柱f4・ゾリズノ、1′と8′を上の
三角柱体ヅリズノ、と向き合せて架台面14の法線から
そ第1.それろ56°と466°傾けて架台面14上に
設置する。三角柱体プリズム8と8′の太陽に向いた血
の間の角度は87.2°である。
A. Another set of triangular prisms f4, 1' and 8' facing the triangular prisms above, and the first set facing from the normal to the pedestal surface 14. Rather, they are installed on the pedestal surface 14 at an angle of 56° and 466°. The angle between the sun-facing blood of triangular prisms 8 and 8' is 87.2°.

三角柱体プリズム1と1′の左右両端に高さが60cm
、巾が1ろOcmの犀面反射鏡12を三角柱体プリズノ
、の頂点4Σ垂直に設置する。
The height is 60cm at both left and right ends of triangular prisms 1 and 1'.
A rhinoceros-faced reflecting mirror 12 with a width of 10 cm is installed perpendicular to the apex 4Σ of the triangular prism.

春分と秋分の正午には太陽uj、r90’−その地点の
緯度」(東京では54.4°)の高さにある。第2図の
(1)は東京における春分と秋分の正午の高度544°
の太陽光150人射光路を示したものである。太陽光1
5は側面8に対して46.4°の入射角で入射し、プリ
ズム内に26.7°の屈折角で屈折される。屈折光16
は側面10に65.7°の入射角で入射し87.1°の
屈折角で屈折される。この屈折光は側面2に87.1°
の入射角で入射し66.7°の屈折角で屈折さ牙する。
At noon on the vernal and autumnal equinoxes, the sun is at the height of uj, r90' - the latitude of that point (54.4° in Tokyo). (1) in Figure 2 is the altitude of 544° at noon on the vernal and autumnal equinoxes in Tokyo.
This figure shows the path of 150 human rays of sunlight. sunlight 1
5 is incident on the side surface 8 at an incident angle of 46.4° and is refracted into the prism at a refraction angle of 26.7°. Refracted light 16
is incident on the side surface 10 at an incident angle of 65.7° and is refracted at a refraction angle of 87.1°. This refracted light is 87.1° to side 2.
It enters at an angle of incidence of 66.7° and is refracted at an angle of refraction of 66.7°.

この屈折光16は側「11ろで反射され側面2に達する
。反射光の側面2への入射角は45.7°で側面2で全
反射される。その後この反射光は[1111面6で反射
、側面2で全反射付繰返(7゜底面6に達づる。1氏面
5にごく近い側面2に入射する屈折光は反射せずに底面
5に達する。
This refracted light 16 is reflected at the side surface 11 and reaches the side surface 2.The incident angle of the reflected light to the side surface 2 is 45.7°, and it is totally reflected on the side surface 2.Then, this reflected light is reflected at the side surface 6. Reflection, repeated with total reflection at side surface 2 (7° reaches bottom surface 6. Refracted light incident on side surface 2, which is very close to 1 degree surface 5, reaches bottom surface 5 without being reflected.

第2図では図面を明解にするため屈折光16の光路は側
面ろで反射された後側面2に達するところまでしか;1
1いていないが屈折光16は、第6図のI)1+<反射
全反射へ・1、・”り1収して底面6に達[イ)。かく
l〜て側面9か1゛)入射する太陽)′(、はすべ′C
底底面にイ1♂光さJ(る。宅)′(1比は次の式で表
わさ;)1.−6.第5である。
In FIG. 2, in order to make the drawing clear, the optical path of the refracted light 16 is only up to the point where it reaches the rear side surface 2 after being reflected by the side filter;
1, but the refracted light 16 reaches the bottom surface 6 after I) 1+<reflection total reflection in Figure 6. sun)'(, hasbe'C
1♂ light on the bottom surface (1 ratio is expressed by the following formula;) 1. -6. This is the fifth.

三1f口り体プリズJ、 8 / i(入射Jる太陽)
’(: 15’も同じく)”リスl、8 ’−C−力I
折さJした後プリズム1′に入射スる。反射1r16′
Q反射され側面2′で全反射された後底面6′に達する
。東光比は三角柱体プリズム1の鳴合と同じ<6.5で
ある。
31F mouth body priz J, 8/i (incident J sun)
'(: 15' is also the same) "Lis l, 8 '-C-force I
After being folded, it enters the prism 1'. reflection 1r16'
It is Q-reflected and totally reflected by the side surface 2', and then reaches the bottom surface 6'. The Toko ratio is <6.5, which is the same as that of the triangular prism 1.

プリズム1と1′の底面5と5′に達した太陽光は底面
に塗ったシリコーン・グリースを通して銅パイプに達し
熱として吸収される。底面にシリコーン・グリースを塗
っであるので底面と銅パイプとが光学的に密府し底部に
達した太陽光は底面で全反射さ槍しること1.仁<、@
パイプに達する。
The sunlight that reaches the bottom surfaces 5 and 5' of the prisms 1 and 1' reaches the copper pipe through silicone grease applied to the bottom surfaces and is absorbed as heat. Since the bottom surface is coated with silicone grease, the bottom surface and the copper pipe are optically sealed, and sunlight that reaches the bottom is totally reflected by the bottom surface.1. Jin<, @
Reach the pipe.

夏至の正午には太陽は「90’−JCの地点の緯度−ト
2ろ、4°」 (東京では77.8°)の高さにある。
At noon on the summer solstice, the sun is at a height of ``90' - the latitude of the point JC - 4 degrees'' (77.8 degrees in Tokyo).

第2図の(2)は東京における夏至の正午の高度77.
8゜の太陽光の入射光路を示したものである。太陽光1
5け、三角住体プリズJx 3に対して69.8°の入
射角で入射しプリズム内に31.4°の屈折角で屈折さ
れる。屈折光16の側面10への入射角は41.4゜で
側面10で全反射されその後プリズム8内で全反射を繰
返しプリズム1には達しIfい。
(2) in Figure 2 shows the altitude at midday on the summer solstice in Tokyo: 77.
This figure shows the incident optical path of sunlight at an angle of 8°. sunlight 1
The light enters the triangular prism Jx 3 at an incident angle of 69.8° and is refracted into the prism at a refraction angle of 31.4°. The angle of incidence of the refracted light 16 on the side surface 10 is 41.4 degrees, and it is totally reflected on the side surface 10 and then totally reflected within the prism 8 until it reaches the prism 1.

他力三角柱体プリズム8′の側面9′に対1.て太陽)
’C; 15’は2ろ、0°の入射角で入射しプリズム
8′内に12.5°の屈折角で屈折される。屈折光は春
分の秋分の時と同様三角柱体プリズム8′から三角柱体
プリズム1′へ進み側面6′で反射され側面2′に達す
る。
1. On the side surface 9' of the external triangular prism 8'. te sun)
'C;15' is incident at an incident angle of 0° and is refracted into the prism 8' at a refraction angle of 12.5°. The refracted light travels from the triangular prism 8' to the triangular prism 1', is reflected at the side surface 6', and reaches the side surface 2', as at the time of the vernal and autumnal equinoxes.

反射)I(1の側面2′に対−4る入射角は64.5°
で側面2′で全反射される。その後この反r(・1尤は
春分と秋分の時と同様反射と全反射な繰返I2て底部6
′に達(2底面に設(1°′”イした・洞パイプで受)
1される。集光比は8.6で70.ろ。
reflection) I (the angle of incidence of -4 on side 2' of 1 is 64.5°
It is totally reflected at the side surface 2'. After that, this anti-r
′ (installed on the bottom of 2 (1°′”) and received by the hollow pipe)
1 will be given. The condensing ratio is 8.6 and 70. reactor.

冬至のIF、午iCは太陽は190’−その地点の緯度
−23,4°」(東京でハ31.0’) ノ高さにある
。第21y、1の(5)は東京にオ・5ける冬至の正午
の関度ろ1.0゜の太M光の入射光路を・示したもので
ある。太陽光15は三fr口Y体プリズム8に対して7
3.0’の入射角度で入射角度で入射しプリズム内に1
2.5°の屈折角で屈折されろ。太陽光15′は三角・
柱体プリズム8′に対して698′の入射角で入射しプ
リズJ・内に51.4°の屈折角で屈折さ、!する。
At the winter solstice IF, noon iC, the sun is at an altitude of 190' - the latitude of that point - 23.4'(31.0' in Tokyo). 21st Y, 1 (5) shows the incident optical path of thick M light at noon of the winter solstice on O.5 in Tokyo, with an angle of 1.0°. Sunlight 15 is 7 for 8 three-fr mouth Y-body prism
1 into the prism at an incident angle of 3.0'.
Be refracted at a refraction angle of 2.5°. Sunlight 15' is triangular.
It enters the columnar prism 8' at an incident angle of 698' and is refracted into the prism J at a refraction angle of 51.4°. do.

冬至では、三角柱体ブリズA 8 &こ入射する太陽光
15はすべてブリズl、 lの底部6に達し2.三角柱
体プリズム8′に入射−4−る太ISリゲr15’はプ
リズム8′内で反射と全反射を繰返してプリズム1′に
達し1よい。これらのことは夏至の時に比ベプリズム8
とプリズム8′が入れ代っただけで他は全く同じであろ
っ 正午より前の午前には太陽光15と15′は南東力量か
ら三角柱体プリズム8と8′に入射し三角柱体プリズム
8と8′および1と1′の内部を東の力から西の力へ向
けて屈折され底部6と6′に達する。三角柱体プリズム
8と8′の西端に近い部分に入射する太陽光の屈折光は
西側に設けた反射鏡12で東の方向へ反射された後で底
部6と6′に達する。
At the winter solstice, all the sunlight 15 incident on the triangular prism Bliz A 8 reaches the bottom 6 of Bliz L, l, and 2. The thick IS r15' which is incident on the triangular prism 8' is repeatedly reflected and totally reflected within the prism 8' and reaches the prism 1'. These things happen during the summer solstice.
Everything else is the same except that prism 8' has been replaced. In the morning before noon, sunlight 15 and 15' enter triangular prisms 8 and 8' from the southeast, and The inside of 8' and 1 and 1' is refracted from the east force to the west force and reaches the bottoms 6 and 6'. The refracted sunlight incident on the parts near the west ends of the triangular prisms 8 and 8' is reflected eastward by a reflecting mirror 12 provided on the west side, and then reaches the bottom parts 6 and 6'.

正午より後の午後には太陽光15と15′は南西方向か
ら三角柱体プリズム8と8′に入射する。三角柱体プリ
ズム8と8′に入射する太陽光15と15′は午+’i
f+とは逆でその一部は東ψ11に設けた反射鏡12で
西の方向へ反射されることを含めl底部6と6′に達す
る。
In the afternoon after noon, sunlight 15 and 15' enter the triangular prisms 8 and 8' from the southwest direction. Sunlight 15 and 15' incident on the triangular prisms 8 and 8' are +'i
Contrary to f+, part of it reaches the l bottoms 6 and 6', including being reflected in the west direction by the reflecting mirror 12 provided on the east ψ11.

三角柱体プリズムの全反射臨界角Qは次の式で表わされ
る。
The total internal reflection critical angle Q of a triangular prism is expressed by the following formula.

nxS訊Q=1 nは三角柱体プリズムの屈折率 正円柱体プリズム1の側面2へ入射する太陽光15の屈
折光16が9111面6へ全反射臨界角以上で入射する
時側面6で全反射される。このような太陽光15の5ら
側面2への入射角の最小の角を限界入射角とする。限界
入射角から入射角900までの範囲を許容入射φへ囲と
する。側面2に対ずろ入射角が許容入射範囲内にある太
陽)’(,15は三角柱体プリズム1の内部で全反射又
は反り1と全反射を繰り返し最後は底面乙に達する。
nxSQ=1 n is the refractive index of the triangular prism When the refracted light 16 of the sunlight 15 incident on the side surface 2 of the regular cylindrical prism 1 is incident on the 9111 surface 6 at a total reflection critical angle or more, it is totally reflected on the side surface 6. be done. The minimum angle of incidence of such sunlight 15 on the five side surfaces 2 is defined as the critical incidence angle. The range from the critical incidence angle to the incidence angle 900 is defined as the allowable incidence φ. The sun whose angle of incidence with respect to the side surface 2 is within the permissible incident range)'(, 15 undergoes total reflection or repeats the curvature 1 and total reflection inside the triangular prism 1, and finally reaches the bottom surface B.

三角柱体プリズム1の屈折率が1.8で頂角5が16.
9°の鴨合、側面6が反射鏡でなければ許容入射角は5
2°で許容入射に山匹は58°にしか1ぎ1.Cいが、
側面2が反射鏡であれば許容入射角は0゜で7.′I右
入射;6it囲1.L 900にひろが4)。頂角5が
60の1局合、1作谷入射範囲は前者では66°、 後
者で&j、 480である。 側面5を反射鏡と−する
ことは許容人(1、■i′l・1)、団をひろげる役割
をはた吋。
The refractive index of the triangular prism 1 is 1.8, and the apex angle 5 is 16.
If the side face 6 is not a reflective mirror, the allowable angle of incidence is 5.
The permissible incidence at 2° is only 1.1 at 58°. C but
If the side surface 2 is a reflective mirror, the allowable angle of incidence is 0° and 7. 'I right incidence; 6it enclosure 1. Hiroga 4) on L 900. In one case where the apex angle 5 is 60, the incidence range of one trough is 66° in the former case and &j, 480° in the latter case. The side 5 is used as a reflecting mirror, which serves as a permissive person (1, ■i'l・1), who plays the role of expanding the group.

太II’%光15の集)Y;比は入射面積と受ゲe面積
の比が人l、lt −t 2)場合の最大人q、1而積
は側面2の1%さと長さ馨損は合止だ面積に等し〜・。
The ratio is the ratio of the incident area to the receiving area is 1,lt -t 2) The maximum q, 1 area is 1% of the side 2 and the length is The loss is equal to the total area.

太陽光15の受光部4?iは底部6のrlJと長さとを
川り一合せた面積に等しい。太陽光15の集光比を6以
上とするためには受光面積を入射面積の4以下、つまり
側面2と底面6が垂直の場合頂角5を180以下とする
必要がある。
Light receiving part 4 of sunlight 15? i is equal to the area of rlJ and length of the bottom 6. In order to make the concentration ratio of sunlight 15 6 or more, the light receiving area needs to be 4 or less of the incident area, that is, when the side surface 2 and the bottom surface 6 are perpendicular, the apex angle 5 needs to be 180 or less.

春分から夏至へ、秋分から冬至へと季節が移るにつれ′
C正午の太陽の高度は春分1.秋分の高度を中心として
上下26.4°の角朋変化する。一つの三角柱体プリズ
ム1で春分から夏至を経て秋分までの期間太陽光15を
集光比6以上で受光出来るためには三角柱体プリズムの
頂角5が限界入射角より23.40大きい入射角に対し
て6以上の集光比をもつ必要がある。このような頂角5
は次に示ず如く三角柱体プリズムの屈折率が1.8の場
合は6゜以−11’70  以下、屈折率が1.5の場
合は60以上11°以下である。
As the seasons change from the spring equinox to the summer solstice and from the autumn equinox to the winter solstice,
C The altitude of the sun at noon is the vernal equinox 1. The angle changes vertically by 26.4 degrees around the altitude of the autumnal equinox. In order for one triangular prism 1 to receive sunlight 15 from the vernal equinox through the summer solstice to the autumnal equinox with a condensing ratio of 6 or more, the apex angle 5 of the triangular prism 1 must be 23.40 larger than the critical incident angle. In contrast, it is necessary to have a condensing ratio of 6 or more. Vertical angle 5 like this
As shown below, when the refractive index of the triangular prism is 1.8, it is from 6° to -11'70, and when the refractive index is 1.5, it is from 60 to 11°.

1.82°  63.3°   12,9   86.
701−71.83°  56,9°  10,4  
 80.30   3.21.86°  41.807
.1   65.204,01.8  1(+025.
30    5.1    48.70    3.7
1.8  17°   −0−5°   3.3   
22.9°    3.01.8  18Q−4,1o
3.1    19.3°    2.91.55° 
  52.2°   7.0   75.7°    
2.81.56°   48,206.3    71
.603.01.5   8040.80    5−
4    64−2     3.115  1103
5.60    4.4    54.0     3
.01.5  12   27.304.2    5
0.7     2.98三角柱体プリズム10側面2
0頂点40近くに入射する太陽光15は側面2で屈折さ
れた後第6図(1)の如く側面6で反射、側面2で全反
射を繰返した後底面乙に達する。屈折光16は側面6で
反射、側面2で全反射を繰返す度に入射角は頂角5に相
当する角度だけ増加する。そこで底面6に達した時には
屈折光16の側面6および側面2に対する角度は充分大
きい。底面6は側面2に垂直であり屈折光16の底面6
に対する入射角は全反射臨界角より少さくなり、底面6
で屈折されて三角柱体プリズム1の外部へ射出される。
1.82° 63.3° 12.9 86.
701-71.83° 56,9° 10,4
80.30 3.21.86° 41.807
.. 1 65.204,01.8 1(+025.
30 5.1 48.70 3.7
1.8 17° -0-5° 3.3
22.9° 3.01.8 18Q-4,1o
3.1 19.3° 2.91.55°
52.2° 7.0 75.7°
2.81.56° 48,206.3 71
.. 603.01.5 8040.80 5-
4 64-2 3.115 1103
5.60 4.4 54.0 3
.. 01.5 12 27.304.2 5
0.7 2.98 Triangular prism 10 side 2
Sunlight 15 incident near the apex 40 is refracted by the side surface 2, reflected by the side surface 6 as shown in FIG. 6(1), and then totally reflected by the side surface 2, after which it reaches the bottom surface B. Each time the refracted light 16 is reflected at the side surface 6 and totally reflected at the side surface 2, the incident angle increases by an angle corresponding to the apex angle 5. When the refracted light 16 reaches the bottom surface 6, the angle of the refracted light 16 with respect to the side surfaces 6 and 2 is sufficiently large. The bottom surface 6 is perpendicular to the side surface 2 and the bottom surface 6 of the refracted light 16
The angle of incidence on the bottom surface 6 is smaller than the critical angle of total reflection.
The light is refracted at the point and emitted to the outside of the triangular prism 1.

三角柱体プリズム1の側面2の底面60近くに入射する
太陽光15は側面2で屈゛折された後直接底IT+76
へ、あるいは側面6で反射、側面2で全反射を数回繰返
腎た後で底面6に達する。屈折光16の反射、全反射回
数が少ないため屈折光16の側面6および側面2に対す
る角度は第6図(2)の如くmに比べ大きくない。屈折
光16の底部4に対する入射角は全反射臨界角より大き
く底面6が空気に接していれば底面6で全反射される。
Sunlight 15 that enters near the bottom 60 of the side 2 of the triangular prism 1 is refracted by the side 2 and then directly returns to the bottom IT+76.
It reaches the bottom surface 6 after repeating the reflection on the side 6 and the total reflection on the side 2 several times. Since the number of reflections and total reflections of the refracted light 16 is small, the angle of the refracted light 16 with respect to the side surface 6 and the side surface 2 is not larger than m as shown in FIG. 6(2). The angle of incidence of the refracted light 16 on the bottom 4 is greater than the critical angle of total reflection, and if the bottom 6 is in contact with air, it will be totally reflected at the bottom 6.

全反射されたノII折光16は三角柱体プリズム1内を
頂角の方向に進み反射、全反射を繰返した後で側面2か
も外部へ射出される。
The totally reflected No. 2 diffracted light 16 travels in the direction of the apex within the triangular prism 1, is reflected, and after repeating total reflection, is emitted to the outside through the side surface 2.

底面6に耐熱性の液体、接着剤0弾性体をはさみ受光板
7を光学的に密着させて取付けると底面6での全反射臨
界角が大きくなり底面6で全反射する屈折光16のうち
の大部分を底面6で屈折させて受光板7で受光すること
が出来る。底面6に受光板7を光学的に密着させること
によって屈折光16のうち受光板7で受光出来る光用を
増加させることが出来る。
When a heat-resistant liquid or an adhesive-free elastic material is sandwiched between the bottom surface 6 and the light receiving plate 7 is mounted in close optical contact with the bottom surface 6, the critical angle of total reflection at the bottom surface 6 becomes large, and part of the refracted light 16 that is totally reflected at the bottom surface 6 increases. Most of the light can be refracted by the bottom surface 6 and received by the light receiving plate 7. By optically bringing the light receiving plate 7 into close contact with the bottom surface 6, it is possible to increase the portion of the refracted light 16 that can be received by the light receiving plate 7.

実施例 2 第6図は水平においた架台面141の上に屈折率が1.
8のガラス製の頂角5が6°で+lJが10α長さ50
cmの三角柱体プリズノ、1の側面2を垂直においた断
面図である。側面3は反射鏡面に、加工する。底面6は
側II′+12に垂直である。
Embodiment 2 In FIG. 6, a refractive index of 1.0 is placed on a horizontally placed pedestal surface 141.
8 glass apex angle 5 is 6° and +lJ is 10α length 50
1 is a sectional view of a triangular prism 1 having a diameter of cm, with its side surface 2 vertically oriented. The side surface 3 is processed into a reflective mirror surface. The bottom surface 6 is perpendicular to side II'+12.

水平面から測った高度5oOの太1劫光15が側面2へ
入射する時側面2の頂点4から底面6に向け ′て1闘
おきの地点に入射する太陽光の屈折光の光路を追跡し底
1fI6に達した時の底面6への入射角と底面で全反射
され1よい場合の空気中への屈折角を算出する。η、出
した結果は灰のjtdりである。
When the thick light 15 at an altitude of 5oO measured from the horizontal plane is incident on the side surface 2, it traces the optical path of the refracted light of the sunlight that enters every other point from the apex 4 of the side surface 2 to the bottom surface 6. Calculate the angle of incidence on the bottom surface 6 when it reaches 1fI6 and the angle of refraction into the air when it is totally reflected at the bottom surface. η, the result is ash jtd.

44 酊〜6:(rrrm    28.8o60−2
゜底面6に受光板7を光学的に密着させておかない場合
は側面2に入射した太陽光15のうらの6ろチしか底面
6で屈折されずのこりは全反射される。屈折率が1.5
の耐熱性の液体を用いて樹面乙に受光板7を光学的に密
着させた場合には全反射臨界角か56.40と1より太
陽光15の95チまでが底面6で屈折され受光板7に達
する。
44 Drunk ~ 6: (rrrm 28.8o60-2
If the light receiving plate 7 is not optically brought into close contact with the bottom surface 6, only the back half of the sunlight 15 incident on the side surface 2 will be refracted by the bottom surface 6, and the rest will be totally reflected. Refractive index is 1.5
When the light-receiving plate 7 is brought into optical contact with the tree surface A using a heat-resistant liquid, the critical angle of total reflection is 56.40, and from 1, up to 95 of the sunlight 15 is refracted at the bottom surface 6 and received. Reach board 7.

水平面からWillつた高度700の太陽光15が側面
へ入射する時底面6に受光板7を光学的に密着さぜl工
い場合は同じように太陽バー15の56チしか底面6で
屈折されず、のこりは全反射される。底面6に受光板7
を光学的に密着させた場合には太陽光の93%までが底
面6で屈折され受光板7に達する。
When sunlight 15 from a horizontal plane at an altitude of 700 is incident on the side surface, if the light receiving plate 7 is optically brought into close contact with the bottom surface 6, only 56 beams of the solar bar 15 will be refracted by the bottom surface 6 in the same way. , the remainder is totally reflected. Light receiving plate 7 on the bottom 6
When they are brought into close optical contact, up to 93% of sunlight is refracted at the bottom surface 6 and reaches the light receiving plate 7.

三角柱体プリズム10側面2にさらに一つの三角+1(
ドブリズム8を数個けることによって三角柱体ブリズノ
、1の見かけ上の1%+(異人射角を小さくすることが
出来るっ第4図(1)は三角柱体プリズム1だけの時の
限界入射角、第4Fg++2+は三角柱体プリズム8を
取付けた時の見かけ上の限界入射角を示している。見か
け上の限界入射角が小さくなるσ)は入射する太陽光1
5が先ず三角柱体プリズノ、8によって屈折された後で
二角柱体プリズム1に入射するからでk)る。三FIJ
柱体プリズム8は太陽光150入射方向を変え2)だけ
1.cので第4図(3)の如くフレネル型のプリズムを
用いることが出来る。
Triangular prism 10 One more triangle + 1 on side 2 (
By adding several dobrisms 8, the apparent angle of incidence of triangular prism 1 can be reduced by 1% + (different angle of incidence). Figure 4 (1) shows the critical incidence angle when only triangular prism 1 is 4th Fg++2+ indicates the apparent critical incident angle when the triangular prism 8 is attached. σ) at which the apparent critical incident angle becomes smaller is the incident sunlight 1
This is because the beam 5 is first refracted by the triangular prism 8 and then enters the digonal prism 1. Three FIJ
The columnar prism 8 changes the incident direction of the sunlight 150 by 2) only 1. c, a Fresnel type prism can be used as shown in FIG. 4(3).

三角柱体プリズム1への見かげ、上の限界入射角が小さ
く7.Cろため集光比を大きくすることが出来る。
7. The upper limit angle of incidence on the triangular prism 1 is small. The condensing ratio can be increased by filtering C.

三角柱体プリズム8の(till 1rni 9へ入射
した太陽光15は側面9で屈折)Y;16として屈ゼi
される。屈折光16の側面10への入射角が全反射臨界
角より小さく・113は屈折光16は側面10で屈折さ
れて三1?口)体ツリズノ、8の外へ出た後、側面10
と側1f112は)1.〜゛的に(よ密着1〜゛Cい1
.cいが接しておかオ【′〔いえ)ため側面2でノ1(
1折さハて三角柱体プリズム1の内に入る。この時の側
面100人射角と側面2のJi’TI折角が同一である
ため、太陽光の屈折光16は見かけ上側面10とτI1
1面2を画いた一直線どして表わされる。
(Sunlight 15 incident on the triangular prism 8 is refracted at the side surface 9)Y;
be done. The angle of incidence of the refracted light 16 on the side surface 10 is smaller than the critical angle of total reflection. Mouth) Body Turismo, after going outside 8, side 10
and side 1f112)1. 〜゛に(Yo close 1〜゛C 1
.. Since the parts are in contact with each other, the sides 2 and 1 (
Fold it once and enter the triangular prism 1. At this time, since the side surface 100 human incidence angle and the side surface 2's Ji'TI refraction angle are the same, the refracted sunlight 16 appears to be the same as the side surface 10 and τI1
It is expressed as a straight line drawing 1 side 2.

屈折光16の側面10への入射角が全反射臨界角より大
きい時は屈折光16は側面10で全反射され三角柱体プ
リズム1には達しない。
When the angle of incidence of the refracted light 16 on the side surface 10 is larger than the critical angle for total reflection, the refracted light 16 is totally reflected on the side surface 10 and does not reach the triangular prism 1.

実施例 6 第4図(1)では実施例2と同じ三角柱体プリズム1を
同じ架台面14の上に同様に設置する。第4図(2)で
は実施例2と同じ三角柱体プリズム1の側1rii 2
に屈折率が1.8のガラス製の頂角が100の三角柱体
プリズム8を数個は太1湯に向いた側面9を架台面14
に垂直に設置する。第4図(3)では実施例2と同じ三
角柱体プリズム1の側面2に屈折率が1.8のガラス製
の頂角が100のフレネル型ブリスムを取イ」け側面2
を架台面14に垂直に設置する。
Example 6 In FIG. 4(1), the same triangular prism 1 as in Example 2 is installed on the same mount surface 14 in the same manner. In FIG. 4(2), the side 1rii 2 of the triangular prism 1 is the same as in Example 2.
Several triangular prisms 8 made of glass with a refractive index of 1.8 and an apex angle of 100 are mounted on the frame surface 14 with the side surface 9 facing the thick water.
Install it vertically. In FIG. 4 (3), a Fresnel type brism made of glass with a refractive index of 1.8 and an apex angle of 100 is placed on the side surface 2 of the same triangular prism 1 as in Example 2.
is installed perpendicularly to the pedestal surface 14.

第41¥li)では限界入射角は41.80である。限
界入射角の時の集光比はZlで、限界入射角に23−4
゜を加えた時の集光比は4,0である。
41\li), the critical angle of incidence is 41.80. The condensing ratio at the critical angle of incidence is Zl, which is 23-4 at the critical angle of incidence.
The condensing ratio when adding ° is 4.0.

第4図(21では側面9に対する見かけ上の限界入射角
は21.5°である。限界入射角の時の集光比は8.9
で、限界入射角に23.40を加えた時の集光比は6.
6である。限界入射角に26.4°を加えた屈折光16
の側面10への入射角はろろ、1°で全反射臨  □祥
月の66−7°より小さく側面2に達する。
In Figure 4 (21), the apparent critical incident angle with respect to the side surface 9 is 21.5°.The condensing ratio at the critical incident angle is 8.9
So, when 23.40 is added to the critical incident angle, the condensing ratio is 6.
It is 6. Refracted light 16 with 26.4° added to the critical angle of incidence
The angle of incidence on the side surface 10 is 1°, and total reflection occurs.□It reaches the side surface 2 at a angle smaller than Shougetsu's 66-7°.

第4図(3)では側面9に対する見かけ上の限界入射角
は21.5°である。集ヴC1比および屈折光16の光
路は第4図(21と同様である。
In FIG. 4(3), the apparent critical angle of incidence with respect to the side surface 9 is 21.5°. The concentration C1 ratio and the optical path of the refracted light 16 are the same as in FIG. 4 (21).

実施例では三角柱体プリズムの拐質として屈折率1.8
のガラスを用いているが本発明はこれによって限定され
るものでない。三角柱体プリズムの利質は透明な固体又
は透明l、(容器に入れた透明1.仁液体であればよい
。材質はガラス、合成プラスチック、例えばポリスチレ
ン、ポリメブールメタアクリート、ポリカーボネイト、
ポリ塩化ビニル7エどが用いられる。II)(折率も1
.3から2.0までの範囲のものを用いることが出来る
In the example, the refractive index of the triangular prism is 1.8.
The present invention is not limited thereto. The material of the triangular prism is transparent solid or transparent liquid (transparent liquid in a container).The material can be glass, synthetic plastic, such as polystyrene, polymethacrylate, polycarbonate,
Polyvinyl chloride 7, etc. is used. II) (The refractive index is also 1
.. A range of 3 to 2.0 can be used.

実施例では半円形の銅パイプを受ハニ板と12で用いて
いるが本発明はこれによ−)て限定されるもので1よい
。受光板は光を受けて光エネルギーを熱発生、電気発生
、化学変化7.cどの作用をおこさせる機能をもつもの
を指している。M発生用には光の吸収度を高めた黒色の
銅板、銅パイプ、ステンレス板、スデンレス・パイプ、
アルミ板、アルミ・パイプ、ヒート・パイプなどが用い
られる。電気発生用には光電池、熱電素子1よどが用い
られる。
In the embodiment, semicircular copper pipes are used for the receiving honeycomb plate 12, but the present invention is not limited to this. The light receiving plate receives light and converts the light energy into heat generation, electricity generation, and chemical changes7. c refers to something that has the function of causing some action. For M generation, black copper plates with increased light absorption, copper pipes, stainless steel plates, stainless steel pipes,
Aluminum plates, aluminum pipes, heat pipes, etc. are used. A photovoltaic cell, a thermoelectric element 1, etc. are used to generate electricity.

受う“0板の形状はプリズムの底面に向う面が平面であ
ればよく板状、角パイプ状、半円パイプ状などのものが
用いられる。
The shape of the receiving "0" plate may be a plate, a square pipe, a semicircular pipe, etc. as long as the surface facing the bottom of the prism is flat.

実施例では三角柱体プリズムの底部6に受光板7を)′
0学的に密着させるためにシリコーン・グリースな用い
ているが、本発明はこれによって限定されるものでは1
.cい。底部と受光板とが光学的に密着可能であれば直
接組合せることが可能である。
In the embodiment, a light receiving plate 7 is attached to the bottom 6 of the triangular prism)'
Although silicone grease is used to achieve mechanical adhesion, the present invention is not limited by this.
.. It's ugly. If the bottom part and the light receiving plate can be optically brought into close contact with each other, it is possible to directly combine them.

光学的に密着可能でなげれば透明で不揮発性の液体、接
着剤9弾性体を底部6と受光板7の間には′さむことに
よって光学的に密着させることが出来る。
If optical contact is possible, optical contact can be achieved by sandwiching a transparent, non-volatile liquid, an adhesive 9, and an elastic body between the bottom portion 6 and the light receiving plate 7.

第5図は第1図の三角柱体プリズム1と8を切りはな【
2」二下に並べたものである。この三角柱体プリズムは
秋分から冬至を経て春分に至る期間は太陽光を受光出来
る。この太陽光集光装置は壁に設置して暖房用の熱源と
して用いることが可能である。
Figure 5 shows the triangular prisms 1 and 8 in Figure 1.
2" are arranged below two. This triangular prism can receive sunlight during the period from the autumnal equinox through the winter solstice to the vernal equinox. This solar light concentrator can be installed on a wall and used as a heat source for heating.

第6図は第1図の三角柱体プリズム1′と8′を切りは
なして水平面一ヒに並べたものでk)る。この三角柱体
プリズムは春分から夏至を経て秋分に至る期間は太陽光
を受光出来る。こθ)太陽光集光装置は屋上又は地上に
設置して冷房用の熱源と17で用いることが可能である
FIG. 6 shows the triangular prisms 1' and 8' of FIG. 1 cut out and arranged on a horizontal plane. This triangular prism can receive sunlight during the period from the spring equinox through the summer solstice to the autumnal equinox. θ) The solar light concentrator can be installed on the rooftop or on the ground and used as a heat source for cooling.

第7図は第1図と同じ傾斜の架台面の一ヒに第1[ヌ1
ど同じ三角柱体ゾリズl、を頂点4を南北方向に同し1
て設置(また太陽光集光装置である。設置角度の異なる
四個の三角柱体プリズムを一組として用いているため太
陽)′C;の受光1丁能時間を長くすることが可能であ
く)。
Figure 7 shows the first [Nu1
The same triangular prism Zoriz l, with apex 4 in the north-south direction 1
(It is also a solar light condensing device. Since four triangular prisms installed at different angles are used as a set, it is possible to extend the light receiving time of the sun). .

第81シIは所間が)P、1図と同じ三角柱体プリズ1
、を逆円錐形に成型(7たブリズノ、を用いる太陽光集
光装置の斜視図である。第9図は同装置の光学市原11
1!し1で7ε、ろ。第10図は逆円錐形に成型17た
三角柱体プリズムと円錐形に成型1.た三角柱体ブリズ
J7を組合ぜて用いる太陽光集光装置の斜視図で、f−
)ろ。7F!、11図は同捧固の光学的原理図である。
The 81st shi I has the same space as) P, the same triangular prism prism 1 as in Figure 1.
, is a perspective view of a solar light condensing device using a condenser formed into an inverted conical shape.
1! Shi1 and 7ε, ro. Figure 10 shows a triangular prism molded into an inverted cone shape 17 and a triangular prism molded into a cone shape 1. This is a perspective view of a solar light condensing device that uses a triangular prism Blizz J7 in combination.
)reactor. 7F! , 11 is a diagram of the optical principle of the same method.

第8図、第10図に示I−た太陽光集光装置は第1図と
同じ原理によって開口部に入射する太陽光を下部の底面
に導き受光板に太陽光を受光することが+iJ能である
The solar light concentrating device shown in Figures 8 and 10 uses the same principle as in Figure 1 to guide sunlight entering the opening to the bottom surface of the lower part and receive the sunlight on the light receiving plate. It is.

これらの太陽光集光装置は底面に比べ開口部の面積が太
きいため集光比を大きく出来る利点があイ)。第8図の
装置は太陽電池のようl工面状受光体へ利用することが
可能である。第10図の装置はパイプ状の受光体、中空
円形に並べた面状受光体へ利用することが可能である。
These solar light concentrators have the advantage of being able to increase the light concentration ratio because the opening area is larger than the bottom surface. The device shown in FIG. 8 can be used for photoreceptors in the shape of a square surface, such as solar cells. The apparatus shown in FIG. 10 can be used for pipe-shaped photoreceptors and planar photoreceptors arranged in a hollow circle.

【図面の簡単な説明】[Brief explanation of the drawing]

卯、1図は架台■I上の法線に対し、 ’−C二つの三
角柱体プリズムを向い合せて設置し7た本発明の集光装
置の斜視図、第2図(lH213+は第1図の集光装置
の光学的原理図、第6図(IH2+は三角柱体プリズム
への太陽光の入射点による屈折光の方向の相異を示した
光学的原理図、第4図[1(21は三角柱体プリズムの
側面にもう一つの三角柱体プリズムを設置した時のプリ
ズム内の屈折光の光路な示した光学的15t’、坤図、
第5図は三角柱体プリズムを上下に設置tまた本発明の
隼)Y;装置の斜視図、第6図は三角柱体プリズムを水
平に設置した本発明の集光装r9σン斜視図、f′P、
7図は三角柱体プリズノ、の頂点を南北方間tζ回け゛
〔設置i’i、 L、た本発明の集光装(VLの斜視図
、第8ト1は逆円6′IF形に成型した三角柱体プリズ
ムを用いた本発明の°毛)’c、#置、の斜視図、第9
図は第8図の集)Y:、装置σ))℃学的原illし1
、第10図は逆円錐形に成型した三角柱体プリズムを用
いた本発明σ)集光装置の斜視図、第11図は第10図
の集光装置の光学的原理図である。 1と1′・・・三角柱体プリズム、2と2′・・・三角
柱。 体プリズムの太陽に回いた側面、ろと6′・・・三角柱
体プリズムの2と2′に相対する側面、4と4′・・・
三角柱体プリズムの頂点、5と5′・・・三角柱体プリ
ズムの頂角、6と6′・・・三角柱体ブリズノ、J)底
面、7と7′・・・受光板、8と8′・・・三角柱体プ
リズムの側面に取付けた三角柱体プリズム、9と9′・
・・8と8′の三角柱体プリズムの太陽に向いた側面、
10と10′・・・8と8′の三角柱体プリズムの9と
9′に相対する側面、11と11′・・・1と8および
1′と8′の三角柱体プリズムの端面、12・・・平面
反射4.象、16・・・架台、14・・・架台面、15
と15/−・・1と8および1′と8′に入射する太陽
光、16と16′・・・代理人 弁理士(8107)佐
々木清隆(ほか3名) 第  1  図 第  2 図 第  2 N 〔3〕 架  5  図 第  6 図 第7図 第  8  図 第 10 因 第 11  図 手続補正前 :+4(Tn 57112月/3[1 昭和57年’Nr1t’l願第 153971  Fl
2 発明の名称 プリズム型太陽光集光装価。 3 補正をする者 7・“5が閏ビル内郵1す)r乃 [l、71箱第49
「1昭和571v 1111121’l (イ111と
、11  昭和57q:11113υ11)に、 nn
王11:bl’(QIJII−tル発明)数。 7 補ILσ汐・1象 l 1ノl 凹ノll’l ’p−7:Ci況明」ノ佃
8、7ifi市の内容 明#lli @: 、、f% 2 1貞トスハら47丁
目、 l’ 12ii+、J、 −1f r +21t
:(IM:t Jと補IF4る。 手続補正前 昭和 584112月 511 特許庁長官殿 (1′−冒′[庁審査官            殿)
1 事件の表示 昭和57 年″NfY1願第 155971  弓2 
発明の名称 プリズム型太陽光集光装置 :3 補正をする者 巾(′1!:(′)間代 1’=ffi!’l出願人2
1  杓   岡  川  千  勝 (1,1力、1
名)昭(n   (1月  旧発送日 昭rll   
?+、1−1 − Fl)6 補正により増加する発明
の数  0(11明細9Ij、 711.3貞第18行
(下から5行目)の「の架吟面14の上に設値する側面
2と2′、」とあるを「の架台面14の上に設置する。 側面2と2’、 lと補正する。 (2)同第4頁第1行の[−れは先ず三角柱体プリズム
・・・」とあるを1−れば太陽光15は先ず三角柱体プ
リズム・・・」と補正する。 (3)同第4頁第17行(下から4行目)の1面1熱性
のシリコーン」とあるは[耐熱性の透明なシリコーン−
1と補正する。 (4)同第6頁第5行の「底面6に達する。底面5に・
・・」とあるを1底面6に達する。底面6に・・・」と
補1Fする。 (5)同第6頁第6行の「底面5」とあるを「底面6」
と補正する。 (6)同第7頁第1行の1底面5と5′に」とあるを「
底面6と6′に」と補正する。 (7)同第7頁第2行の「底1n1に塗ったシリコーン
・グリース・・・」とあるを「底面に塗った透明シリコ
ーン・グリース・・・」と補lヒする。 (8)  同第7頁第5行の「底面にシリコ−」とある
を1底面に透明シリコ゛−」と補正する。 (9)同第10頁第11行の「側面2が」とあるを「側
面5が」と補正する。 θ() 同第14頁第5行の「巾が10m」とあるを「
高さが10crn」と補正する。 θυ 同第15頁第4行の「・・・液体を用いて」の次
の2文字が不明であるがこれは「・・・液体を用いて底
面」である。 04  同第19頁第8行目の「密着させるためにシリ
コーン・グリ」とあるを「密着させるだめに透明シリコ
ーン・グリ」と補正する。 0′邊  第1図を今回提出のものに補正する。 (1・υ 第4図(1)、 (2)、(3)を今回提出
のものに補正する。
Figure 1 is a perspective view of the light condensing device of the present invention in which two triangular prisms are installed facing each other with respect to the normal line on the mount ■I, Figure 2 is Fig. 6 is an optical principle diagram of a condensing device (IH2+ is an optical principle diagram showing the difference in the direction of refracted light depending on the point of incidence of sunlight on a triangular prism, Fig. 4 [1 (21 is The optical path of the refracted light inside the prism when another triangular prism is installed on the side of the triangular prism is optical 15t',
Fig. 5 is a perspective view of a device in which triangular prisms are installed vertically, and Fig. 6 is a perspective view of a condensing device of the present invention in which triangular prisms are installed horizontally. P,
Figure 7 is a perspective view of the light condensing device (VL) of the present invention, in which the apex of the triangular prism is rotated tζ between north and south. Perspective view of the present invention using a triangular prism of the present invention, No. 9
The figure is a collection of Figure 8)
, FIG. 10 is a perspective view of a condensing device according to the present invention (σ) using a triangular prism shaped into an inverted conical shape, and FIG. 11 is a diagram of the optical principle of the condensing device of FIG. 10. 1 and 1'... triangular prism, 2 and 2'... triangular prism. The side of the body prism facing the sun, Roto 6'... The side facing 2 and 2' of the triangular prism, 4 and 4'...
Vertex of triangular prism, 5 and 5'... Vertex angle of triangular prism, 6 and 6'... Triangular prism Brizno, J) Bottom surface, 7 and 7'... Light receiving plate, 8 and 8'.・Triangular prism 9 and 9′ attached to the side of the triangular prism
...The side of the 8 and 8' triangular prisms facing the sun,
10 and 10'... Side faces of the triangular prisms 8 and 8' opposite to 9 and 9', 11 and 11'... End faces of the triangular prisms 1 and 8 and 1' and 8', 12. ...Flat reflection 4. Elephant, 16... mount, 14... mount surface, 15
and 15/-...Sunlight incident on 1 and 8 and 1' and 8', 16 and 16'...Representative Patent attorney (8107) Kiyotaka Sasaki (and 3 others) Figure 1 Figure 2 Figure 2 N [3] Shelf 5 Fig. 6 Fig. 7 Fig. 8 Fig. 10 Cause No. 11 Before procedure amendment: +4 (Tn 571 December/3 [1 1982 'Nr1t'l Application No. 153971 Fl
2. Name of the invention: Prism-type solar light condensing device. 3. Person making the amendment 7. ``5 is the mail in the leap building 1su) rno [l, 71 box No. 49
``1 Showa 571v 1111121'l (I111 and 11 Showa 57q:11113υ11), nn
King 11: bl' (QIJII-t Le invention) number. 7 Supplementary ILσshio・1 elephant l 1 nol concave noll'l 'p-7:Ci Shoaki'no Tsukuda 8, 7ifi City contents details #lli @: ,, f% 2 1 Sadatosha et al. 47th Street, l' 12ii+, J, -1f r +21t
:(IM:t J and Supplementary IF4. Before amendment of procedure Showa 5841 December 511 Dear Commissioner of the Japan Patent Office (1'-B') [Office Examiner)
1 Indication of the incident 1981 NfY1 Application No. 155971 Bow 2
Name of the invention Prism type solar light condensing device: 3 Correcting width ('1!: (') clonic range 1'=ffi!'l Applicant 2
1 ladle Okagawa Senkatsu (1,1 power, 1
First name) Akira (n (January) Old shipping date Akirarll
? +, 1-1 - Fl) 6 Number of inventions increased by amendment 0 (11 Specifications 9Ij, 711.3, line 18 (5th line from the bottom), and 2'," is installed on the mount surface 14 of ".Correct the sides 2 and 2', l. (2) In the first line of page 4, ``...'' is 1 minus, then the sunlight 15 is first a triangular prism...'' (3) 1 side 1 thermal silicone on page 4, line 17 (fourth line from the bottom) ” means [heat-resistant transparent silicone]
Correct it to 1. (4) On page 6, line 5, “Reaching to the bottom 6.
"..." reaches 1 base 6. "On the bottom 6..." and add 1F. (5) On page 6, line 6, “bottom 5” is replaced with “bottom 6.”
and correct it. (6) On page 7, line 1, 1 base 5 and 5'"
to the bottom surfaces 6 and 6'. (7) In the second line of page 7, replace "Silicone grease applied to the bottom 1n1..." with "Transparent silicone grease applied to the bottom..." (8) In the 5th line of page 7, the phrase ``Silicone on the bottom surface'' is corrected to ``Transparent silicone on the bottom surface.'' (9) On page 10, line 11, the phrase ``side 2'' is corrected to ``side 5''. θ() On page 14, line 5 of the same page, replace the phrase “width is 10 m” with “
The height is corrected to 10 crn. θυ On page 15, line 4 of the same page, the next two characters of "...using a liquid" are unclear, but this is "...using a liquid on the bottom surface." 04 In the 8th line of page 19 of the same document, the phrase ``Silicone grease is used to ensure close contact'' is corrected to ``Transparent silicone grease is used to prevent close contact.''0' side Figure 1 will be revised to the one submitted this time. (1・υ Figure 4 (1), (2), and (3) are revised to those submitted this time.

Claims (1)

【特許請求の範囲】 1、 三角柱体プリズム(1ンの頂角(5)が18″以
下で一つの(1111面(ろ)が反射面であり、三角柱
体ブリズノ、の一つの側面(2)から太陽光を受光する
プリズム型太陽光集光装置。 2、三角柱体プリズムの限界入射角からそれより26.
4°大きい角度に至る入射範囲内の最小集光比が6.0
以上である特許請求の範囲第1項記載のプリズム型太陽
光集光装置。 3、三角柱体プリズム(1)の底面(6)に受光板(7
)を光学的に密着して設けた特許請求の範囲第1項記載
のプリズム型太陽光集光装置。 4、三角柱体プリズム(1)の側面(2)にさらに次の
式で表わされる頂角をもつ三角柱体プリズム(8)を取
付けた特許請求の範囲第1項記載のプリズム型太陽光集
光装置1q、。 nx 5inP<1 rlは、三角柱体ブリ、ズム(8)の屈彷率Pは三角柱
体プリズム(8)の頂角 5、三角柱体プリズム(1)を逆円錐形に成型(7た′
[J1πl−請求の範囲第1項記載のフリズノ、)、1
シ太14 光年光装置バ。
[Scope of Claims] 1. A triangular prism (1) in which the apex angle (5) of 1 is 18″ or less, one (1111 surface) is a reflective surface, and one side (2) of a triangular prism (1111) is a reflective surface. A prism-type solar light concentrator that receives sunlight from 2. From the critical incident angle of the triangular prism to 26.
Minimum concentration ratio within the incident range up to a 4° larger angle is 6.0
The prism-type sunlight condensing device according to claim 1, which is the above. 3. Attach the light receiving plate (7) to the bottom (6) of the triangular prism (1).
2. The prism-type solar light condensing device according to claim 1, wherein the prism-type solar light condensing device is provided in optically close contact with each other. 4. The prism-type solar light condensing device according to claim 1, wherein a triangular prism (8) having an apex angle expressed by the following formula is further attached to the side surface (2) of the triangular prism (1). 1q. nx 5inP<1 rl is the triangular prism (8); the refractive index P of the triangular prism (8) is the apex angle of 5; the triangular prism (1) is molded into an inverted conical shape (7'
[J1πl-Frizno according to claim 1), 1
Shita 14 light year light device bar.
JP57153971A 1982-09-06 1982-09-06 Prism type solar light condensing device Pending JPS5944001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153971A JPS5944001A (en) 1982-09-06 1982-09-06 Prism type solar light condensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153971A JPS5944001A (en) 1982-09-06 1982-09-06 Prism type solar light condensing device

Publications (1)

Publication Number Publication Date
JPS5944001A true JPS5944001A (en) 1984-03-12

Family

ID=15574073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153971A Pending JPS5944001A (en) 1982-09-06 1982-09-06 Prism type solar light condensing device

Country Status (1)

Country Link
JP (1) JPS5944001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043835A1 (en) * 2008-10-15 2010-04-22 Kuldip Singh Virk Solar panels
EP3660414A4 (en) * 2017-08-04 2021-01-20 Bolymedia Holdings Co. Ltd. Vertical solar apparatus
EP4133315A4 (en) * 2020-04-09 2024-04-24 Balaji Lakshmikanth Bangolae A light redirecting prism, a redirecting prismatic wall and a solar panel incorporating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418762A (en) * 1977-06-24 1979-02-13 Unisearch Ltd Radiation convergence and divergence device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418762A (en) * 1977-06-24 1979-02-13 Unisearch Ltd Radiation convergence and divergence device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043835A1 (en) * 2008-10-15 2010-04-22 Kuldip Singh Virk Solar panels
CN102187161A (en) * 2008-10-15 2011-09-14 库尔迪普·辛格·维尔卡 Solar panels
EP3660414A4 (en) * 2017-08-04 2021-01-20 Bolymedia Holdings Co. Ltd. Vertical solar apparatus
EP4133315A4 (en) * 2020-04-09 2024-04-24 Balaji Lakshmikanth Bangolae A light redirecting prism, a redirecting prismatic wall and a solar panel incorporating the same

Similar Documents

Publication Publication Date Title
US3923381A (en) Radiant energy collection
US4003638A (en) Radiant energy collection
US3899672A (en) Solar energy collection
US4069812A (en) Solar concentrator and energy collection system
Nelson et al. Linear Fresnel lens concentrators
Su et al. A novel lens-walled compound parabolic concentrator for photovoltaic applications
US20100154866A1 (en) Hybrid solar power system
GB1578656A (en) Process of and apparatus for solar heating and the like
Thakkar et al. Performance analysis methodology for parabolic dish solar concentrators for process heating using thermic fluid
Collares-Pereira High temperature solar collector with optimal concentration: non-focusing Fresnel lens with secondary concentrator
Hadjiat et al. Design and analysis of a novel ICS solar water heater with CPC reflectors
JP2507712B2 (en) Thin, flexible lens
Mills et al. Ideal prism solar concentrators
Dang Concentrators: a review
Carvalho et al. Optical and thermal testing of a new 1.12 X CPC solar collector
US20090301469A1 (en) Solar collectors
US4471763A (en) Solar energy concentrator
JPS5944001A (en) Prism type solar light condensing device
WO2012107605A1 (en) Direct solar-radiation collection and concentration element and panel
RU2172903C1 (en) Solar module with concentrator
Zhou et al. Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism
US20100307480A1 (en) Non-tracking solar collectors
Ha et al. Optical design of a static solar concentrator using Fresnel lenses
RU2154778C1 (en) Solar photoelectric module with concentrator
Derrick et al. Comparison of reflector designs for stationary tubular solar collectors