JPS5943983B2 - Method for selectively removing cobalt ions in zinc leachate - Google Patents

Method for selectively removing cobalt ions in zinc leachate

Info

Publication number
JPS5943983B2
JPS5943983B2 JP53012832A JP1283278A JPS5943983B2 JP S5943983 B2 JPS5943983 B2 JP S5943983B2 JP 53012832 A JP53012832 A JP 53012832A JP 1283278 A JP1283278 A JP 1283278A JP S5943983 B2 JPS5943983 B2 JP S5943983B2
Authority
JP
Japan
Prior art keywords
nitroso
water
soluble
leachate
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53012832A
Other languages
Japanese (ja)
Other versions
JPS54104441A (en
Inventor
昭夫 佐々木
忠雄 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP53012832A priority Critical patent/JPS5943983B2/en
Publication of JPS54104441A publication Critical patent/JPS54104441A/en
Publication of JPS5943983B2 publication Critical patent/JPS5943983B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は亜鉛浸出液中のコバルトイオンの選択的除去方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively removing cobalt ions in zinc leachate.

湿式亜鉛製錬に於て浸出液から高品位電気亜鉛を採取す
るためには不純物、特に電解工程に於て有害な作用をす
る不純物を予め除く、詣る浄液工程が必要とされている
In order to extract high-grade electrolytic zinc from the leachate in hydrometallurgical zinc smelting, a liquid purification process is required to remove impurities, especially impurities that have a harmful effect during the electrolytic process.

電解液中に、水素過電圧の低い不純物が存在すると単に
これらが析出して亜鉛製品の純度を低下させるだけでな
く、亜鉛そのものの析出を妨げ、電流効果の著しい低下
を超き、ひいては製品コストの増大の原因となる。
If impurities with low hydrogen overvoltage are present in the electrolyte, they will not only precipitate and reduce the purity of zinc products, but also prevent the precipitation of zinc itself, significantly reducing the current effect, and ultimately reducing product costs. It causes an increase.

ときには析出した亜鉛の激しい再溶解を生じ、操業に壊
滅的な打撃を与えることがある。
In some cases, severe re-dissolution of precipitated zinc occurs, which can be devastating to operations.

これらについては湿式製錬技術P21(日本鉱業湿式製
錬技術研究委員全編、日亜書房)に記載されている。
These are described in Hydrometallurgical Refining Technology P21 (Japan Mining Industry Hydrometallurgical Technology Research Committee complete edition, Nichia Shobo).

その為に、これらの不純物の除去法に関して多くの検討
がなされて来た。
For this reason, many studies have been made regarding methods for removing these impurities.

電解液中に含まれる不純物としてはマグネシウム、銅、
マンガン、カドミウム、鉄、コバルト、ニッケルその他
があげられるが、有害な銅、カドミウムの除去は亜鉛末
による金属置換還元法が採られ、焙焼浸出時に於ける沈
殿吸着法と組合せて鉱種に応じてさまざ才の多段式浄液
工程が採用されているのが現状である。
Impurities contained in the electrolyte include magnesium, copper,
These include manganese, cadmium, iron, cobalt, nickel, and others. To remove harmful copper and cadmium, a metal substitution reduction method using zinc powder is used, and depending on the type of ore, it is combined with a precipitation adsorption method during roasting and leaching. At present, a multi-stage liquid purification process with various ingenuity is being used.

しかしながら、最も問題となるのはコバルトであり、浸
出液中には数ppm〜数+ppm含まれているが、含有
量は極めて微量でも電解時に前記の障害をひき起すので
一応障害が無いとされる0、 31)I)III以下に
下げる苦心が払われている。
However, the most problematic cobalt is cobalt, which is contained in the leachate from several ppm to several + ppm, but even a very small amount causes the above-mentioned problems during electrolysis, so it is considered that there is no problem. , 31) I) Efforts are being made to lower it to below III.

コバルトの除去法を分類すると次の2種類である。There are two types of cobalt removal methods:

■)銅イオンの存在下に亜砒酸、亜鉛末を加えて亜鉛末
の電位を下げ、コバルトを置換析出させる方法。
■) A method in which arsenous acid and zinc powder are added in the presence of copper ions to lower the potential of the zinc powder and cobalt is precipitated by displacement.

2)α−ニトロソ−β−ナフトールにより、コバルトと
不溶性のキレート化合物を形成させる方法。
2) A method of forming a chelate compound insoluble with cobalt using α-nitroso-β-naphthol.

しかしながら、前者は亜鉛末の消費量が多く、砒素によ
るアルシンガスの発生という作業者の生命にかかわる問
題をかかえており、一方、後者においてはα−ニトロン
−β−ナフトールが高価な為、系中にβ−ナフトートと
亜硝酸ソーダを加えα−ニトロソ−β−ナフトールを合
成する方法が採られているが、充分な脱コバルトのため
には当然のことながら過剰の薬品を要し、さらにこれが
電着に有害なので過剰分を活性炭で除くなどの対策を必
要としている。
However, the former consumes a large amount of zinc powder and has the problem of generating arsine gas due to arsenic, which is a life-threatening problem for workers.On the other hand, in the latter, α-nitrone-β-naphthol is expensive, so it cannot be used in the system. A method has been adopted in which α-nitroso-β-naphthol is synthesized by adding β-naphtate and sodium nitrite, but this naturally requires an excessive amount of chemicals to sufficiently remove cobalt, and furthermore, this is caused by electrodeposition. Since it is harmful to the environment, measures such as removing the excess with activated carbon are required.

本発明者らはこのような観点から新しいコバルトの除去
方法について検討を行った結果、スルホン酸基に導入さ
れたオルソニトロンフェノール同族体とコバルトとを水
溶液系で接触させて錯体を形成せしめ、形成した錯体を
塩基性イオン交換樹脂で処理したところ、相当するニト
ロソフェノールよりも短時間で、かつ少ない量で目的が
達せられることを見出し、本発明に到達したものである
The present inventors investigated a new method for removing cobalt from this perspective, and found that the orthonitrone phenol analog introduced into the sulfonic acid group and cobalt were brought into contact with cobalt in an aqueous solution system to form a complex. When this complex was treated with a basic ion exchange resin, it was discovered that the objective could be achieved in a shorter time and with a smaller amount than the corresponding nitrosophenol, and the present invention was achieved based on this finding.

すなわち、本発明は一般式(1) 〔但し、RはC6〜C1□の(n+2)価の芳香族基、
OH基とNo基は芳香核に直結して且つ互にオルソ位に
配置され、Mは水素またはアルカリ金属、nは1〜3の
整数を表わす。
That is, the present invention is based on the general formula (1) [wherein R is a C6 to C1□ (n+2)-valent aromatic group,
The OH group and the No group are directly connected to the aromatic nucleus and are arranged ortho to each other, M represents hydrogen or an alkali metal, and n represents an integer of 1 to 3.

〕で示される水溶性ニトロンfヒ合物で亜鉛焼鉱浸出液
を処理して該水溶性ニトロン化合物と該亜鉛焼鉱浸出液
中のコバルトイオンとの錯体を形成させ、形成された錯
体を塩基性イオン交換樹脂を用いて吸着除去することを
特徴とする亜鉛浸出液中のコバルトイオンの選択的除去
方法である。
] The zinc sinter leachate is treated with a water-soluble nitrone compound shown in the following formula to form a complex between the water-soluble nitrone compound and cobalt ions in the zinc sinter leachate, and the formed complex is converted into a basic ion. This is a method for selectively removing cobalt ions in a zinc leachate, which is characterized by adsorption and removal using an exchange resin.

本発明に言う水溶性ニトロン化合物とは前記一般式(I
)で表わされるもので芳香核に互いにオルソ位にヒドロ
キシル基とニトロソ基が配置され且つ少くとも1個のス
ルホン酸基を有するものである。
The water-soluble nitrone compound referred to in the present invention is the general formula (I
), in which a hydroxyl group and a nitroso group are arranged ortho to each other on the aromatic nucleus, and at least one sulfonic acid group.

具体例として次のCI)〜〔X〕の化合物あるいはそれ
らのナトリウム、カリウム等の塩があげられる。
Specific examples include the following compounds CI) to [X] or their salts such as sodium and potassium.

この中でも最も有用な水溶性ニトロソ化合物は〔I〕■
−ニトロソ−2−オキシ3,6−ナフタリンジスルホン
酸、(n) 1−ニトロン−2−オキシ−6−ナフタリ
ンスルホンe、CI[)1−ニトロン−2−オキシ−7
−ナフタリンスルホン酸、〔V〕2−ニトロソ−1−オ
キシ−4−ナフタリンスルホン酸、(4)〕〕2−二ト
ロンー1−オキシー5−ナフタリンスルホンである。
Among these, the most useful water-soluble nitroso compound is [I]■
-Nitroso-2-oxy 3,6-naphthalene disulfonic acid, (n) 1-nitrone-2-oxy-6-naphthalene sulfone e, CI[) 1-nitrone-2-oxy-7
-naphthalenesulfonic acid, [V]2-nitroso-1-oxy-4-naphthalenesulfonic acid, (4)]2-nitron-1-oxy-5-naphthalenesulfone.

これらの水溶性ニトロソ化合物は、酸の形でも或いはナ
トリウム、カリウムなどの塩の形でもよく、安定性や合
成の条件に応じて適宜用いることができるが、概して(
V)(Wlの化合物はアルカリ金属塩は不安定で、遊離
の酸の形で他の化合物はナトリウム、カリウムなどの塩
の形で用いることが好ましい。
These water-soluble nitroso compounds may be in the form of an acid or a salt such as sodium or potassium, and can be used as appropriate depending on stability and synthesis conditions, but generally (
V) (Since the alkali metal salt of the compound Wl is unstable, it is preferable to use the compound in the form of a free acid and the other compounds in the form of a salt such as sodium or potassium.

しかしながら、ヒドロキシル基とニトロソ基は互いにオ
ルソ位になければならない。
However, the hydroxyl and nitroso groups must be ortho to each other.

何故なら、コバルトはこれらの基と5または6員環の安
定キレート構造をとるからである。
This is because cobalt forms a stable 5- or 6-membered ring chelate structure with these groups.

本発明に用いる水溶性ニトロン化合物は相当する芳香族
オキシスルホン酸の酸性溶媒中で亜硝酸塩を作用させて
得ることができる。
The water-soluble nitrone compound used in the present invention can be obtained by reacting the corresponding aromatic oxysulfonic acid with nitrite in an acidic solvent.

本発明の方法においてはまず錯体を形成させることが必
要である。
In the method of the invention it is first necessary to form a complex.

そのためには、ニトロソナフトール法同様、脱カドミウ
ム後の浄液に水溶性ニトロソ化合物を投入して行われる
がキレート形成速度は本発明に用いるニトロソ化合物が
水溶性の為、極めて早くpH5〜7では常温でも数分以
内で完結するので工程の短縮化に寄与するところが大き
い。
For this purpose, as in the nitrosonaphthol method, a water-soluble nitroso compound is added to the purified solution after decadmium removal, but since the nitroso compound used in the present invention is water-soluble, the chelate formation rate is extremely fast at pH 5 to 7 at room temperature. However, since it can be completed within a few minutes, it greatly contributes to shortening the process.

適用されるpHは上記の範囲が最適であるがpH2〜8
、より好ましくはpH3〜7である。
The optimum pH to be applied is within the above range, but pH 2 to 8
, more preferably pH 3-7.

温度は常温で充分であるが、より高温にしてキレート化
速度を早めることができる。
Although room temperature is sufficient, the chelation rate can be accelerated by increasing the temperature to a higher temperature.

ニトロソナフトールとコバルトはCoCC,oHO(N
’0))3で表わされる強酸性で赤褐色の3価の安定な
錯体を作るとされ、実際には理論量の1.5〜3.0倍
モルナフトールが用いられるが、本発明の方法では1.
2〜2.5倍モルで充分であり、このように少ない量で
処理できることが本発明の大きな特徴の1つである。
Nitrosonaphthol and cobalt are CoCC, oHO(N
It is said that a strongly acidic, reddish brown, trivalent, stable complex represented by 1.
2 to 2.5 times the molar amount is sufficient, and one of the major features of the present invention is that it can be processed with such a small amount.

これはキレート形成基が水溶液中でコバルトイオンと接
触し易いことと関係があるためと推測される。
This is presumed to be related to the fact that the chelate-forming group easily comes into contact with cobalt ions in an aqueous solution.

この形成されたコバルトとニトロソ化合物との錯体は大
抵の場合水溶性であり、このままではあとの電着時のト
ラブルを解消したことにはならないので、次に、本発明
においては、これを塩基性イオン交換樹脂で吸着除去す
ることが必要である。
This formed complex of cobalt and a nitroso compound is water-soluble in most cases, and since this does not solve the problem of subsequent electrodeposition, next, in the present invention, it is made into a basic solution. It is necessary to adsorb and remove with an ion exchange resin.

ニトロソナフトールの場合でも未反応の薬品を活性炭で
吸着処理することが必要であるので、これが工程数の増
加を招くものではない。
Even in the case of nitrosonaphthol, it is necessary to adsorb unreacted chemicals with activated carbon, so this does not lead to an increase in the number of steps.

本発明に用いる塩基性イオン交換樹脂は何故なるもので
あってもよいが、強塩基性タイプのものが水溶性ニトロ
ソ化合物およびコバルト錯体の吸着速度が速く、特に有
効である。
The basic ion exchange resin used in the present invention may be of any type, but a strongly basic type is particularly effective because it has a high rate of adsorption of water-soluble nitroso compounds and cobalt complexes.

このことはニトロソ化合物のスルホネート基がイオン交
換樹脂にイオン交換的に造塩結合することを示している
This indicates that the sulfonate group of the nitroso compound forms a salt-forming bond with the ion exchange resin through ion exchange.

本発明における塩基性イオン交換樹脂での処理時の条件
は温度40〜80℃、特に50〜70°Cで処理するこ
とが好ましい。
The conditions for treatment with a basic ion exchange resin in the present invention are preferably at a temperature of 40 to 80°C, particularly 50 to 70°C.

pHは7以丁であればよく、低い方がコバルト錯体の吸
着速度が早くなると共に塩基性イオン交換樹脂の使用量
も少なくてすむので好ましいが、樹脂の安定性、沖材の
耐酸性の問題もあってあまり低くするのは好ましくない
The pH should be 7 or higher, and a lower pH is preferable because the adsorption rate of the cobalt complex is faster and the amount of basic ion exchange resin used can be reduced, but there are problems with the stability of the resin and the acid resistance of the offshore wood. For this reason, it is not desirable to set it too low.

通常pH3〜7、特にpH3〜5で処理することが好ま
しい。
It is usually preferable to carry out the treatment at pH 3 to 7, particularly pH 3 to 5.

塩基性イオン交換樹脂の使用量はその交換容量から算出
される容積の1.1〜1.5倍あれば充分であり、pH
3〜5、温度50〜70°Cにおいて10〜30分程度
処理するのが最も一般的な方法である。
It is sufficient that the amount of basic ion exchange resin used is 1.1 to 1.5 times the volume calculated from its exchange capacity, and the pH
3-5, the most common method is to process at a temperature of 50-70°C for about 10-30 minutes.

また本発明においてはニトロン化合物と塩基性イオン交
換樹脂とを同時に系に加えて行うことも可能である。
In the present invention, it is also possible to add a nitrone compound and a basic ion exchange resin to the system at the same time.

その際pHおよび温度条件は前記の条件で処理すること
ができる。
In this case, the pH and temperature conditions can be as described above.

本発明によれば少ない量の水溶性ニトロソ化合物で従来
の方法よりも短時間でコバルトの濃度をo、 :3 p
pm以下まで除去することができる。
According to the present invention, the concentration of cobalt can be reduced from 0 to 3 p using a small amount of water-soluble nitroso compound in a shorter time than conventional methods.
It can be removed down to pm or less.

次に本発明を実施例により、さらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 脱カドミウム後の亜鉛焼鉱浸出液 500m1に1−ニナロソー2−オキシー3,6−ナフ
タリンジスホン酸2ナトリウム塩にトロソR塩)12.
8ヤ(理論量の1.3倍当量)を加えて溶解し、pH4
,50℃で15分撹拌した後、強塩基性陰イオン交換樹
脂(三菱fヒ成製ダイヤイオン5AIOA(J’型交換
容量1.3meq 7m1以上)0.4mlを加え、再
に15分撹拌した後、P液中のC。
Example 1 1-Ninaroso 2-oxy-3,6-naphthalene disulfonic acid disodium salt and Toroso R salt were added to 500 ml of zinc sinter leachate after decadmium removal.12.
8 Y (1.3 times the theoretical amount) to dissolve and adjust the pH to 4.
After stirring at 50°C for 15 minutes, 0.4 ml of a strongly basic anion exchange resin (Diaion 5AIOA (J' type exchange capacity 1.3 meq, 7 ml or more, manufactured by Mitsubishi FH) was added, and the mixture was stirred again for 15 minutes. After that, C in P solution.

濃度を原子吸光法により測定した。Concentrations were measured by atomic absorption spectrometry.

その結果Co濃度は0.2pI)Illであった。As a result, the Co concentration was 0.2pI)Ill.

一方、ニトロソ−β−ナフトールをニトロソR塩と同一
モル用いて同様にして処理した。
On the other hand, nitroso-β-naphthol was treated in the same manner as the nitroso R salt using the same mole.

その結果Co濃度は1.11)I)mであった。As a result, the Co concentration was 1.11)I)m.

この結果から明らかなように本発明の方法は短時間でC
o濃度を0.2pI)IIIにすることができる。
As is clear from this result, the method of the present invention can reduce C in a short time.
o concentration can be 0.2 pI) III.

実施例 2 β−ナフトール20gを発煙硫酸40g中、約10時間
、100〜110°Cに加熱した。
Example 2 20 g of β-naphthol was heated to 100-110° C. in 40 g of fuming sulfuric acid for about 10 hours.

冷却後カセイソーダで中和し、濃塩酸200m1を加え
て溶液を8〜9℃に冷却した。
After cooling, the solution was neutralized with caustic soda, 200 ml of concentrated hydrochloric acid was added, and the solution was cooled to 8-9°C.

ついで、144gの亜硝酸ソーダを含む溶液を撹拌下に
30分で加え、再にこの温度で1時間反応を続け、析出
した沈殿を炉別し、充分水を除いて50m1の冷水で1
回洗浄、乾燥した。
Next, a solution containing 144 g of sodium nitrite was added over 30 minutes with stirring, and the reaction was continued again at this temperature for 1 hour.
Washed twice and dried.

得られたニトロソ化合物は黄緑色、易水溶性で窒素分析
値4.2%を有し、α−ニトロソ−β−ナフトールの1
〜3個多価スルホン化物の混合物が主成分と推定される
The obtained nitroso compound is yellow-green, easily water soluble, has a nitrogen analysis value of 4.2%, and contains 1 of α-nitroso-β-naphthol.
It is estimated that the main component is a mixture of ~3 polyvalent sulfonates.

この化合物127In9(理論量の1.5倍モル)を実
施例1の浸出液500m1に投入し、pH4,55℃で
15分撹拌した後、pHを硫酸で2とし強塩基性陰イオ
ン交換樹脂(ロームアンドバース社製、アンバーライト
I RA−400(J’型交換容量1.4meq 7m
l) 1.0 mlを加え、再に15分撹拌した後実施
例1と同様にしてCo濃度を測定した。
This compound 127In9 (1.5 times the theoretical amount by mole) was added to 500 ml of the leachate of Example 1, and after stirring at pH 4 and 55°C for 15 minutes, the pH was adjusted to 2 with sulfuric acid and a strongly basic anion exchange resin (ROHM Manufactured by Andverse, Amberlite I RA-400 (J' type exchange capacity 1.4meq 7m
1) After adding 1.0 ml and stirring again for 15 minutes, the Co concentration was measured in the same manner as in Example 1.

その結果Co濃度は0.3咽であった。As a result, the Co concentration was 0.3.

実施例 3 2−ニトロソ−1−オキシ−ナフタリン−4=スルホン
酸116〜(理論量の1.8倍当量)と強塩基性イオン
交換樹脂(ダウケミカル社製 ダウエックス1 =X4
(J’型交換容量1.2meq/m1)1.0rn
lとを実施例1の浸出液500m1に加え、硫酸でpH
4にして30分60℃で撹拌し実施例1と同様にしてC
o濃度を測定した。
Example 3 2-Nitroso-1-oxy-naphthalene-4 = sulfonic acid 116~ (1.8 times the theoretical equivalent) and a strongly basic ion exchange resin (Dow Chemical Co., Ltd. DOWEX 1 = X4
(J' type exchange capacity 1.2meq/m1) 1.0rn
l to 500ml of the leachate from Example 1, and the pH was adjusted with sulfuric acid.
4, stirred at 60°C for 30 minutes, and prepared in the same manner as in Example 1.
o concentration was measured.

その結果Co濃度は0.31)I)mであった。As a result, the Co concentration was 0.31)I)m.

実施例 4 P−フェノールスルホン酸7.0gを発煙硫酸40gか
ら実施例2と同様にしてニトロソ化を行い、苛性ソーダ
で中和後、減圧下に濃縮乾固した。
Example 4 7.0 g of P-phenolsulfonic acid was nitrosated from 40 g of fuming sulfuric acid in the same manner as in Example 2, neutralized with caustic soda, and then concentrated to dryness under reduced pressure.

生成物は緑色、易水溶性で窒素分析値5.4%を有し、
無機塩を含むO−ニトロソ−P−フェノールスルホン酸
ソーダが主成物と考えられる。
The product is green in color, readily water soluble and has a nitrogen analysis of 5.4%;
Sodium O-nitroso-P-phenolsulfonate containing inorganic salts is believed to be the main component.

この化合物112′In9)理論量の1.7倍モル)を
用いて実施例3と同様に処理してCo濃度を測定た。
This compound 112'In9) (1.7 times the theoretical amount in mole) was used in the same manner as in Example 3, and the Co concentration was measured.

その結果Coは濃度0.21)I)IIIであった。As a result, the concentration of Co was 0.21)I)III.

Claims (1)

【特許請求の範囲】 1 一般式(1) 〔但し、RはC6〜C12の(n+2)価の芳香族基、
OH基とNO基は芳香核に直結して且つ互にオルソ位に
配置され、Mは水素またはアルカリ金属、nは1〜3の
整数を表わす。 〕で示される水溶性ニトロソ化合物で亜鉛焼鉱浸出液を
処理して該水溶性ニトロソ化合物と該亜鉛焼鉱浸出液中
のコバルトイオンとの錯体を形成させ、形成させた錯体
を塩基性イオン交換樹脂を用いて吸着除去することを特
徴とする亜鉛浸出液中のコバルトイオンの選択的除去方
法。 2 水溶性ニトロソ化合物が1−ニトロソ−2−オキシ
−3,6−ナフタリンジスルホン酸2ナトリウム塩にト
ロソR塩)である特許請求の範囲第1項記載の方法。 3 水溶性ニトロソ化合物が1−ニトロソ−2−オキシ
−6−ナフタリンスルホン酸ナトリウム塩である特許請
求の範囲第1項記載の方法。 4 水溶性ニトロソ化合物が1−二トロン−2−オキシ
−7−ナフタリンスルホン酸ナトリウム塩である特許請
求の範囲第1項記載の方法。 5 水溶性ニトロン化合物が2−ニトロソ−1−カキシ
ー4−ナフタリンスルホン酸である特許請求の範囲第1
項記載の方法。 6 水溶性ニトロソ化合物が2−ニトロソ−1−オキシ
−5−ナフタリンスルホン酸である特許請求の範囲第1
項記載の方法。 7 塩基性イオン交換樹脂が第4級アンモニウム塩の形
の強塩基性イオン交換樹脂である特許請求の範囲第1な
いし第6項のいずれか記載の方法。
[Claims] 1 General formula (1) [However, R is a C6 to C12 (n+2)-valent aromatic group,
The OH group and the NO group are directly connected to the aromatic nucleus and are arranged ortho to each other, M represents hydrogen or an alkali metal, and n represents an integer of 1 to 3. ] The zinc sinter leachate is treated with a water-soluble nitroso compound shown in the formula to form a complex between the water-soluble nitroso compound and cobalt ions in the zinc sinter leachate, and the formed complex is treated with a basic ion exchange resin. A method for selectively removing cobalt ions in a zinc leachate, the method comprising adsorbing and removing cobalt ions using a zinc leachate. 2. The method according to claim 1, wherein the water-soluble nitroso compound is 1-nitroso-2-oxy-3,6-naphthalene disulfonic acid disodium salt and Toroso R salt. 3. The method according to claim 1, wherein the water-soluble nitroso compound is 1-nitroso-2-oxy-6-naphthalenesulfonic acid sodium salt. 4. The method according to claim 1, wherein the water-soluble nitroso compound is 1-nitrone-2-oxy-7-naphthalenesulfonic acid sodium salt. 5. Claim 1, wherein the water-soluble nitrone compound is 2-nitroso-1-koxy-4-naphthalenesulfonic acid.
The method described in section. 6 Claim 1 in which the water-soluble nitroso compound is 2-nitroso-1-oxy-5-naphthalenesulfonic acid
The method described in section. 7. The method according to any one of claims 1 to 6, wherein the basic ion exchange resin is a strongly basic ion exchange resin in the form of a quaternary ammonium salt.
JP53012832A 1978-02-06 1978-02-06 Method for selectively removing cobalt ions in zinc leachate Expired JPS5943983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53012832A JPS5943983B2 (en) 1978-02-06 1978-02-06 Method for selectively removing cobalt ions in zinc leachate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53012832A JPS5943983B2 (en) 1978-02-06 1978-02-06 Method for selectively removing cobalt ions in zinc leachate

Publications (2)

Publication Number Publication Date
JPS54104441A JPS54104441A (en) 1979-08-16
JPS5943983B2 true JPS5943983B2 (en) 1984-10-25

Family

ID=11816342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53012832A Expired JPS5943983B2 (en) 1978-02-06 1978-02-06 Method for selectively removing cobalt ions in zinc leachate

Country Status (1)

Country Link
JP (1) JPS5943983B2 (en)

Also Published As

Publication number Publication date
JPS54104441A (en) 1979-08-16

Similar Documents

Publication Publication Date Title
Busch et al. Complexes Derived from Strong Field Ligands. XV. The Formation of Trinuclear Complexes by Coördination of Tris (β-mercaptoethylamine)-cobalt (III) to Metal Ions
CA1052582A (en) Process for liquid/liquid extraction of gallium
US3969478A (en) Process for separation of tungsten and molybdenum by extraction
NZ205367A (en) Liquid/liquid extraction of gallium
CA1036363A (en) Separation of metals
US3853725A (en) Selective stripping process
IE58979B1 (en) Process for the extraction of metal values and novel metal extractants
Sabot et al. Liquid-liquid extraction of nickel (II) by dialkylphosphorodithioic acids
JPS641534B2 (en)
US3091626A (en) Method of making ferrous citrate
Forgan et al. Cation and anion selectivity of zwitterionic salicylaldoxime metal salt extractants
FI69110B (en) PROCESS FOER SEPARATION AV KOBOLT FRAON NICKEL
JPS5943983B2 (en) Method for selectively removing cobalt ions in zinc leachate
US3718458A (en) Liquid-liquid separation of cobalt from ammoniacal solutions
CA1230976A (en) Process for producing and purifying metals of the platinum metals (ii)
CN112537808B (en) Method for synthesizing rhodium nitrate solution by utilizing rhodium-containing waste
US3966880A (en) Method for producing alkali metal gold sulfite
JPS5943982B2 (en) Method for selective removal of cobalt in zinc leachate
US3201334A (en) Process for the extraction of copper from copper ores
EP0513966B1 (en) Bis-bibenzimidazole composition
JP3496319B2 (en) Separation and recovery of platinum group elements
US3139447A (en) Preparation of ferrous ferri-ethylenediamine-tetra-acetate and process
CZ295631B6 (en) Method for extracting anions based on metals of the IVB to VIII groups of the Periodic Table
US2509917A (en) Method of removing nickel and cobalt impurities from zinc electrolyte solutions
JP3287562B2 (en) Method for producing tetraammineplatinum complexes