JPS594378B2 - Manufacturing method of high purity sodium sulfate - Google Patents

Manufacturing method of high purity sodium sulfate

Info

Publication number
JPS594378B2
JPS594378B2 JP51118578A JP11857876A JPS594378B2 JP S594378 B2 JPS594378 B2 JP S594378B2 JP 51118578 A JP51118578 A JP 51118578A JP 11857876 A JP11857876 A JP 11857876A JP S594378 B2 JPS594378 B2 JP S594378B2
Authority
JP
Japan
Prior art keywords
sodium sulfate
ions
chlorate
aqueous solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51118578A
Other languages
Japanese (ja)
Other versions
JPS5343692A (en
Inventor
邦夫 柏田
義郎 曽根原
克則 遠藤
洋司 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP51118578A priority Critical patent/JPS594378B2/en
Publication of JPS5343692A publication Critical patent/JPS5343692A/en
Publication of JPS594378B2 publication Critical patent/JPS594378B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 近年、大気中への硫黄酸化物排出規制による環境保全対
策として排煙脱硫技術の進歩にも目ざましいものがある
一方、脱硫時、多量に発生する副生物即ち硫黄酸化物の
固定化物の処理が大きな問題となりつつあり、各種方面
への有効利用を考えた回収方法の技術開発が急がれてい
る。
[Detailed Description of the Invention] In recent years, there has been remarkable progress in flue gas desulfurization technology as an environmental protection measure due to regulations on the emission of sulfur oxides into the atmosphere. The treatment of immobilized substances is becoming a major problem, and there is an urgent need to develop recovery methods that can be used effectively in various fields.

本発明者等は脱硫工程において採用しうる有用な副生物
回収法について研究した結果、洗剤ビルダー、食品添加
物グレードにも使用し得る硫酸ナトリウム、特に中性無
水硫酸すl−、IJウムを製造し得る技術を確立するこ
とに成功した。
As a result of research on a useful by-product recovery method that can be adopted in the desulfurization process, the present inventors have produced sodium sulfate, especially neutral anhydrous sulfuric acid, which can be used in detergent builders and food additive grades. We succeeded in establishing a technology that can do this.

従来、排煙脱硫方法の一つとして水酸化ナトリウム水溶
液中に、硫黄酸化物含有排煙を吹き込み、硫黄酸化物を
亜硫酸ナトリウムまたは酸性亜硫酸ナトリウムとする吸
収工程、この水溶液に空気またはオゾンを吹き込む酸化
工程、排煙中に含まれる重金属を除く精製工程、次に濃
縮して硫酸ナトリウムを晶出させる晶出工程、最後に晶
出物をその水溶液から分離乾燥する工程からなる中性無
水硫酸ナトリウムの製造を行う方法がとられて来た。
Conventionally, one of the flue gas desulfurization methods has been an absorption process in which flue gas containing sulfur oxides is blown into an aqueous sodium hydroxide solution to convert the sulfur oxides into sodium sulfite or acidic sodium sulfite, and an oxidation process in which air or ozone is blown into this aqueous solution. process, a purification process to remove heavy metals contained in flue gas, a crystallization process to concentrate and crystallize sodium sulfate, and finally a process to separate and dry the crystallized product from the aqueous solution. A manufacturing method has been adopted.

しかし、吸収工程に用いる水酸化ナトリウム水溶液は、
はとんどの場合隔膜法により得られる水酸化ナトリウム
水溶液であり、塩素酸イオンの含有が免れ得なく、更に
、塩素酸イオンは、酸化工程でpHを低くしてもほとん
ど分解されずに残り結局、晶出工程で硫酸ナトリウムと
複塩を形成するに到り、無水硫酸ナトリウムの純度を下
げる結果となる。
However, the sodium hydroxide aqueous solution used in the absorption process is
In most cases, it is an aqueous sodium hydroxide solution obtained by the diaphragm method, which inevitably contains chlorate ions.Furthermore, chlorate ions remain almost undecomposed even if the pH is lowered in the oxidation process. In the crystallization process, a double salt is formed with sodium sulfate, resulting in a decrease in the purity of anhydrous sodium sulfate.

因みに塩素酸ナトリウムを30PPM以上混入した無水
硫酸ナトリウムは洗剤用ビルダーとしてもまた、食品添
加物グレードとしても不適格である。
Incidentally, anhydrous sodium sulfate containing 30 PPM or more of sodium chlorate is not suitable as a builder for detergents or as a food additive grade.

即ち本発明の目的は前記混入塩素酸すl−IJウムを可
及的に減少させ、前記用途に適合する高純度硫酸ナトリ
ウムの製造方法にある。
That is, an object of the present invention is to provide a method for producing high-purity sodium sulfate that is suitable for the above-mentioned uses and which reduces the amount of contaminated sodium chlorate as much as possible.

塩素酸イオンの分解には、通常ヒドラジン、第−鉄塩等
の還元剤が使用されるが、ヒドラジンの場合も第一鉄塩
の場合もそれら別種の薬品の処理槽の設置、処理液の調
整装置等が必要である他、ヒドラジンのような高価な薬
品を用いることは好ましくなく、また第一鉄の場合は、
鉄分の除去処理が余分に必要なり煩雑化する方向である
Reducing agents such as hydrazine and ferrous salts are usually used to decompose chlorate ions, but in the case of hydrazine and ferrous salts, treatment tanks for these different types of chemicals must be installed and treatment solutions must be adjusted. In addition to requiring equipment, it is undesirable to use expensive chemicals such as hydrazine, and in the case of ferrous iron,
This requires an extra iron removal process, which tends to become more complicated.

本発明者等は酸化工程の直後に、塩素酸イオンの分解槽
を設け、反応速度を上げるため低pH(酸性)に調整す
る前または後に吸収工程の出口から得られる亜硫酸イオ
ンまたは酸性亜硫酸イオンを含有する水溶液を適当量添
加することによりほとんど完全に塩素酸イオンを分解し
得ることを見出した。
The present inventors installed a chlorate ion decomposition tank immediately after the oxidation process, and used sulfite ions or acidic sulfite ions obtained from the outlet of the absorption process before or after adjusting the pH to low (acidic) to increase the reaction rate. It has been found that chlorate ions can be almost completely decomposed by adding an appropriate amount of the aqueous solution containing them.

なお酸化工程はpHは酸性側でも塩基性側でも良いため
酸性側に調整し塩素酸イオン分解工程を酸化工程の前に
おくか、もしくは一体工程にすることも考えられるが、
酸性に調整するための硫酸等の酸が亜硫酸イオンを酸性
亜硫酸イオンに変化させるために相当量消費され硫酸等
の酸の原単位を著るしく下げて好ましくない。
Note that the pH of the oxidation step can be either acidic or basic, so it is conceivable to adjust the pH to the acidic side and place the chlorate ion decomposition step before the oxidation step, or to make it an integrated step.
A considerable amount of acid such as sulfuric acid used to adjust the acidity is consumed to convert sulfite ions into acidic sulfite ions, which is undesirable as it significantly lowers the basic unit of acid such as sulfuric acid.

さて塩素酸イオンの分解された水溶液は必要に応じ精製
工程を経て後、第2次酸化工程にもって行き残存亜硫酸
イオンおよびまたは酸性亜硫酸イオンを硫酸イオンにす
ることにより高純度硫酸ナトリウム水溶液を製造するこ
とが出来た。
Now, the aqueous solution in which the chlorate ions have been decomposed is subjected to a purification process as necessary, and then sent to a second oxidation process to convert residual sulfite ions and/or acidic sulfite ions into sulfate ions, thereby producing a high-purity sodium sulfate aqueous solution. I was able to do it.

即ち、本発明の要旨は、塩素数ナトリウム含有硫酸ナト
リウム水溶液から硫酸ナトリウムを製造する方法におい
て、尚該硫酸ナトリウム水溶液に亜硫酸イオンまたは酸
性亜硫酸イオンを添加し、酸性下で塩素酸イオンを分解
し次に該液中残存する亜硫酸イオンまたは酸性亜硫酸イ
オンを酸化することを特徴とする高純度硫酸ナトリウム
の製造方法にある。
That is, the gist of the present invention is a method for producing sodium sulfate from an aqueous sodium sulfate solution containing a few sodium chlorides, in which sulfite ions or acid sulfite ions are added to the aqueous sodium sulfate solution, chlorate ions are decomposed under acidic conditions, and then chlorate ions are decomposed under acidic conditions. The method for producing high purity sodium sulfate is characterized in that sulfite ions or acid sulfite ions remaining in the liquid are oxidized.

次に、本発明の方法を詳しく説明する。Next, the method of the present invention will be explained in detail.

硫黄酸化物を含有するボイラー排煙ガスを、隔膜法で製
造した水酸化ナトリウム水溶液中に通して亜硫酸ナトリ
ウム、酸性並値酸ナトリウム、少量の塩素酸ナトリウム
を含有する水溶液にした後、その大部分の溶液に空気ま
たはオゾンを吹きこみ亜硫酸イオンまれは酸性亜硫酸イ
オンを硫酸イオンに酸化した後、分解槽に移し、硫酸に
てpHを4以下に下げ、好ましくは40°C以上に加熱
し、次に、吸収工程で得た吸収液の一部を導入するが、
その量は、 導入803 (又はH3O3−)モル/分解槽中C
lO3−モルが3モル/1モル以上望ましくは5モル/
1モル以上になるように導入するのがよい。
Boiler flue gas containing sulfur oxides is passed through a sodium hydroxide aqueous solution produced by the diaphragm method to form an aqueous solution containing sodium sulfite, acidic sodium chloride, and a small amount of sodium chlorate, and most of the Air or ozone is blown into the solution to oxidize the sulfite ions (rarely acidic sulfite ions) to sulfate ions, then transferred to a decomposition tank, lowered the pH to 4 or less with sulfuric acid, heated preferably to 40°C or higher, and then A part of the absorption liquid obtained in the absorption process is introduced into the
The amount is 803 (or H3O3-) mol introduced/C in the decomposition tank.
lO3-mol is 3 mol/1 mol or more, preferably 5 mol/mol
It is preferable to introduce it in an amount of 1 mol or more.

また分解槽はpH≦4で行うのが好ましいが、その調整
には亜硫酸ガス、または、硫酸を用いるのが好適である
Further, it is preferable that the pH of the decomposition tank be maintained at 4, and it is preferable to use sulfur dioxide gas or sulfuric acid for adjustment.

分解槽の温度は高い程分解効率は良く、40℃を降るこ
とは好ましくない。
The higher the temperature of the decomposition tank, the better the decomposition efficiency, and it is not preferable for the temperature to drop below 40°C.

分解槽液を攪拌しつつ塩素酸イオンが認められなくなれ
ば、第2の酸化工程に移すが、排煙中には重金属やカー
ボン等を含んでいることが多く精製工程を一度経ること
が望ましい。
If chlorate ions are no longer observed while stirring the decomposition tank liquid, it is moved to the second oxidation step, but since flue gas often contains heavy metals, carbon, etc., it is desirable to go through the purification step once.

第2酸化工程では残留亜硫酸イオン等還元性イオンを空
気またはオゾンで酸化しほとんど完全に硫酸イオンに変
化させる。
In the second oxidation step, residual sulfite ions and other reducing ions are oxidized with air or ozone and almost completely converted to sulfate ions.

以上の工程を経て後、pHを約7に調整し通常の濃縮工
程、分離、乾燥工程を経て高純度中性無水硫酸ナトリウ
ムを製造することか出来る。
After going through the above steps, the pH is adjusted to about 7, and high purity neutral anhydrous sodium sulfate can be produced through normal concentration, separation, and drying steps.

次に実施例でもって本発明の効果を示す。Next, the effects of the present invention will be shown with examples.

実施例 硫黄酸化物を含有するボイラー排煙ガス20万N7i/
Hrの排ガスを、塩素酸ナトリウムを含有する市販の隔
膜法苛性ソーダ水溶液に導入し、脱硫することにより得
られた脱硫液(生成速度51/ h r 、組成Na2
8032.1モル/ 、l 、 Na2 S 040.
2モル/ h r 、NaC1038X 10−’モル
/11その他)を4.9 yj / h rの速度で第
1酸化工程に送液し、空気を2000 Ni/ h r
の流量で導入し酸化工程を経させ、その出口で得られた
液はpH7,5液温75°C,Na2SO35X10−
5モル/l、Na2SO42,3モル/L、NaClO
37X10 モル/11その他であった。
Example Boiler flue gas containing sulfur oxides 200,000 N7i/
The desulfurization liquid obtained by introducing Hr exhaust gas into a commercially available diaphragm method caustic soda aqueous solution containing sodium chlorate and desulfurizing it (generation rate 51/hr, composition Na2
8032.1 mol/, l, Na2S 040.
2 mol/hr, NaC1038
The liquid obtained at the outlet has a pH of 7.5, a liquid temperature of 75°C, and a Na2SO35X10-
5 mol/l, Na2SO42,3 mol/l, NaClO
37×10 mol/11 others.

この液を塩素酸イオン分解槽に導入し、脱硫液を0.1
i / h rにて供給、混合し、98%H2SO4
によりpH2,0〜2.5に、また温度を70〜80℃
に調整し攪拌を続けたLころ該分解槽出口の液組成はN
a25OsO1035モル/ tlN a2S 042
.3モル/11 NaClO31×10−5モル/lで
あり、塩素酸イオンのほとんどが分解されたことがわか
る。
This liquid was introduced into the chlorate ion decomposition tank, and the desulfurization liquid was
Feed and mix at i/hr, 98% H2SO4
to pH 2.0 to 2.5 and temperature to 70 to 80℃.
The liquid composition at the outlet of the decomposition tank is N
a25OsO1035mol/tlN a2S 042
.. 3 mol/11 NaClO31 x 10-5 mol/l, indicating that most of the chlorate ions were decomposed.

この処理液は次に精製工程に導き、純水酸化ナトリウム
水溶液にてpHを8ないし11に調整し、重金属類を、
プリコートフィルターにより沢過精製を行い、この精製
液を第2酸化工程に導入した。
This treated solution is then led to a purification process, where the pH is adjusted to 8 to 11 with a pure sodium hydroxide aqueous solution, and heavy metals are removed.
Purification was performed using a precoat filter, and this purified liquid was introduced into the second oxidation step.

第1酸化工程と同じく空気を用いて液中の亜硫酸イオン
を酸化し亜硫酸イオン濃度を1×10−4モル/lとし
た精製硫酸すl−IJウム溶液を約5−/hrの速度で
得た。
As in the first oxidation step, the sulfite ions in the solution were oxidized using air to obtain a purified sodium sulfate solution with a sulfite ion concentration of 1 x 10-4 mol/l at a rate of about 5-/hr. Ta.

尚該水溶液を98%濃硫酸によりpHを約7に調整し、
晶出工程に導き、500Cにて15倍の濃縮を行い、析
出する中性無水硫酸ナトリウムを連続的に抜き出し分離
乾燥を行ったところ塩素酸ソーダIPPM以下の、食品
添加物として使用し得る中性無水硫酸ナトリウムが約1
.5トン/ h rの速度で得られた。
The pH of the aqueous solution was adjusted to about 7 with 98% concentrated sulfuric acid,
It was led to a crystallization step, concentrated 15 times at 500C, and the precipitated neutral anhydrous sodium sulfate was continuously extracted and separated and dried. As a result, a neutral product with a concentration of sodium chlorate IPPM or less that can be used as a food additive was obtained. Anhydrous sodium sulfate is about 1
.. Obtained at a rate of 5 tons/hr.

なお水酸化ナトリウム中に含有されていた食塩は、前記
晶出工程にて晶出せず、水溶液のまま分離除去すること
が出来た。
Note that the common salt contained in the sodium hydroxide was not crystallized in the crystallization step, and could be separated and removed as an aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] 1 塩素酸ナトリウム含有硫酸ナトリウム水溶液から硫
酸す) IJウムを製造する方法において、尚該硫酸ナ
トリウム水溶液に亜硫酸イオンまたは酸性亜硫酸イオン
を添加し、酸性下で塩素酸イオンを分解し、次に該液中
残存する亜硫酸イオンまたは酸性亜硫酸イオンを酸化す
ることを特徴とする高純度硫酸ナトリウムの製造方法。
1. In the method of producing sulfuric acid from an aqueous solution of sodium sulfate containing sodium chlorate, sulfite ions or acidic sulfite ions are added to the aqueous solution of sodium sulfate, the chlorate ions are decomposed under acidic conditions, and then the solution is A method for producing high purity sodium sulfate, which comprises oxidizing residual sulfite ions or acidic sulfite ions.
JP51118578A 1976-10-04 1976-10-04 Manufacturing method of high purity sodium sulfate Expired JPS594378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51118578A JPS594378B2 (en) 1976-10-04 1976-10-04 Manufacturing method of high purity sodium sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51118578A JPS594378B2 (en) 1976-10-04 1976-10-04 Manufacturing method of high purity sodium sulfate

Publications (2)

Publication Number Publication Date
JPS5343692A JPS5343692A (en) 1978-04-19
JPS594378B2 true JPS594378B2 (en) 1984-01-30

Family

ID=14740046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51118578A Expired JPS594378B2 (en) 1976-10-04 1976-10-04 Manufacturing method of high purity sodium sulfate

Country Status (1)

Country Link
JP (1) JPS594378B2 (en)

Also Published As

Publication number Publication date
JPS5343692A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
US5328673A (en) Process for removal of NOx and SOx oxides from waste gases with chloric acid
USRE31236E (en) Method of removing sulfur dioxide from combustion exhaust gas
JPH0742090B2 (en) Chlorine dioxide production method
CA2265728C (en) Treatment of chlorine dioxide generator effluent and feed streams with fixed-resin bed
CA1333519C (en) Process for the production of chlorine dioxide
US4634582A (en) Sulfur dioxide removal process
US4044101A (en) Method of treating exhaust gases containing nitrogen oxides and sulfurous acid gas
EP0016290B1 (en) Continuous process for the removal of sulphur dioxide from waste gases, and hydrogen and sulphuric acid produced thereby
JP3021540B2 (en) Purification method of alkali metal chloride aqueous solution
US4009241A (en) Method of removing mercury vapor from gases contaminated therewith
US4323437A (en) Treatment of brine
US4092402A (en) Method for removing sulfur dioxide from exhaust gas
US4360508A (en) Treatment of effluents
JP4464592B2 (en) Purification method of aqueous buffer solution
EP0465447B1 (en) Process for the production of chlorine dioxide
JPS594378B2 (en) Manufacturing method of high purity sodium sulfate
US4178356A (en) Process for manufacturing chlorine dioxide
JPS5820892B2 (en) Production method of basic ferric sulfate
US5356610A (en) Method for removing impurities from an alkali metal chlorate process
JPH0221854B2 (en)
US4174383A (en) Process for purifying a sulfur dioxide containing gas with production of elemental sulfur
JPS62502388A (en) How to purify flue gas
JP2003334458A (en) Anion exchange resin, its manufacturing method, and manufacturing method for purified hydrogen peroxide solution using the resin
US5098679A (en) Purification of alkali metal hydrosulfite solutions
US3887684A (en) Removal of sulfur dioxide from waste gases