JPS5943404A - Pump operating method - Google Patents

Pump operating method

Info

Publication number
JPS5943404A
JPS5943404A JP15398682A JP15398682A JPS5943404A JP S5943404 A JPS5943404 A JP S5943404A JP 15398682 A JP15398682 A JP 15398682A JP 15398682 A JP15398682 A JP 15398682A JP S5943404 A JPS5943404 A JP S5943404A
Authority
JP
Japan
Prior art keywords
minimum
water
pump
pumps
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15398682A
Other languages
Japanese (ja)
Inventor
Masao Okamachi
岡町 正雄
Kazuyuki Nanbu
和幸 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15398682A priority Critical patent/JPS5943404A/en
Publication of JPS5943404A publication Critical patent/JPS5943404A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To hold the water level in a water distribution tank at a prescribed limit, to secure a consumer head and water consumption and to decrease the frequency of pump switching by setting a maximum and a minimum discharge for daily water consumption and performing operation within this range. CONSTITUTION:The maximum and minimum pump discharge are set for the daily water consumption and the operation is carried on within the range. For example, necessary data are set initially for one operation facility 1 consisting of plural pumps arranged in parallel and estimated daily water consumption and a maximum and a minimum pump discharge are supplied to set the number of pumps in operation and pump discharges at prescribed intervals of time on the basis of said data. The operation facility 1 is put in operation by a set operating method to supply water from a water purifying plant 6 to the water distributing tank 3 through a water distribution system 2 and the water level variation of the distribution tank 3, consumer head, etc., are checked to distribute water to comsumer terminals 5 through piping 4 in the best state.

Description

【発明の詳細な説明】 本発明は、上下水道、潅碩用水、ゴ計水寺のポンププラ
ント設備に適用して叫好適なボンノ°達転方法であって
、運転コストが最小となるようポンプ合成の切替えを行
なっていく最ニー巣転力法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a bonno delivery method suitable for application to pump plant equipment for water supply and sewage, irrigation water, and government water temples, and is designed to minimize operating costs. This paper relates to the knee-to-center rolling force method in which synthesis is switched.

シE来のたとえは上水道給水用ボンノ°プラントホ秋に
おいては、第1図にしu示したように、並列に設置区さ
れた複数台のポンプで構成されるボング設俯1があp、
これらポンプは浄水池6の水を配f#糸2を通じて配水
タンク3に供胞し、←←←砿→・・・  、この配水タ
ンク3がら配官4を介して裔委永端5へ配水されるよう
に1よっている。
In the case of a water supply bong plant, a bong installation 1 consisting of multiple pumps installed in parallel is installed as shown in Figure 1.
These pumps supply water from the water purification pond 6 to the water distribution tank 3 through the distribution line 2, and from this water distribution tank 3, water is distributed to the descendant Yongduan 5 via the distribution line 4. I'm counting on 1 to make it happen.

このようなポンププラント系統において、ポンプ。In such a pump plant system, the pump.

運転員は時々刻々の裔要給水血(現状ポンプ吐出h)の
変削に応じて複数台のポンプを適宜切替えて運転する必
要かある。この切骨えは以下を名應して付なわれる。
It is necessary for the operator to operate a plurality of pumps by appropriately switching over them depending on the moment-to-moment changes in the water supply required by the descendants (current pump discharge h). This bone cutting is named after the following.

(1)配水タンク3の水位を土眠および下1狐の軛囲内
に保持する。
(1) The water level of the water distribution tank 3 is maintained within the yoke of Domin and Shimoichigitsune.

(2) ポンプ切蕾回数をできるだけ少なくすることに
よってポンプ故障発生を少なくしかつ連腫負の作東負担
を軽減する。
(2) By minimizing the number of pump incisions, the occurrence of pump failures is reduced and the burden of continuous tumor production is reduced.

(3)  ボング趣転コストを少なくする〇(4) 端
側1水!似およびπ行水量を確保する。
(3) Reduce the cost of using a bong (4) 1 water on the end! Ensure a sufficient amount of water.

しかしJ二;H+−j月1ノ貝は運転員の従来からの経
験によって運転しているのが現状であり、このためこの
手動の逢転力法では谷独建転法の定量的計画がでさない
と℃・つた欠点がある。
However, the current situation is that the operation of J2;H+-j monthly shellfish is based on the operator's previous experience, and for this reason, this manual power transfer method does not allow for the quantitative planning of the valley-doku construction method. Otherwise, there will be disadvantages such as ℃ and ivy.

一方、この柿のポンプ運転員の1l11動化に夕”」し
多くの検削が1よ公れており、特に数J:♀肘I四法を
用いてポンプ便用′屯力、iUを最小にするポング切告
運転法またはボング切誉回数を最少とする退転法、自己
水タンク3の水位変動を最小とする運転法等が知られて
いる。
On the other hand, many inspections have been made public in the evening for the 1l11 mobilization of this persimmon pump operator, especially the number J: ♀ Elbow I four methods to calculate the pump's tonne force, iU. A driving method that minimizes the number of bong cuts, a reversing method that minimizes the number of bong cuts, and a driving method that minimizes water level fluctuations in the water tank 3 are known.

不覚ヴ畏ま、l持に配水タンクの水位を所定限界内Uこ
1呆苺し箭−四泳水属および鮒水蚕を確保しながら。
Unconsciously, I made sure to keep the water level in the water distribution tank within the specified limits while ensuring that the water level of the water distribution tank was within the specified limit.

ポンプ切・n回数のできるだけ少ない運転法で運転コス
トを取手とする全く新規なポンプ敢適違転方法を提供す
ることを1」的とする。
The purpose of this invention is to provide a completely new method for turning off the pump by reducing the number of times the pump is turned off and minimizing operating costs.

本さし明によれは、谷禅容嵐の定連回転故ポンプが初数
台与えらハた場名゛を動域とし、日111」篇鮫給水−
が予想もれるものとしてI’、!IT走1υ」間jυに
晶茨A合水鼠変動に対処したi止転ケ実ガ山しようとす
るものて、日I1.1J7Iδ要j1.凸水徂に対しそ
の最大およびj収小ボンゾ吐出臥を設雉してこの郭1相
内で、嘔転する、尤9にし、そのj筋合、飴υ示d水箱
変鯛に幻して設シピした最大と最小の吐出1i内でξυ
各沖1[戎を最少とする運転法と、設′Aぜした最少1
止出鼠に保持する迫鴨汰とを考)抵し、これら;2抽の
運転法につ(゛て1y「矩ル」+ii ii K夫・々
運転コストおよび切侶・回数を氷めて日113」′面′
按嬬水嵐に刈ずろ定鼠的旧′イ曲をイーエない、運転コ
スト最小のデータで切替回数のできるだけ少ない運転法
を迅択するようにしている。
According to Sashiaki Honsashi, the operating area was the name of the place where the first few fixed-rotation rotary pumps of Tani Zenyo Arashi were given, and the shark water supply in the 111th edition.
As expected, I',! IT run 1υ'' between jυ, I stopped trying to deal with the change in A, and I was trying to make a real change. For the convex water side, set the maximum and J collection and small Bonzo discharge position, and within this Guo 1 phase, it will roll, and it will be 9, and the J line will be phantom, and the water box will change to a sea bream. ξυ within the set maximum and minimum discharge 1i
Each offshore 1
(Considering the Sakamo-ta that is held as a stop-out mouse), these are the driving methods for 2 draws (1y "square" + ii ii K-husband, etc.), and the driving cost and cut-off number are reduced. Day 113'''face'
We are trying to quickly select an operating method that minimizes the number of switching operations using the data that minimizes operating costs, without repeating the old tricks of Harizuro Teishi in the midst of storms and storms.

以下第2図ないし第4図に例示した本)6明の好適な実
MNtlJについて詳述する。
The preferred real MNtlJ of Book 6, illustrated in FIGS. 2 to 4, will be described in detail below.

第2図は不兄明によるボング趣転力云の2埋弘フ1コー
に胸する要素を示すもので、以F K JCれらの同容
について脱明する。
Figure 2 shows the elements of the 2-bu-hirofu-1-ko of Bong Shutenriki by Fuei Akira, and I will explain the same content below.

要素10では、初ル」運転点(ボングミ止出b、水路、
配水タンク水頭、趣鴨ホング(!Ii力1(hbえ)、
運転ポンプ合辻4)および定数(浄水池水頭、ポンプ特
性、連転チェンク時間間隔Δt(Δtはポンプ起動・停
止に要する時間、箭侠給水量の変動幅等より決める)、
最大ヂエック時聞K・Δ1等)を与える。
In element 10, the first operation point (Bongumi stop b, waterway,
Water distribution tank water head, Kamo Hong (!Ii force 1 (hb),
Operation pump intersection 4) and constants (water head in the water purification pond, pump characteristics, continuous change time interval Δt (Δt is determined based on the time required to start and stop the pump, the fluctuation range of the water supply amount, etc.),
Give the maximum dimension time (K, Δ1, etc.).

要素】1又は、予ブ山される196要垢水箪を与える・
こしく11、第3図に示すように1月同18 安Mであ
り時間の関数である。また、この要素では全ボンノ゛吐
出量、配水タンク最尚、最イ氏水イ\L、沓安参′水1
供、ポングキャビデーショ/水頭、浄水イ也水位、示イ
Element] 1 or give 196 points of water to be piled up.
11. As shown in Figure 3, the January price is 18% low, and it is a function of time. In addition, this element includes the discharge amount of all cylinders, the maximum amount of water in the distribution tank, the maximum amount of water in the tank, and the maximum amount of water in the tank.
Water supply, Pong cavidation/water head, water purification, water level, indication.

代勿よシボンノ゛敢大、最小吐出量を与える。第3図に
おいて、蚕照?、1号20は篇較格水嵐、21は最大ポ
ンプ吐出f(i、22は最小ポンプ吐出量をそれぞれ示
している。
Of course, the ribbon is bold and provides the minimum discharge amount. In Fig. 3, Silkworm? , No. 1 20 indicates the water storm, 21 indicates the maximum pump discharge f(i, and 22 indicates the minimum pump discharge amount.

要素12では、覗時刻tのポンプ趣転台式によってI 
+i−Δ1(1はI−にの任意の値)時間先の福安瓜(
水11iが(両だされるがどうかを巾」断する。
In element 12, I
+i-Δ1 (1 is any value for I-) time ahead Fu'an Melon (
Water 11i decides whether or not it will be released.

要素13では、ポンプ台奴切蕾吋のボングイ重油(吐出
量)およびその台数を決める。
Element 13 determines the fuel oil (discharge amount) of the pump stand and the number of pumps.

要素14では、を十i―Δを時間先の呼褥Iポンプ運転
点を決める。
In element 14, the operating point of the pump I pump is determined by i-Δ.

要素15では、そのポンプ運転点における運転コストお
よび切蕾回数を′:f+制する。
Element 15 controls the operating cost and number of cuttings at that pump operating point by ':f+.

要素16では、現時点よシ!・Δを時1f、fJ毎に一
日間を評価したか否かを判断する。
In element 16, it's the present moment! - Determine whether Δ has been evaluated for one day every fJ.

要素17では、l―Δtのlとして1〜Kを、妹り返し
たか否かを判いりテする。
In element 17, it is determined whether 1 to K are repeated as l of l-Δt.

要素18では、ポンプ切替回数最少運1阻法(運転法l
)と運転コスト最小運転法(運転法■)とについて評価
を繰り返したが否がを′I−1月+ノi =J−る。
In element 18, the minimum number of pump switching times is 1.
) and the minimum operating cost operating method (operating method ①), but the evaluation was repeated.

要素19でば、現時点がら目1hノのj祖脂< #Y 
flllJ (2XK槓のり−スを用いて最適7よポン
プ台数切換時刻およびその時のポンプ台数を決定する。
In the case of element 19, the current 1h of j-soba<#Y
flllJ (Determine the optimum pump number switching time and the number of pumps at that time using a 2XK hammer base.

更に詳述すれは、要素1oおよび11において、前述の
とおり必要データを初期設定1. H間予想需要給水毎
および最大・最小ホンダ吐出1社を−Fjλ、これらの
データを基にして常にΔを時1fiJ i6に供述の演
算を行なう。ここで、ポンプ設置1mは谷イψ外tしく
吐出量)の定連回転数ポンプ硅がら成るものとし、運転
法としては2棟類の趣鴨を考慮する。第4図に示したよ
うにポンプ吐出量は常に最大ポツプ吐出量21と最小ポ
ツプ吐出量22との間に入るようにされる訳だが、まず
運転法1としてはポンプ切悸回故最少の観点から現時点
tよシトΔtII 1i41先のポツプ吐出量が最大・
最小吐出−曲柑同にある場合はポンプ”の連転台数を切
替えな℃・ようにする方法(第4同行号23)とし、運
転法IIは運転コスト最小の賎点から前記最大・最小吐
出量曲線間においてできるたけ最小吐出量に近くなるよ
つボング酋数を切替える方法(第41符号24)とする
More specifically, in elements 1o and 11, necessary data is initialized 1. as described above. The predicted demand for water supply during H period and the maximum/minimum Honda discharge by one company are -Fjλ, and based on these data, Δ is always calculated as described above at 1fiJ i6. Here, it is assumed that 1 m of pump installation consists of a constant number of rotational speed pumps with a valley ψ and a large discharge amount, and two types of pumps are considered as the operating method. As shown in Fig. 4, the pump discharge amount is always set between the maximum pop discharge amount 21 and the minimum pop discharge amount 22, but first of all, as the first operating method, the pump discharge amount is set to be between the maximum pop discharge amount 21 and the minimum pop discharge amount 22. From the current point t, the pop discharge amount ahead of ΔtII 1i41 is the maximum.
Minimum discharge - If the curve is the same, the number of pumps in continuous operation should not be changed (No. 4, No. 23), and the operation method II is to increase the maximum and minimum discharge from the lowest point of operation cost. This is a method (41st numeral 24) of switching the number of bongs to be as close to the minimum discharge amount as possible between the volume curves.

現時点tよp i@Δt(i=1.2.・・−に、には
定戯)時間先のポツプ吐出量は現ポング運転台数を切替
えなければ現時刻と同じ吐出量を維持する9、シかし、
1・Δを時間先のポツプ吐出量か要素」1にて設定され
た最大および最小ポツプ吐出量21.22の馳囲外にな
ると予想される場合には上記運転法に91Xつてボング
迎私台数を切替えねはならない(要素12で判断される
)。
From the current time t p i@Δt (i = 1.2...-, it is constant) the pop discharge amount in the future will maintain the same discharge amount as the current time unless the current number of pumps in operation is changed9. Shikashi,
If 1・Δ is expected to be outside the range of the maximum and minimum pop discharge amount set in 1. (determined by element 12).

その必要吐出変化−Δq(t)は(1ン式で与えられる
The required discharge change -Δq(t) is given by the equation (1).

但し、 maxQL(t”t+i ・Δt)は$ Wj
点tから1・Δ1時間先までの最小ポツプ吐出量の叡大
埴、m1nQn(1−1+ビΔt)は現時点tかr:)
1・Δを時間先までの最大ポツプ吐出量の最小値、Q(
1)はm時点のポツプ吐出量を示ず、。
However, maxQL(t"t+i ・Δt) is $ Wj
The minimum pop discharge amount from point t to 1・Δ1 hour ahead, m1nQn (1-1+biΔt), is the current time t or r:)
1・Δ is the minimum value of the maximum pop discharge amount up to the time, Q(
1) does not indicate the pop discharge amount at time m.

この吐出変化1uΔQ(t)iv対して現在設備トりで
の連転台数切替アルコリズムを次に示す(要素13)。
For this discharge change 1uΔQ(t)iv, the algorithm for switching the number of continuous rotation units at the current equipment capacity is shown below (element 13).

現在便用中のポツプ台数fN□、N2、・・・ 。The number of pop-ups currently in use is fN□, N2,...

Nll1.現在未使用で使用可能なポツプ合歓をnl。Nll1. Nl currently unused and usable popup welcome.

I〕2.・・・’ ”ITI、1台当りのボ/プ吐出−
をQIrQ2・°”″・QInとすれは、Jく“ンブ匙
勤it]貨し台奴θ圭Δn、、二〇、1.・・・旬、n
e (l−1〜rn)吐出量増加量は ΔQj  −Σ Δn、  sQB    (E  =
、  1  ゝh1 )    (2ンr二1 了り能な起動組合せ数は (n、+1)ψ(n2+1)”・(nm+1)= II
 Cnl+1)k二1 で表わされろ。
I]2. ...' ``ITI, Bo/P discharge per unit-
QIrQ2・°”″・QIn is Jku “Nbu spoon duty” and the transfer is θ Kei Δn,, 20, 1.... Shun, n
e (l-1~rn) The increase in discharge amount is ΔQj −Σ Δn, sQB (E =
, 1ゝh1) (2nr21 The number of possible activation combinations is (n, +1)ψ(n2+1)"・(nm+1)=II
Express it as Cnl+1)k21.

11′ ここで(2)式のΔQJ(t) s (3==l〜II
 (nl+1月のE=z 数ケース選択する。更にその中でも起動ポンプ台数(Σ
Δ114 )か少なく、かつ小答−ポングの多lニ1 いボング台式組合せのケースを雇−選択す蛎同体に、ボ
/プ1苧止可能台数 Δ傳 一二〇、1.・・・ NIl (、g+=1〜用〕吐出
量票少量 についても、 II  (N、+1)の組合せの中より
ボμ:1 ノブ組合せケースを選択する。
11' Here, ΔQJ(t) s (3==l~II
(nl + January E = z Select several cases. Furthermore, among them, the number of starting pumps (Σ
Δ114) is small, and the number of units that can be locked in one board is Δ120, 1. . . . NIl (for g+=1~) Also for the small discharge amount chart, select the Bo μ: 1 knob combination case from II (N, +1) combinations.

このように決められたポンプ容重およびその台数に対し
、下記の解析式を用いて時刻L +i・Δtにおける迦
転点を決める(要素14)。
For the pump capacity and weight thus determined and the number of pumps, the turning point at time L+i·Δt is determined using the following analytical formula (element 14).

HP(t)二= HD I)−Ha +ΔH(Σ (N
I、(t)−Qg(t)’)      (41−1 Qバリ二f1k(HP(t) )          
+6)ηバt)二f2℃(Q、g(t) )     
    (7)但し、Hp(i)はポンプ吐出水fm、
 喝(t)は配水タンク水頭、ΔHは配管水頭損失、H
oは浄水池水耕、Nl (t )は使用するポツプ台数
(ll=1〜m ) 、 Qlはポンプ吐出量/台(l
V、=、 1〜1η〕、Aば)配水タンク断面積、 Q
D(t)は予想需要給水履f1ッはポンプ特性(l=1
〜m)、η℃(1)はボング幻率(t3=−二1〜m)
、f2にはボング効率付注を示す。
HP(t)2=HD I)−Ha+ΔH(Σ(N
I, (t)-Qg(t)') (41-1 Q Balini f1k(HP(t))
+6)ηbat)2f2℃(Q,g(t) )
(7) However, Hp(i) is pump discharge water fm,
(t) is the distribution tank water head, ΔH is the piping head loss, H
o is water purification pond hydroponic, Nl (t) is the number of pumps used (ll = 1~m), Ql is pump discharge amount/unit (l
V, =, 1~1η], A) Water distribution tank cross-sectional area, Q
D(t) is the expected demand water supply f1 is the pump characteristic (l=1
~m), η℃(1) is the bong illusion rate (t3=-21~m)
, f2 shows a note with bong efficiency.

このように決められた遜転点に対して要素15にて計1
曲をイテなう。切替回数としては四時勿]において切替
がある場合に1回カウントする(核叔のら 場合でも、同時刻など1回とカウントする)。
A total of 1 in element 15 for the change point determined in this way
Let's play the song. As for the number of switching times, if there is a switching at 4 o'clock, it is counted once (even if the switching occurs at the same time, it is counted as 1 time).

4−たボンプノ車1匹コスト、すなわち消費電力はで衣
わされる。但しη戚はモータ効率である。
The cost, or power consumption, of one 4-wheeled car is determined by the following. However, η is the motor efficiency.

仄に、第3図の′:l活要給水嵐曲称で与えられた日間
の全1(、)間狽域にタフして1・Δt(i二1〜にの
任意)時間1υ、に(2回l」はt+21・Δt)要素
12〜15を繰り返してトータルで日1司の言′f1曲
を行なう  (要 糸 1 6  ) 。
By the way, the total 1 (,) period of the day given by ':l water supply storm name in Figure 3 is tough and 1 Δt (arbitrary of i21~) time 1υ, (2 times l' is t + 21 · Δt) Repeat elements 12 to 15 to perform a total of 1 songs of Hi 1 Tsukasa (16).

この後、■を変え、1からKまでの1の値に対して要素
12〜16な繰9返し、時間スデソプ毎の日1司の計1
曲を行なう(要素17)。
After this, change ■ and repeat 9 times of elements 12 to 16 for the value of 1 from 1 to K, 1 time per day for a total of 1
Perform a song (element 17).

そして、以上の運転評価を運転法1および■に関して実
施する(要素18)。これで、現時点以後の2にケース
の運転法の日間の評価が完了する。
Then, the above driving evaluation is carried out regarding driving method 1 and ■ (element 18). This completes the two-day evaluation of the driving method for the case from now on.

この評価より、運転コストの最小のケースを選択し、更
にその中より切替回数の最少の運転法を1ケース選ぶ。
Based on this evaluation, the case with the lowest operating cost is selected, and one operating method with the least number of switching is selected from among them.

これは日間評価であり、この選択ケースで珠られた時間
tでの運転法を現時点て実施すればよい。
This is a daily evaluation, and it is sufficient to implement the operating method at time t determined in this selection case at the present time.

需要予想爾の変化や他のデータXl史((刻してG上、
その都度、または通常はΔを毎に要素]2〜19を演算
する〇 本発明によれは、運転コストおよび切倚回A父を少なく
する運転法を予想需要量を基に日11−I」で評価し、
この中よシ最適な運転法をi!sボし、そこで採られた
運転を現時刻で採用する。ようにしている・一般的には
、6柚の運転法(切替時間、変化吐出社、起動停止ポン
プ台数、その容重の桃類等)があシ、全ての中から最適
(運転コスト最小)な運転法を選択することは不可能で
ある。このため予めいくつかのケースに絞シ、七の中よ
り最適なケースを選定している。まず最大・最小ポンプ
吐出量を決めることにより安定なポツプ運転域、配水タ
ンク水位変動幅の限雉、裔壺水水唄の確保等が可能であ
る。また運転法1,1と限定し、ポンプ切賛回数最少お
よび運転コスト最小のケースを選定している。ポンプ切
賛間隔検討を1〜Kまで変更することによって最適な切
替時間を選定できるようにしている。ポツプ切替時のポ
ンプ棟類および台数についても現崩設備の全ての組合せ
より切替台数が少なく運転効率のよい組合せを選定して
いる。以上によシ2・Kケースの運転法の中からポンプ
運転コストを最小であシ、史に切賛回数の最少の運転法
を次定している。その運転法の第1時間ステップで行な
われた運転法を現時点(1)で実//I!lすれば1ヨ
Ibjでの最適な運転となる現時点での台数切替連転が
できることになる。
Changes in demand forecasts and other data
Calculate elements 2 to 19 each time, or usually for each Δ.According to the present invention, an operating method that reduces operating costs and cutting times is calculated based on the expected demand amount. Evaluate with
Find out the best way to drive in this situation! The operation adopted there will be adopted at the current time.・In general, there are six operating methods (switching time, variable discharge rate, number of starting/stopping pumps, volume of peaches, etc.), and the most suitable (minimum operating cost) is selected from all of them. It is not possible to choose the driving method. For this reason, we have selected several cases in advance and selected the most suitable case from among the seven. First, by determining the maximum and minimum pump discharge amounts, it is possible to ensure a stable pop-up operation range, a limited range of water level fluctuations in the water distribution tank, and a stable flow of water. In addition, the operating method is limited to 1 and 1, and the case with the least number of pump pumps and the lowest operating cost is selected. By changing the pump promotion interval consideration from 1 to K, the optimum switching time can be selected. Regarding the pump buildings and number of pumps when switching over, we have selected a combination that requires fewer switches and is more efficient in operation than all combinations of existing equipment. Based on the above, from among the operating methods for the 2/K case, the operating method that minimizes the pump operating cost and has the least amount of praise in history has been determined. The driving method performed in the first time step of the driving method is implemented at the present moment (1) //I! 1, it is possible to continuously switch the number of units at the current time for optimal operation at 1 yaw Ibj.

4回出」のt7Ij外な、況明 第1図は不発1jJ」方法を適用しようとする上水道用
ポンプグランドシステムの例を示す図、第2図は本発明
によるポンプ運転法の運転フローを示す図、第3図は日
間予想苦費給水量の変化例を示す図、第4図は本発明の
方法を説明するための図である。
Figure 1 is a diagram showing an example of a pump gland system for waterworks to which the "unexploded 1jJ" method is applied, and Figure 2 shows the operation flow of the pump operation method according to the present invention. 3 and 3 are diagrams showing an example of changes in daily expected water supply amount, and FIG. 4 is a diagram for explaining the method of the present invention.

1・・ポンプ設(1由、2・・自己管ホ、3・・自己水
タンク、4・・配管、5・・裔要家端、6・・浄水池、
20・・簡J9胎水−121・、最大ポツプ吐出量、2
2・−最小ポツプ吐出量、23・・運転法1124・・
運転法u525・・切替時間間隔を変えたケース。
1. Pump installation (1 source, 2. Self-pipe ho, 3. Self-water tank, 4. Piping, 5. Descendant home end, 6. Water purification pond.
20... Simple J9 fetal fluid-121... Maximum pop discharge amount, 2
2.-Minimum pop discharge amount, 23.. Operating method 1124..
Driving Law U525: Case where the switching time interval is changed.

Claims (1)

【特許請求の範囲】[Claims] l−111,lJ+悲箭安ホd水−に諮いて紋大および
最小末ング吐出−曲IHを設定し、現時点よp所足時り
n]先の最大および最小叶出鼠+1th1腺内に入るポ
ンプ切替台数最少違転法と最小吐出−曲線近傍になる連
転コスト最小連転法との各々について時間ステップ毎の
評価から日間の連転コストおよび切替回数の評価を行な
い、与えられたポンプ台数と容−棟部とに幻しポンプ切
替時の起動または停止可能な全台数組合せから切替台数
最少および運転効率最大となる台数と柚瀉1とを犬め、
現時刻より日間予想篇要胎水−を柄に前記運転コスト最
小連転法から趣仏コスト最小のケースを、および前記ポ
ンプ切替台数最少達仏法から切替台数最少のケースを日
lr+J計訓で退択して現時刻のボング切誉を所矩時間
間隔1fJに行なうことを特色とするポンプ運転方法。
Consulting l-111, lJ + Hiyaku Anhod Water-, set the Mondai and Minimum end ng discharge - Song IH, and set the maximum and minimum effusion from the current time to the previous maximum and minimum effusion + 1th1 gland. The continuous operation cost and the number of switching times are evaluated for each time step for each of the minimum number of pump switching methods and the minimum continuous rotation method that brings the number of pumps close to the minimum discharge curve. Considering the number and capacity of the pumps, from all combinations of the number of units that can be started or stopped when switching pumps, select the number that will minimize the number of units to be switched and maximize operating efficiency, and Yuzu 1.
Using the daily forecast from the current time as a pattern, we calculate the case with the minimum cost from the above-mentioned minimum operating cost continuous method, and the case where the minimum number of pumps is switched from the minimum number of pumps switching method using the daily lr + J plan. A pump operating method characterized in that the bong cutting at the current time is performed at a predetermined rectangular time interval of 1 fJ.
JP15398682A 1982-09-06 1982-09-06 Pump operating method Pending JPS5943404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15398682A JPS5943404A (en) 1982-09-06 1982-09-06 Pump operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15398682A JPS5943404A (en) 1982-09-06 1982-09-06 Pump operating method

Publications (1)

Publication Number Publication Date
JPS5943404A true JPS5943404A (en) 1984-03-10

Family

ID=15574407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15398682A Pending JPS5943404A (en) 1982-09-06 1982-09-06 Pump operating method

Country Status (1)

Country Link
JP (1) JPS5943404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182102A (en) * 1985-02-07 1986-08-14 Toshiba Corp Controller for filtration plant
EP0234289A2 (en) * 1986-01-24 1987-09-02 Mitsubishi Denki Kabushiki Kaisha Half-tone display device and method for a flat matrix type display
JP2003013866A (en) * 2001-06-28 2003-01-15 Toshiba Corp Control device for number of pumps
CN110985365A (en) * 2019-12-20 2020-04-10 重庆摩尔水处理设备有限公司 Method and system for improving low-pressure frequent jumping of high-pressure pump in water treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182102A (en) * 1985-02-07 1986-08-14 Toshiba Corp Controller for filtration plant
EP0234289A2 (en) * 1986-01-24 1987-09-02 Mitsubishi Denki Kabushiki Kaisha Half-tone display device and method for a flat matrix type display
JP2003013866A (en) * 2001-06-28 2003-01-15 Toshiba Corp Control device for number of pumps
CN110985365A (en) * 2019-12-20 2020-04-10 重庆摩尔水处理设备有限公司 Method and system for improving low-pressure frequent jumping of high-pressure pump in water treatment system
CN110985365B (en) * 2019-12-20 2021-04-02 重庆摩尔水处理设备有限公司 Method and system for improving low-pressure frequent jumping of high-pressure pump in water treatment system

Similar Documents

Publication Publication Date Title
Lemer Infrastructure obsolescence and design service life
Che et al. An efficient greedy insertion heuristic for energy-conscious single machine scheduling problem under time-of-use electricity tariffs
JPS5943404A (en) Pump operating method
Sparn et al. Opportunities and challenges for water and wastewater industries to provide exchangeable services
KR101656433B1 (en) A water-loop system for allocationing and supplying multy-water source using ICT
Liu et al. Integrated management of non-conventional water resources in anhydrous islands
Gáspár et al. Salting route optimization in Hungary
Kambezidis et al. SO2 concentration levels from a monitoring network in Athens, Greece
Chiu et al. The moto ondoso index: Assessing the effects of boat traffic in the canals of venice
SU1723254A1 (en) Method for navigable route operation during ice chute
Rathore et al. Urban Water Supply in Rajasthan: Problems and Prospects
Firth CRITICAL EYE ON NINGBO CRITICAL EYE ON NINGBO.
Brunt Industrial and harbour development in Cork
Rosso et al. Energy intensity of aeration
Bregar Three utilization patterns of the renovated Moste hydro power plant on an electricity market of power and ancillary services
James et al. The economic impact of the Central Arizona Project to the state of Arizona
Reynolds Introduction: Waterpower, the Lachine Canal, and the Industrial Development of Montreal
Lave Sustainable economic development
Efimenko et al. Operational Reliability and Durability of Roads with Cement Concrete Coatings
PANKOVA Crisis in the Russian Missile and Space Sector
Zimoch The water distribution subsystem failures affects on Krakow’s water supply system
Van der Vleuten Autoproduction of electricity: cases from Danish industry until 1960
Doong et al. A hybrid model for solving single source capacitated facility location problem.
Flores Downstream gas opportunities in Mexico
Jamison Keeping the lights on