JPS5943033A - Cation exchange membrane - Google Patents

Cation exchange membrane

Info

Publication number
JPS5943033A
JPS5943033A JP15166482A JP15166482A JPS5943033A JP S5943033 A JPS5943033 A JP S5943033A JP 15166482 A JP15166482 A JP 15166482A JP 15166482 A JP15166482 A JP 15166482A JP S5943033 A JPS5943033 A JP S5943033A
Authority
JP
Japan
Prior art keywords
cation exchange
membrane
group
resin
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15166482A
Other languages
Japanese (ja)
Other versions
JPH0142293B2 (en
Inventor
Yukio Mizutani
幸雄 水谷
Masaki Shiromizu
白水 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP15166482A priority Critical patent/JPS5943033A/en
Publication of JPS5943033A publication Critical patent/JPS5943033A/en
Publication of JPH0142293B2 publication Critical patent/JPH0142293B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To provide a cation exchange membrane exhibiting high current efficiency during electrolysis of alkali metal salt, consisting of a perfluorocarbon resin having a specified degree of crystal orientation. CONSTITUTION:A perfluorocarbon resin membrane consisting of a sulfonate type cation exchange resin layer having an ion exchange capacity of 0.1-2meq/g of dry resin and a wealky acidic ion exchange group type cation exchange resin layer having an ion exchange capacity of 0.1-2meq/g of dry resin, is mono- or biaxially oriented at a temp. of not lower than 110 deg.C, but not higher than the heat decomposition temp. of the membrane at a drawing rate of 10m/min at least 1.1 times as wide in terms of an areal ratio, and heat-treated at 110 deg.C or higher for one min or longer to obtain a cation exchange membrane having a degree of orientation of 50 or above when the degree of crystalline orientation (pi) as measured by wide angle X-ray scattering method is represented by the formula, wherein H deg. is a half-width of X-ray diffraction intensity distribution on an equatorial line.

Description

【発明の詳細な説明】 本発明はアルカリ金属・虐の電解比使用するに適したノ
9−フルオロカーデン系陽沼?オジ交摸”藤及竹・その
裳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention discloses a 9-fluorocarbon system suitable for use with alkali metal electrolyte ratios. This is about Fuji Oitake and its method of making.

更に詳しくにス省.ホク晶漏:と弱一性陽イオン交Fl
il有fル1芭ン客捨畔♀竺り、所謂イ芽ン交換膜法ア
ルカリ金属塩電解に用いた場合、アルカリ金属塩電解時
の電流効率が高く、アルカリ金MWの拡散が小さー−ぐ
ーフルオロカーがン系陽イオン交換膜に関するものであ
る。
For more details, please refer to the Ministry of Education. Hoku crystal leakage: Weakly unique cation exchange Fl
When used for alkali metal salt electrolysis using the so-called germ exchange membrane method, the current efficiency during alkali metal salt electrolysis is high and the diffusion of alkali gold MW is small. The present invention relates to a fluorocarbon-based cation exchange membrane.

イオン交換膜法アルカリ金属塩電解に於ける陽イオン交
換膜として要求される性質は素材とじて副熱性、耐酸化
性があることであり、性能的Kげ?゛′Iiア電気抵抗
が低いこと、電流効率〃5高いこと、){.・・’ .
.” ’$ .’ml11・アl火..力・・リ金属塩
の拡散が小さいこと等があげられる。
Ion Exchange Membrane Method The properties required for a cation exchange membrane in alkali metal salt electrolysis are secondary heat resistance and oxidation resistance as a material. ``Low electrical resistance, high current efficiency 5) {.・・'.
.. ``'$.'ml11・aluminum...force・・reduced diffusion of metal salts, etc.

.″晶?、iイ′−ヤイっY.− ’7’ )’> ;
f。カー7、7・系陽イオン交換膜として、−”e 一
:フルオロ( .’? , A一ジオキサーグーメチル
ークーオクテンスルホニルフルオライド)を主成分とす
るパーフルオロアルキルビニ?ル二一テルスルホ日ニル
フルオライトトテトラフルオ口エチレンの共:董合物を
膜状に加熱成形後、加水分解処理してスルホニル基をス
ルポン酸基Vc変mし”’iノぞーフルオH”−))一
デン系陽イオン交換膜?が知られている。し”’iLし
なが?ら該スル.′. ホ.:イ酸型ご千一フル.オ!カ二〇ソン兎陽イオン褪
換膜はスルホン酸基の含水率が大きい為、膜の電気抵抗
は低いが、電流効率が低く、アルカリ金属塩の拡散が大
きいという欠点があっ′fc,,この欠点を克Jlld
 ’f 6 タメK 陽イオン交換基として、カルづ《
ン酸基、スルホンアミド基、等の弱酸性陽イオン交換基
とスルホン酸基とを併せ有するパーフルオロヵ−ボン系
陽イオン交換膜が提供されている。なかでも弱酸性陽イ
オン交換基を含む層とスルホン酸基を含む層のラミネー
ト法やイオン交換基としてスルホン酸基のみを有する膜
の片側の面のスルホン酸基を化学処理によりカルはクン
酸基やその他の弱酸性陽イオン交換基に変える方法によ
りつくられたノ卆一フルオ口カーボン系陽イオン交換膜
が優れた効果を奏する。そしてこれらの膜の弱酸性陽イ
オン交換基を主成分とする層を.陰極側に向けて電解す
ることにより、電流効率の向上・を図ることができる。
.. ``Akira?, Ii'-Yai-Y.- '7')'>;
f. As a car 7, 7 system cation exchange membrane, perfluoroalkylvinyl 21ter sulfonate whose main component is -'e1:fluoro (.'?, A1 dioxer-gourmethyl-couoctenesulfonyl fluoride) is used. After heating and molding the composite into a membrane, the sulfonyl group is modified to a sulfonic acid group (Vc) and the sulfonyl group is modified to form a sulfonic acid group (Vc). Den-based cation exchange membranes are known. et al. '. Ho. : Iric acid type Gosenichiful. Oh! Kaneson's rabbit cation exchange membrane has a high water content in the sulfonic acid groups, so the electrical resistance of the membrane is low, but it has the drawbacks of low current efficiency and large diffusion of alkali metal salts. Overcome your shortcomings
'f 6 TameK As a cation exchange group,
Perfluorocarbon-based cation exchange membranes having both weakly acidic cation exchange groups such as phosphoric acid groups and sulfonamide groups and sulfonic acid groups have been provided. In particular, a method of laminating a layer containing a weakly acidic cation exchange group and a layer containing a sulfonic acid group, or chemical treatment of the sulfonic acid group on one side of the membrane that has only a sulfonic acid group as an ion exchange group, converts Cal to a citric acid group. A fluorocarbon-based cation exchange membrane produced by a method of changing to a weakly acidic cation exchange group or other weakly acidic cation exchange group exhibits excellent effects. And the layer of these membranes whose main component is weakly acidic cation exchange groups. By performing electrolysis toward the cathode side, current efficiency can be improved.

更に弱酸性陽イオン交換基の存在する層の厚さを増大す
るにつれて、アルカリ金属塩の拡散をも減少させ得ろこ
とがわかった。しかも弱酸性陽イオン交換基の層が、例
えば全膜厚のイを越える程厚い揚合、その減少は著しい
ことも分かった。しかしながら弱酸性陽イオン交換基の
導入は膜の電気抵抗の上昇即ち電解電力の増加となるの
で電力原単位向上の面からはできるだけ弱酸性陽イオン
交換基の層は薄いことが望唾しい。.そこで本発明者等
はアルカリ金属塩の電解において膜の電気抵抗を上げる
ことなしに、苛性アルカリ中のアルカ1り金属塩就中食
塩の量を減少させル7’i法ICついて鋭意研究を進め
た結果、?スルホン酸基と弱酸性陽イオン交換基を併せ
有するノやーフルオ口カーデン系陽イオン交換膜をガラ
ス転移湛朋以上で延伸処理を行うことにより、電解条件
下でのアルカリ金属塩(以下食塩で代表させる)の膜内
拡散を防止することができる也とを見出した。
Furthermore, it has been found that by increasing the thickness of the layer in which weakly acidic cation exchange groups are present, the diffusion of alkali metal salts can also be reduced. Furthermore, it has been found that when the layer of weakly acidic cation exchange groups is thick enough to exceed the total film thickness, for example, the decrease is significant. However, introduction of a weakly acidic cation exchange group increases the electrical resistance of the membrane, that is, increases the electrolytic power, so it is desirable that the layer of the weakly acidic cation exchange group be as thin as possible from the viewpoint of improving the power unit consumption. .. Therefore, the present inventors have conducted intensive research on the 7'i method IC, which reduces the amount of alkali metal salts, especially common salt, in caustic alkali without increasing the electrical resistance of the membrane during electrolysis of alkali metal salts. As a result? By stretching a fluorocarbon-based cation exchange membrane containing both a sulfonic acid group and a weakly acidic cation exchange group at a temperature exceeding the glass transition temperature, an alkali metal salt (hereinafter referred to as common salt) under electrolytic conditions is produced. It has also been found that it is possible to prevent the diffusion of ions in the membrane.

しかもこの方法を用いることによって、電流効率の一層
の向上も期待できるものである。そこで本発明者らは何
故〈延伸によって係る優れた作用効果が得られるのか更
に追究し、この作用効果を生ずる木質を見出したのであ
る。′     ?即ち、゛?木発明は、次式℃雉義さ
れる結晶の配向変(・π)を   ? (但しH0#″j赤道上のx線回折強度分布の半価幅)
5θ以上好ましくは5s以上にすることにょシ、との目
的を達することを見出した。
Furthermore, by using this method, further improvement in current efficiency can be expected. Therefore, the present inventors further investigated why such excellent effects can be obtained by stretching, and discovered a wood quality that produces these effects. ′? That is, ゛? The invention is based on the crystal orientation change (・π) defined by the following formula. (However, the half-width of the x-ray diffraction intensity distribution on the equator H0#″j)
It has been found that the objective can be achieved by setting the temperature to 5θ or more, preferably 5s or more.

ここで、結晶の配向度?(π)は、?x線の広角散乱に
より、測定されるものであつ″Cζ例えば?丸善株式会
社出版角戸正夫、管井暢民共著「高分午×紳回折」昭和
q3年ノ月?Ωθ日尭行の/ワ/頁乃至.200頁[微
結晶の配向性の解析」の項に詳述されている。
Here, the degree of crystal orientation? (π) is? What is measured by wide-angle scattering of x-rays? For example, "Cζ" published by Maruzen Co., Ltd., co-authored by Masao Kakuto and Nobutami Kanai, "Kobungo x Shin Diffraction", Notsuki, 1939? Ωθ Nikko's /wa/page ~. It is detailed in the section [Analysis of microcrystal orientation] on page 200.

本発明にあっては、ノ臂一フルオロカーボン系の陽イオ
ン交換膜の主鎖が−CF2=CFX− (但し′XはF
又は側鎖を表す)よりなるため、・部分的に微結晶が存
在し、X線回折の測定により、Ωθ=7・6〜/g0の
間に回折強度の一一クが観測される。この回折強度の赤
道上の分布を測定すあことにより、結晶の配向特性を知
ることができる。この場合、例えば一方向に配向してい
る場合には第/図に示すように方位角θ〜3乙θ0の間
にλつ山が存在するような強度分布曲線が得られる。
In the present invention, the main chain of the fluorocarbon-based cation exchange membrane is -CF2=CFX- (where 'X is F
microcrystals exist partially, and by X-ray diffraction measurement, one peak of diffraction intensity is observed between Ωθ=7.6 and /g0. By measuring the distribution of this diffraction intensity on the equator, the orientation characteristics of the crystal can be determined. In this case, for example, when the light is oriented in one direction, an intensity distribution curve in which a λ peak exists between the azimuth angles θ and θ0 is obtained as shown in FIG.

ここでいう半価幅とはBCの回折強度を基準とした時の
ASのHの強度であるMにおけるh1〜h2  である
。第l図に示す回折強度分布曲線は、写真法では観測さ
れた回折像のデベイシエラー環に沿うて、その角度宅の
強度をプロツl・すれば得られる。またX線回折計では
極点図珍装置を用い、極角=4−0の時の方位角と強度
のグラフがそれにあたる。
The half-width referred to herein is h1 to h2 in M, which is the H intensity of AS when the diffraction intensity of BC is used as a reference. In the photographic method, the diffraction intensity distribution curve shown in FIG. In addition, the X-ray diffractometer uses a polar figure device, and the graph of azimuth angle and intensity when the polar angle = 4-0 corresponds to that.

コ方向以上に配向している場合は最高の配向度が50以
上であれぱ本発萌の自的を達し得る。
In the case of orientation in the co-direction or higher, if the highest degree of orientation is 50 or higher, the original goal of this invention can be achieved.

本発明の陽イオン交換膜が食塩の拡散も小さく自一つ電
流効率も高い理由は、明確ではないが、次のように推定
される。即ち一般に前記した如きパーフルオロカー?ン
系陽イオン交換膜は架橋しておらず、膜中に一部結晶構
造が存在することにより、溶液中での膜の過度の膨潤又
は溶解が抑えられている。つまりイオン交換基の種類や
交換容1とともVC膜の結晶化度や配同等結晶状態も膜
の含水率を決定する要因となっているものと考えられる
。ここで結晶が配向することにより膜に、あたかも一種
の架橋が生じた如く作用するため、分子間がち密化し、
固定されることになり、一層塩類の拡散を抑制し、電流
効率を高めるが、憧圧の上昇はほとX7ど来たさないと
思われる。
The reason why the cation exchange membrane of the present invention has low salt diffusion and high current efficiency is not clear, but it is presumed as follows. That is, perfluorocarbons as mentioned above in general? The ion-based cation exchange membrane is not crosslinked, and the presence of a partial crystal structure in the membrane prevents excessive swelling or dissolution of the membrane in a solution. In other words, it is considered that, in addition to the type of ion exchange group and the exchange capacity 1, the crystallinity and coordinating crystalline state of the VC membrane are factors that determine the water content of the membrane. The orientation of the crystals acts on the film as if a type of crosslinking had occurred, so the molecules become denser,
This will further suppress the diffusion of salts and increase the current efficiency, but it is thought that the increase in ideal pressure will hardly occur compared to X7.

本発明においては、パーフルオロカーylPン系の陽イ
オン交換膜が、上述?の如く、配向していることが必須
であり,その配向の形成手段はMに問題ではない。
In the present invention, the perfluorocarbon-based cation exchange membrane is the above-mentioned cation exchange membrane. It is essential that M be oriented as shown in FIG.

一般に配向させる手段は膜状物をその融点より低い温度
の下で延伸すればよい。或いはカレンダーリングによっ
ても行うことができる。
Generally, the means for orienting the film-like material may be stretched at a temperature lower than its melting point. Alternatively, it can also be performed by calendering.

そこで本発明も、パーフルオ口カーH一ン系の陽イオン
交換樹脂又は、イオン交換基の導入に先立つイオン交換
基に変換可能な官能基を有する樹脂を溶融押出しにより
、膜状に押出し、これを該樹脂のコ次転移温度と溶融温
度又は、樹脂の熱分解温度との間の温度下に一軸又は二
軸に延伸1−、好ましくは、吏に緊張下に/lθ゜C以
上、該樹脂の融点又は熱分解温度以下の温度に7分以上
保つことにより熱処理することができる。このように延
伸処理を行った後必要に応じて、・常法によりイオン交
換基を導入するとか又は・々ツキング用の網状又は布状
物を膜の片面にあてて加熱下に押圧し、該パッキング材
の少なくとも二部を膜中に埋めることによって、膜の補
強を図ることもできろ。
Therefore, the present invention also involves extruding a perfluorinated cation exchange resin or a resin having a functional group that can be converted into an ion exchange group into a membrane by melt extrusion prior to the introduction of an ion exchange group. The resin is stretched uniaxially or biaxially at a temperature between the co-order transition temperature and the melting temperature of the resin, or the thermal decomposition temperature of the resin, preferably under tension on the sides at a temperature of /lθ°C or more. Heat treatment can be carried out by keeping the temperature at or below the melting point or thermal decomposition temperature for 7 minutes or more. After carrying out the stretching treatment as described above, if necessary, ・Ion exchange groups are introduced by a conventional method, or ・A net-like or cloth-like material for packing is applied to one side of the membrane and pressed under heat. The membrane may also be reinforced by embedding at least two portions of the packing material within the membrane.

更に本発明は長期間電解に供し、電流効率の低下した陽
イオン交換膜を上記条件下K延伸(及び熱処理)するこ
とによりその性能を向上させることも可能どなる。
Furthermore, the present invention makes it possible to improve the performance of a cation exchange membrane whose current efficiency has decreased after being subjected to electrolysis for a long period of time by subjecting it to K stretching (and heat treatment) under the above conditions.

?本発明における延伸の効果は、パーフルオ口カーゼン
系の陽イオン交換膜について、その交換基の種類、例え
ばスルホン酸基、又はカルがン酸基或いはそれ以外のイ
オン交換基等に関係なく有効であるが特VC2種の陽イ
オン交換基を有する樹脂、例えばスルホン酸基を有てる
樹脂とカルぱン酸等の弱酸性陽イオン交換基を有する樹
脂などの.2種類の樹脂よりなるユ層構造の[場イオン
交換膜に対して特に有効である。この理由は必ずしも明
らかではないが、一般にスルホン酸基を有する樹脂と弱
酸性基を有する樹脂とでは、含水率に差を生じ、一般に
その界面に剥離を生じたp1また両樹脂の膨潤圧の違に
より、膜に亀裂を生じたり、内部応力の偏在による分孟
.間隙の形成など様々な理由により食塩の拡散や電流効
率の低下が生ずると考えられるが、本発明の如く、配向
した上記.2層晩にあっては両層が緊密に存在するだけ
でなく分子配列の影響により、上記の如き欠陥倉或る程
度防止し得るものと思われる。
? The effect of stretching in the present invention is effective for perfluorocarzene-based cation exchange membranes, regardless of the type of exchange groups, such as sulfonic acid groups, carbanoic acid groups, or other ion exchange groups. However, special VC resins have two types of cation exchange groups, such as resins with sulfonic acid groups and resins with weakly acidic cation exchange groups such as carpanic acid. It is particularly effective for ion exchange membranes with a layered structure consisting of two types of resins. The reason for this is not necessarily clear, but there is generally a difference in water content between resins with sulfonic acid groups and resins with weakly acidic groups. This may cause cracks in the membrane or breakdown due to uneven distribution of internal stress. Diffusion of common salt and a decrease in current efficiency are thought to occur due to various reasons such as the formation of gaps, but as in the present invention, the above-mentioned oriented salt. In the case of a two-layer structure, it is thought that the above-mentioned defects can be prevented to some extent not only because both layers exist closely but also because of the influence of molecular arrangement.

以下本発明で用いられる陽イ井イ交換膜につい″ て説
明する。本発明の陽イオン交侠膜はスルホン酸基と弱酸
性陽イオン交換基を併せ紳つこ.とを特徴としているが
、弱酸性陽イオンタ換基としては原子を有するスルホン
アジド基、.カルがン酸アミド基、.リン酸基、フェノ
ール性水酸基、チオール基等、0,S規定のNaOH 
 以上♀塩基惟雰囲気に於いて陰イオンとなりつる官能
基が用いられる。
The cation exchange membrane used in the present invention will be explained below.The cation exchange membrane of the present invention is characterized by having both a sulfonic acid group and a weakly acidic cation exchange group. Examples of acidic cationic substituents include sulfonic azide groups, .carganic acid amide groups, .phosphoric acid groups, phenolic hydroxyl groups, thiol groups, etc., and 0,S-N NaOH.
As mentioned above, a functional group that becomes an anion in a basic atmosphere is used.

好適には、カルボン酸基、スルホンアミド基である。捷
た弱酸性基に一種類以上存在していればよい。スルホン
酸基と弱酸性陽イオイ交婢基の存在状態は特に限定され
ないが弱酸性陽イオン交換基が膜の片面に偏在するもの
が好ましい。即ち、膜が:、スル.ホン酸基を有fる・
樹脂から.なる層と弱酸性.陽イオン交換基.を有.す
る樹脂の層.・とか・らなる蝮層s潰瀘好適な結.果を
あたえるゎ勿瞼・弱酸性陽イオ.イ交換基を有する樹脂
にはスルホン酸基が弱酸憔陽イ.オン交換基に対してs
Oq6(モ:ル)以下存在していてもよい。同様にスル
ホン酸基を有する樹り旨中に弱酸性陽イオン交換基が全
交換基の50チよりも少ない量含まれていてもよい。こ
のよう一子少ホン酸基を有する樹脂と弱酸性陽.イ・オ
ン交換基を有する樹脂とが一体となったノぐ−フルオロ
カーボン系陽イオン交換膜は、Ω種類の?樹脂よりなる
嘆會物理的に接合、例えば2ミネー卜する:ことによっ
て、形成される場合のみならず、単一のマトリックス樹
脂より々り、これに結合したイ・オン交換基が膜面に平
行に各々,21一状に偏在することによって構成されて
いる場合も含まれる。
Preferred are carboxylic acid groups and sulfonamide groups. It is sufficient that one or more types of cleaved weak acidic groups are present. The state of existence of the sulfonic acid group and the weakly acidic cation exchange group is not particularly limited, but it is preferable that the weakly acidic cation exchange group is unevenly distributed on one side of the membrane. That is, the membrane is:, Sur. Contains a phonic acid group.
From resin. layer and weak acidity. Cation exchange group. Has. layer of resin.・A suitable layer of sulcus consisting of ・etc. Weakly acidic cations that give fruit. Resins with exchange groups have sulfonic acid groups that are weakly acidic. s for the on-exchange group
It may be present in an amount of 0q6 (mol) or less. Similarly, the resin containing sulfonic acid groups may contain weakly acidic cation exchange groups in an amount less than 50 of the total exchange groups. In this way, a resin with a small number of phonic acid groups and a weakly acidic positive acid. The fluorocarbon-based cation exchange membrane, which is integrated with a resin having ion exchange groups, is of the Ω type. Physically bonding a matrix consisting of a resin, e.g. 2 min. This also includes a case in which 21 are unevenly distributed in each case.

゛またスルホン酸基と弱酸性陽イオン交換基とを併せ持
つ・ぐーフルオロカー.′fyン系陽イオン交換膜に、
従来数多く提案されており、本発明においても、これら
公知の陽イオン交換膜の製造方法で得ることかできる。
゛It is also a fluorocar that has both a sulfonic acid group and a weakly acidic cation exchange group. 'fyn-based cation exchange membrane,
Many cation exchange membranes have been proposed in the past, and the present invention can also be obtained using these known methods for producing cation exchange membranes.

そのいくつかを例示する。Some examples are given below.

(1)  スルホン酸型陽イオン交換膜9片面のスルホ
ン酸基をスルホニルハライドに変換後、.還元処理、あ
るいは酸化処理を行がい、カル?ン酸基に変換する方法
。ここでいうスルホン酸型陽イオン交換IIQは下記の
一般式で表わされる共重合体である。
(1) After converting the sulfonic acid group on one side of the sulfonic acid type cation exchange membrane 9 to sulfonyl halide, . Cal? A method of converting into an acid group. The sulfonic acid type cation exchange IIQ mentioned here is a copolymer represented by the following general formula.

即ちテトラフルオ口エチレンとノ々−フルオロ(3,6
−ジオキサーダ=メチル−7−オクデンスルホニルフル
オライド)の共重合体などを加熱成形法により膜状に成
型する(これらを総称して不ルホン酸型前駆膜という)
That is, tetrafluoroethylene and non-fluoro(3,6
- Dioxada = methyl-7-ocdenesulfonyl fluoride) copolymer, etc. is formed into a film by a thermoforming method (these are collectively referred to as an sulfonic acid precursor film).
.

(2)  スルホ.ン酸型前駆膜の片面をアンモニウム
又は第/竹アミン類と反応さすて、スルホン酸アミげを
該膜の片面表層部に形成させた後、残余のスルホニルフ
ルオライドを加水分解してス/L/ホン酸基に変換する
方法。この場合のスルホンアミド化及び加水分解は公知
の方法、例えば特開昭Sθ一6A’lgg号明細書記載
の方法等が使用し得る。一般にスルホンアミドの層.の
厚さげ/00人〜傘膜厚の・%程度である占   ・(
31  前記前駆膜の少なくとも片面を五塩化りん又は
オキシ塩化りんと五塩化りんの混合物で処理し、前駆膜
中に存在する−SO?FをーS02CtK変換させた後
、該処理面全酸化剤又1’:t還元剤で処理することに
よりカルボン酸基を膜の王として片面に/00八〜膜厚
の騒程度の部分に形成させる方法これらの方法は、特開
昭s ? − /S’l乙q号及び特開昭62=.2’
l / ’7’7号などに記載された方法が採用し得る (4}  前記前駆膜又はその加水分解処理により−S
o2Fをスルホン酸基に変換した後、該膜の片面を還元
処理して、スルフイン酸又はスルフリルハライドとした
後、これを還元又は酸化処理することによって、膜の片
面にカルデン酸基を前記と同様の厚さに形成する方法。
(2) Sulfo. One side of the phosphoric acid type precursor film is reacted with ammonium or tertiary/bamboo amines to form a sulfonic acid residue on the surface layer of one side of the film, and then the remaining sulfonyl fluoride is hydrolyzed to form sulfonyl fluoride. /Method of converting into phonic acid group. In this case, the sulfonamidation and hydrolysis can be carried out by known methods, such as the method described in Japanese Patent Application Laid-open No. 1996-1616A'lgg. Generally a sulfonamide layer. Thickness / 00 people ~ % of the umbrella membrane thickness ・(
31 At least one side of the precursor film is treated with phosphorus pentachloride or a mixture of phosphorus oxychloride and phosphorus pentachloride to remove -SO? After converting F to -S02CtK, the entire treated surface is treated with an oxidizing agent or a 1':t reducing agent to form a carboxylic acid group as the king of the film on one side in a portion of /008~film thickness. How to make these methods JP-A-S? -/S'l Otsuq issue and JP-A-62=. 2'
The method described in No. 1/'7'7 can be adopted (4) -S by the precursor film or its hydrolysis treatment.
After converting o2F into a sulfonic acid group, one side of the membrane is reduced to sulfinic acid or sulfuryl halide, and then this is reduced or oxidized to convert a caldic acid group to one side of the membrane in the same manner as above. How to form to a thickness of .

これは、特開昭s3−7.32094t号特開昭56−
/ gA 03号などの方法が採用し得る。この場合残
余のスルフイン酸又はスルフリールハライドは酸化又は
酸化と加水分解を施しスルホン酸基に変換するのが好ま
しい。   ・ (5) 前記前駆膜と下記重合体とのラミネートし、こ
れを加水分解処理する方法 即ぢーCF2−CF2−の単位k個と一CF2・但し×
にCF, 4たは−CF2→−CF3mは01たぱSめ
数 nは/〜乙の数? kStは正数でーは9〜/乙 ・ Yt6ハロrンまたはアルコキシ基単位1個とより
なる共重合体(これらを総称してカルボン酸M前駆体と
いう) i6+  スルホン酸型前駆膜一ヒで、(4)項で示し
た各単位形成モノマーの混合物又は少なくと亀後者のモ
ノマーを含浸或い1−j′塗布重合させた後加水分解す
る方法 この場合は勿論前駆膜をあらかじめ加水分解しておいて
もよい。
This is Japanese Patent Application Publication No. S3-7.32094t.
/ gA 03 and other methods may be adopted. In this case, the remaining sulfinic acid or sulfuryl halide is preferably converted into a sulfonic acid group by oxidation or oxidation and hydrolysis.・(5) A method of laminating the precursor film with the following polymer and hydrolyzing it: k units of -CF2-CF2- and one CF2, provided that
CF, 4 or -CF2→-CF3m is 01 Tapa S number n is / ~ Otsu's number? kSt is a positive number and - is 9~/Yt6 Copolymer consisting of one halon or alkoxy group unit (these are collectively referred to as carboxylic acid M precursor) i6+ Sulfonic acid type precursor film , a method in which a mixture of each unit-forming monomer shown in section (4) or at least the latter monomer is impregnated or coated with 1-j' and then hydrolyzed.In this case, of course, the precursor film is hydrolyzed in advance. You can leave it there.

(7)  スルホン酸型前駆膜又は加水分解処理により
?−S(>2Fをスルホン酸に変換した膜を、窒素酸花
物の存在下で片面より紫外線照射することにより、片面
のみスルホン醒をカルがン酸に変換する方法 その他種々の方法が採用し得るが、一般に2種のイオン
交換樹脂を膜に成形した俵、ラミネートする方法に比べ
、一タん均一相の膜を成形した後、(ヒ学的処理によっ
てスルポン酸基を有する樹脂層と弱酸性陽イオン交換基
を有する樹脂層とを区分けする方法を用いるのが好まし
い。
(7) By sulfonic acid type precursor film or hydrolysis treatment? -S (> 2 F) is converted to sulfonic acid by irradiating it with ultraviolet rays from one side in the presence of nitrogen acid, thereby converting the sulfonic acid into carboxylic acid on one side only. Various other methods have also been adopted. However, compared to the method in which two types of ion exchange resins are formed into membranes and then laminated together, it is possible to form a membrane with a homogeneous phase at once, and then (by chemical treatment, a resin layer with sulfonic acid groups and a weakly It is preferable to use a method of separating the resin layer from the resin layer having an acidic cation exchange group.

また本発明の%徴である結晶の配向を形成せしめる手段
を施す1・・上町竺.方法艷.お℃で・前駆膜又は前駆
体を膜状に成形した段階、力11水分解を11111 施し九段階、或いはスルホン酸基又はスルホニルハライ
ド基を有し且つ、カル1gニルハライド基又はカルボ/
酸エステル基を導入した段階その他スルホン酸基又はス
ルホン酸基に変換し得る基とカルが.ン酸基の如き弱酸
性陽.イオン交換基又は同基に変換し得る基とを併せ存
在させたいずれの段階において、延伸すればよい。しか
しながら後述する軟fヒ湛度の関係から膜内に存在する
イオン交換基が酸型又はアンモニウムイ・オシ型と寿っ
ている段階で行うのが好捷しい。1た延伸後にチフロン
布又は網を熱圧着(膜中に一部又は全部を圧入させるこ
とを含む)をさせることも任意に′谷ってよい。このよ
うにパッキングを形成させた膜は寸法安定性が傾上する
In addition, 1. Kamimachijiku employs means for forming crystal orientation, which is a feature of the present invention. Method. at °C - Step of forming the precursor film or precursor into a film shape, applying 9 steps of 11111 water decomposition, or having a sulfonic acid group or a sulfonyl halide group and a carbonyl halide group or a carbo/
At the stage of introducing the acid ester group, other sulfonic acid groups or groups that can be converted to sulfonic acid groups and Cal. Weakly acidic cations such as phosphoric acid groups. Stretching may be carried out at any stage in which an ion exchange group or a group convertible into the same group is present. However, in view of the soft fresivity which will be described later, it is preferable to carry out this process when the ion exchange groups present in the membrane are in the acid type or ammonium oxide type. Optionally, after the first stretching, the Tyflon cloth or mesh may be thermocompression bonded (including press-fitting part or all of it into the membrane). The membrane in which packing is formed in this manner has improved dimensional stability.

一般にかかる熱圧着に、スルホン酸基又はそれに変換し
得る官能基が支配的に存在−r8面力,Uら行うのが好
ましい。
In general, it is preferable that such thermocompression bonding be carried out in the presence of predominantly sulfonic acid groups or functional groups that can be converted into sulfonic acid groups.

また膜に強度及び寸法安定性を付与−『る別の方法は、
・シイブリル化された?リテトラフルオロ仝チレンをI
I一のマトリックス形成共重合体に混合して成膜子あと
とによグても達せられる。    ?次に本発明におけ
る結晶の配向を形成させる羊段について説明する。′ すでに述べた如(、配向を形成させるには一般に・膜を
杭伸すればよい。この延伸手段ぽ熱?可塑硅f:ラ哀チ
ツクにおいて、一般に用いられる一軸又はユ軸延伸手段
が好′まし〈用いられるが、?カレンダーリングも採用
し得る。 ? 本発明めノe−フルオロカーボン系の膜に?あってげガ
ラス転移温度以上で延伸するのが好1しい。
Another method is to add strength and dimensional stability to the membrane.
- Has it been made into a Sibril? Litetrafluoroethylene I
It can also be achieved by mixing it with the matrix-forming copolymer of I-1 and leaving it in the film forming layer. ? Next, the step for forming crystal orientation in the present invention will be explained. As already mentioned, in order to form the orientation, it is generally necessary to stretch the membrane. In this stretching method, the uniaxial or uniaxial stretching means that are generally used in the process of heating or plastic film are preferred. However, calendering may also be employed. The e-fluorocarbon film of the present invention is preferably stretched at a temperature above the glass transition temperature.

勿障ガラス転移温度線1, ”’Fで処伸す.ることも
可能であるが、本発明に関する限り、ガラネ移転温度以
下で延伸した陽イオン交換膜は、電解条件下で膜の電気
抵抗がより高(.な仝ので、そのような延伸条件げ避け
るべき子ある。また当然のととであるが、被延伸物の分
解温度又は溶解温度(往々にして軟化温度の場合もある
)以下で延伸する必要がある。二般には/ / q ’
C以上該膜の熱分解温度以下で延伸すればよい。
Of course, it is also possible to stretch the film at the glass transition temperature line 1, 20F, but as far as the present invention is concerned, the cation exchange membrane stretched below the glass transition temperature is Therefore, such stretching conditions should be avoided.Also, of course, if the temperature is below the decomposition or melting temperature (often the softening temperature) of the material to be stretched, It is necessary to stretch it by / / q '.
The film may be stretched at a temperature of C or higher and lower than the thermal decomposition temperature of the film.

延伸倍率は、イサられた膜中の結晶の配向状況をチェッ
クして決宥すればよいが、一般には面積倍率で7,/倍
以上、好まし.く・は7.3〜3倍の延伸で本発明の1
的を達し得る。延伸速度は温度条件によって、その限界
値は異なるが、一般に7OrIL/分以下とするのが無
難である。
The stretching ratio may be determined by checking the orientation of crystals in the stretched film, but in general, the area ratio is preferably 7.5 times or more. 1 of the present invention with 7.3 to 3 times stretching
can reach the target. Although the limit value of the stretching speed varies depending on the temperature conditions, it is generally safe to set it to 7 OrIL/min or less.

更に延伸後その壕まの緊張状態又けやや緩やかな緊張状
態下に//0℃以上の温度、好ましくは延伸時の温・寒
又はナれよりやや高い温度下に少なくとも/分間以上保
持することにより熱処理を施すのが好11−い。勿瞼繁
張・下に除゛冷ずるのも有効である。      ″′
 ・ 以下く本発明を具体的に説明するため実施例を示すが、
本発明はこれ等に限定され1るものではない     
  ・ ?         ・実施例/    ′ 
 ? テトラフルオ口エチレンと74’ = 7ルオo’( 
3,乙−.ジオキサ←クーメチルニクーオクテンスルホ
ニルフルオライ・ド)の共重谷体の農状物を加水分解処
理を行ない交換容器が0.9/ミリ嶋量/グラム乾燥膜
、厚みlgθμのスルホン酸型パーフルオロカーボン系
陽イオン交換膜を得た。該膜の片面のみを五塩化リンで
処理してスルホン酸基をスルホニルクロライド基に変換
した後、ブタノール中に浸漬して空気を吹き込みながら
加熱して、?酸化処理を行なしスルホニルクロライド基
をカルデン酸のブチルエステル基に変えた。次いで該膜
を苛性ソーダニメタノール混合溶液で加水分解処理を行
ない、カルデン酸とスルホン酸を?有する,f −フル
オロカーがン系陽イオン交換膜を得た。この膜をクリス
タルバイオレットの醸性溶液で染色を行なうと、カルデ
ン酸基の存在する面が、/0μの厚さで全く染色されな
かった。この層にスルホン酸基が実質的に存在しないこ
と空わかった。このようにして得た陽イオン交換膜をI
N−塩酸一メタノール(/:/容積比)混合溶液に室温
で/6時間浸漬して、イオン交換基を十分H+ 型とし
た。次いで該膜を風乾した状態で延伸装置にセットし、
/5θ℃に昇温し、a軸方向に同時に/Ocm/分の速
度で、各々/.3倍(面積倍率約/.ク.倍)坪伸を行
なった。延伸後、そのままの状態で/gO℃讐で昇温し
、30分間保持して、熱処理を行なった。そΩ後放冷に
より室温まで冷却した後6N一苛性ソーダーメタノール
(l:/容積比)混合溶液に室温で/乙時間浸漬して、
イオン交換基をNa+型とした。風乾時の厚みは700
μとなった。理学電気■製のX線極点図形測定装置で得
られ念膜のX線回折の測定を行ない、配向度を求めると
55であった。
Furthermore, after stretching, the film is kept under tension or moderate tension at a temperature of 0°C or higher, preferably at a temperature slightly higher than the temperature, cold, or sag during stretching for at least / minutes. It is preferable to perform heat treatment. It is also effective to relieve swelling and lower eyelids. ″′
・Examples will be shown below to specifically explain the present invention, but
The present invention is not limited to these.
・? ·Example/ '
? Tetrafluoroethylene and 74' = 7 fluoro' (
3, Otsu-. Hydrolyzing the copolymerized agricultural product of dioxa←coumethylnikooctenesulfonyl fluoride), the exchange container becomes a sulfonic acid type perfluorocarbon with a dry film thickness of 0.9/millimeter/gram and a thickness of lgθμ. A system cation exchange membrane was obtained. After treating only one side of the membrane with phosphorus pentachloride to convert the sulfonic acid groups to sulfonyl chloride groups, it was immersed in butanol and heated while blowing air. Oxidation treatment was performed to change the sulfonyl chloride group to a butyl ester group of caldic acid. Next, the membrane was hydrolyzed with a caustic soda methanol mixed solution to remove caldicic acid and sulfonic acid. An f-fluorocarbon-based cation exchange membrane was obtained. When this membrane was stained with a crystal violet brewing solution, the surface where caldenic acid groups were present was not stained at all at a thickness of /0μ. It was found that this layer was substantially free of sulfonic acid groups. The cation exchange membrane thus obtained was
The sample was immersed in a mixed solution of N-hydrochloric acid and monomethanol (/:/volume ratio) at room temperature for 6 hours to fully transform the ion exchange group into H+ form. Next, the film was set in a stretching device in an air-dried state, and
/5θ°C, simultaneously in the a-axis direction at a rate of /Ocm/min, respectively. The area was stretched 3 times (area magnification approximately /.k.times). After stretching, the film was heated as it was at a temperature of /gO°C and held for 30 minutes to perform heat treatment. After that, it was cooled to room temperature by standing to cool, and then immersed in a 6N-caustic soda-methanol (l:/volume ratio) mixed solution at room temperature for an hour.
The ion exchange group was Na+ type. Thickness when air-dried is 700
It became μ. The degree of orientation was determined to be 55 by measuring the X-ray diffraction of the membrane obtained using an X-ray pole shape measuring device manufactured by Rigaku Denki ■.

得られた陽イオン交換膜をカル一?ン酸基を含む面を陰
極に向け、有効面積0.5dm の2室型冨,解槽に縮
んだ。該檜の陽極にチタンのラス材に二酸化チタンと二
酸化ルテニウムをコーティングし,た金属陽極で、陰極
は軟鉄の金網である。陽極室食塩水嬢度3.sN,生成
苛性ソーダ濃度9Nとなるように3/) A /dm2
、K O℃の条件で電解を行なった。電解結果を表Iに
示す。
Calculate the obtained cation exchange membrane? The surface containing phosphoric acid groups was directed toward the cathode, and it was reduced to a two-chamber type tank with an effective area of 0.5 dm. The cypress anode is a metal anode made of titanium lath coated with titanium dioxide and ruthenium dioxide, and the cathode is a soft iron wire mesh. Anode room saline solution resistance level 3. sN, so that the generated caustic soda concentration is 9N3/) A /dm2
, KO°C. The electrolysis results are shown in Table I.

比較例/   ・ 実施例/のスルホン酸基とカルボン酸基を有する陽イオ
ン交換膜を延伸処理を実施?しないで実施例/と同様な
方法で、配向度の測定と食塩電解を行なった。配・向度
は110であっ?た。また電解結果を表■に示す。
Comparative Example/ ・Is the cation exchange membrane having sulfonic acid groups and carboxylic acid groups in Example/ subjected to stretching treatment? The degree of orientation was measured and salt electrolysis was performed in the same manner as in Example. The alignment/direction is 110? Ta. The electrolysis results are also shown in Table ■.

実施例ユ〜g1比較例コ、3 実施例/のスルホン酸基とカルデン酸基を含む陽イオン
交換膜を常法により表.■に示,すイオン型にした後表
■に示す条件テ延伸処理を.行なった。
Examples U to G1 Comparative Examples C and 3 The cation exchange membranes containing sulfonic acid groups and caldenic acid groups of Example 1 were prepared by a conventional method. After forming the ionic form as shown in ■, it was stretched under the conditions shown in Table ■. I did it.

尚延伸は横方向を固定して、縦方向のみ延伸を行なった
。実施例/と同様な方法で求めた配向度と電解結果を表
■に示す。? 1だ比較例として、延伸のみ実施しないで同じ熱履歴を
あたえた膜及びガラス転i温度以下で延伸処理を行なっ
た場合の例の配市度、電解結果も表■に示す。
Note that the stretching was performed only in the longitudinal direction, with the transverse direction being fixed. The degree of orientation and electrolytic results obtained in the same manner as in Example 1 are shown in Table 3. ? 1. As a comparative example, Table 3 also shows the degree of distribution and electrolysis results of a film subjected to the same thermal history without stretching, and a film subjected to stretching treatment at a temperature below the glass transition temperature.

以下糸自 実施例9 ノクーフノレオ口(3.A−ジオキサ− ’l−メ−f
 ノレー7−オクテンスルホニルフルオライドとテトラ
フルオロエチレンを共重合させ、加水分解を行ない測定
[−だ時の交換容量がO.g乙ミIJ当量/グラム乾燥
膜の共重合体を加熱成型して厚さ/50μの膜秋物とし
た。この膜秋物の片面のみエチレンジアミンと反応させ
たのち、加水分解処理を行ない、スルホンアミド基とス
ルホン酸基を有するノや−フルオロカーがン系陽イオン
交換膜を得た。
The following is a yarn example 9.
Noret 7-octensulfonyl fluoride and tetrafluoroethylene were copolymerized, hydrolyzed, and measured. A copolymer of g Otomi IJ equivalent/g dry film was heat molded to obtain a film with a thickness/50 μm. Only one side of this membrane was reacted with ethylenediamine and then subjected to hydrolysis treatment to obtain a fluorocarbon-based cation exchange membrane having sulfonamide groups and sulfonic acid groups.

該膜を/N一塩酸一メタノール(/:/容積比)混合溶
液に室湛で/乙時間浸漬して、イオン交換基をH+ 型
にした。次いで該膜を延伸装置にセットして730℃に
昇温した後,2@方向に各々/.3倍延伸を行なった。
The membrane was immersed in a mixed solution of /N monohydrochloric acid and methanol (/:/volume ratio) at room temperature for an hour to change the ion exchange group to H+ type. Next, the film was set in a stretching device and heated to 730°C, and then stretched in the 2@ direction. Stretching was performed 3 times.

次いで/70゜CK昇濡して、/時間保持して熱処理を
行なった。冷却後6N−苛性ソーダーメタノール(/:
/容積比)混合溶液に室温でg時間浸漬してイオン交換
基をNa”型とした。厚みは風乾時でqOμとなった。
Next, heat treatment was carried out by increasing the wettability by /70°CK and holding for /hour. After cooling, 6N-caustic soda methanol (/:
/volume ratio) was immersed in the mixed solution at room temperature for g hours to change the ion exchange group to Na'' type.The thickness was qOμ when air-dried.

この膜の配向度は56であった。このようにして得た膜
をスルホンアミド基1含む1陰極側に向け、..実施.
例/.と同様な方法で食塩電解を行なった。尚生成苛性
ソーダ濃度はgNとなるようにした。結果大.表■.に
示す。
The degree of orientation of this film was 56. The membrane thus obtained was oriented toward the cathode side containing 1 sulfonamide group. .. implementation.
example/. Salt electrolysis was performed in a similar manner. The concentration of caustic soda produced was set to gN. Great results. Table ■. Shown below.

比較例.llt.....い :11? 実施例9のスルホン酸基件スルホン7ミド基を有す.る
陽イオンタ換晒を延伸,処理を行なわないま′−!.興
用し、..実tIAf!l!9と同様.桑刀..法で食
塩電讐を.行49斥.。..峙.果倉表.■に示す。 
      .尚この膜の配向度けグθであった、 実施例/0 i7−オ)チンう.!.レポニルフルオライP)とテト
ラフルオ口′?臣チレンの共?重谷体の′脇状鰯を加水
益解処理を行な!、..交換容量が0.....9レミ
j IJ当量/’?”5J.乾燥膜、厚みが/g1.。
Comparative example. llt. .. .. .. .. I: 11? The sulfonic acid group of Example 9 has a sulfone 7 mido group. Do not stretch or process the cation exchange bleaching process. .. Please use it. .. Real tIAf! l! Same as 9. Mulberry sword. .. Salt poisoning by law. Line 49. . .. .. Confrontation. Kakura table. Shown in ■.
.. The degree of orientation of this film was θ. ! .. Reponylfluoride P) and tetrafluoride'? Together with Ochiren? Perform hydrolysis treatment on Shigetani's armpit sardine! ,.. .. Exchange capacity is 0. .. .. .. .. 9 Remi j IJ equivalent/'? "5J. Dry film, thickness /g1.

2,−シ完オ。ユ,1.ホ.ン酸型陽イオイ交換膜を得
′た。・.該一を.片面のみ窒素酸化物の存在下で紫外
線を照射←て、スルホン酸基.をカルビン酸基に変換し
羨ク+j扶タルパイオレツジの酸性吟液で染色を行ない
Jカルデレ酸.基力i存在する層busμであることを
確認した。?このようにして得t陽イオン交換膜を7規
定塩酸一メタノール混合溶液(/:/容積比)鷹室温辱
、/乙時間浸漬しソ、イオ〜交換1を古・゛型と1た。
2, - Completed. Yu, 1. Ho. A phosphoric acid type cation exchange membrane was obtained.・.. Part one. Only one side is irradiated with ultraviolet rays in the presence of nitrogen oxides to form sulfonic acid groups. was converted into a carbic acid group and stained with an acidic solution of Calderic acid. It was confirmed that the basic force i exists in the layer busμ. ? The cation exchange membrane thus obtained was immersed in a 7N hydrochloric acid/methanol mixed solution (/:/volume ratio) in a hawker room for an hour.

’ R イTiIti k +。イ。@vc−ty’.
’t− L,1、1./..SO”。.昇温した後、横
方向を固定して、縦内向を/.、ダ?倍延伸を行なった
。次いで/.70℃i昇濡して?3θ分間保持して熱処
理を行?なった。:.冷却後4N−苛性ソーダーメタノ
ール混合溶液(/:7容積.此)に室温でg時間浸漬し
てイオン交換基をNa”型とした。厚みは風乾時で72
0μとなった。こ:の膜の配向度hbs先あった。
' R iTiItik+. stomach. @vc-ty'.
't- L, 1, 1. /. .. SO". After raising the temperature, the transverse direction was fixed, and longitudinally inward direction was stretched by /. 2 times. Next, heat treatment was performed by raising the temperature to /. 70°C and holding it for 3θ minutes. After cooling, the sample was immersed in a 4N-caustic soda-methanol mixed solution (7 volumes) at room temperature for g hours to convert the ion exchange group into Na'' type. Thickness is 72 when air-dried.
It became 0μ. The degree of orientation of this film was higher than hbs.

カルポ≧酸基を含む層を陰極側一向:げ実施例/.:.
・. :  ・       11・−四    1と
同様な方法で食塩電解を行なった。
A layer containing Calpo≧acid group is placed on the cathode side:Example/. :.
・.. : ・11・-4 Salt electrolysis was performed in the same manner as in 1.

結果を褒■咳示す肥       ・   ..比較例
S′ 実施例/0?スルホン酸基とスルホンアミド基を有する
陽イオン交換膜を延伸処理を行なわないで配1回度の測
定も食塩電解を行なった.。配向度.はll5であった
。竃解結果を表■1に示す。
Rewarding the results ・.. .. Comparative example S' Example/0? A cation exchange membrane containing sulfonic acid groups and sulfonamide groups was subjected to salt electrolysis for one-time measurement without stretching. . Degree of orientation. was 115. The results are shown in Table 1.

実施例// 実施例/のスルホン酸基とカルylrン酸基を含む陽イ
オン交換膜を延伸処理を行なわないで、実施例/と同様
な方法で食塩電解を行なった。配向度QゴlIOであっ
た。その時の初期の電解性能は電流効率9 4 % ’
li解電圧3.’lSV、生成苛性ソーダ中のNaCt
#度/ 0 0 ppm ( s O%苛性ソーダ換算
)であった。/年6ケ月電解を行ない、電流効率g9俤
、電解電圧3.ダg■、生成苛性ソーダ中のNaC2 
濃度/ 2 0 ppmになった段階で、膜を電解槽か
らとりはずし、/N一塩酸一メタノール混合溶液(/:
/容積比)に室温で/乙時間浸漬して、膜中の不純物を
除去するとともに、イオン交換基をH+ 型とした。次
いで延伸装置にセットして/50゜Cで、横方向を固定
して、縦方向を7.5倍延伸を行なった後770℃に昇
濡して30分間熱処理を行なった。乙N一苛性ソーダー
メタノール混合溶液(/:/容積比)に室温で/乙時間
浸漬して、イオン交換基をNa+型にした。
Example // The cation exchange membrane containing sulfonic acid groups and calylr acid groups of Example / was subjected to salt electrolysis in the same manner as in Example / without stretching treatment. The degree of orientation was QgolIO. The initial electrolytic performance at that time was a current efficiency of 94%.
li solution voltage 3. 'lSV, NaCt in produced caustic soda
# degree/00 ppm (sO% caustic soda equivalent). Conducted electrolysis for 6 months/year, current efficiency g9, electrolysis voltage 3. Doug■, NaC2 in the produced caustic soda
When the concentration reached /20 ppm, the membrane was removed from the electrolytic cell and a mixed solution of /N monohydrochloric acid and methanol (/:
/volume ratio) at room temperature for an hour to remove impurities in the membrane and change the ion exchange group to H+ type. Next, the film was set in a stretching device and stretched at /50°C by a factor of 7.5 in the machine direction while being fixed in the transverse direction, and then heated to 770°C and heat-treated for 30 minutes. It was immersed in a mixed solution of N-caustic soda and methanol (/:/volume ratio) at room temperature for an hour to change the ion exchange group to Na+ type.

配向度に乙/に増加した。再び電解を行なうと、電流効
率は93.S%’!で回復し、電解電圧3 ,IIsV
、生成苛性ソーダ中のNaCt#Ifi′SOppm(
50%苛性ソーダ換算)であった。
The degree of orientation increased to B/. When electrolysis is performed again, the current efficiency is 93. S%'! The electrolytic voltage is 3, IIsV.
, NaCt#Ifi'SOppm in the produced caustic soda (
50% caustic soda equivalent).

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は、不発明において定義される結晶の配向度測定
及び算出に関する曲.明図である。 図中、たて軸は回折強度であり、横軸は方位角である。 :. 仁B, M, h, h21l−i′各々図中の各点を
表す。  ■.: 1 fi’Fi’HiHA        ,.徳山曹達株
式会社    醇
FIG. 1 is a diagram related to the measurement and calculation of crystal orientation defined in the invention. This is a clear diagram. In the figure, the vertical axis is the diffraction intensity, and the horizontal axis is the azimuth. :. B, M, h, h21l-i' each represent each point in the figure. ■. : 1 fi'Fi'HiHA,. Tokuyama Soda Co., Ltd.

Claims (1)

【特許請求の範囲】 (11  スルホン酸基と弱酸性陽イオン交換基とを有
するパーフルオロカーぎン系樹脂よりなり、X線の広角
散乱により測定した結晶の配向変(π)が下記式で表さ
れたとき、50以上となる配向度を有する陽イオン交換
膜 但しH0は赤道上のX線回折強度分布の半価幅である。 (2)  スルホン酸型陽イオン交換樹脂よりなる層と
弱酸性陽イオン交換基型陽イオン交換樹脂・よシなる層
との.2層よりなる特許請求の範囲第fl+項記載の陽
イオン交換膜 (3)  弱酸性陽イオン交換基がカルボン酸基である
特許請求の範囲第{11項記載の陽イオン交換膜(41
  スルホン酸型陽イオイ交換樹脂層中でのイオン交換
基の容量がO./〜2馬ea,/9乾燥樹脂であり、弱
酸性陽イオン交換基型陽イオン交換樹脂層中のイオン交
換基の容量がθ.i’=,2meq/.!7乾燥樹脂で
ある特許請求の範囲第(2)項記載の陽イオン交換膜 (51  膜の厚さが0.05−/ttrmであり、弱
酸性陽イオン交換基型陽イオン交換樹脂層が7μ〜膜1
の厚さのイである特許請求の範囲第(21項記載の陽イ
オン交換膜 1 {61  主鎖が+CF2−CF十の繰返し単位を持つ
構造であり、側鎖が−(−0CF2・CFR+,を介し
てイオン交換基を結合しているノやーフルオロカーデン
よりなる特許晴求の範囲第(!)項記載の陽イオン交換
膜′(但し上式中nは/〜3の整数、RはF又はCF,
. ) (7)  スルホン酸基と弱酸性陽イオン交換基とを有
するパーフルオロカーがン系樹脂よりなる膜状物を//
0℃以上該樹脂の分解温度より下の温度下にX線の広角
散乱により測定した結晶の配向度(π)が下記式で表し
た場合にsθ以上となる配向度をあたえる如く延伸する
ことを特徴とする陽イオン交換膜の製造方法 ? 但しH0は赤道.上(ON醪回折強一盆布の半価幅(8
1  膜秋物を延伸?後、緊i萩態撃にル/θ℃以上の
温度で少な〈ともl分藺以上゛熱処理することを特徴と
する特綽請求の帖面1(7)項記載の陽イオン交換膜の
製造方法
[Claims] (11) Made of a perfluorocargin resin having a sulfonic acid group and a weakly acidic cation exchange group, the crystal orientation change (π) measured by wide-angle X-ray scattering is expressed by the following formula: When expressed, the cation exchange membrane has an orientation degree of 50 or more, where H0 is the half width of the X-ray diffraction intensity distribution on the equator. (2) A layer made of a sulfonic acid type cation exchange resin and a weak A cation exchange membrane (3) according to claim 1+, consisting of two layers of an acidic cation exchange group-type cation exchange resin and a good layer, wherein the weakly acidic cation exchange group is a carboxylic acid group. Claim No. {Cation exchange membrane according to claim 11 (41
The capacity of the ion exchange group in the sulfonic acid type cation exchange resin layer is O. /~2maea, /9 dry resin, and the capacity of the ion exchange group in the weakly acidic cation exchange group type cation exchange resin layer is θ. i'=,2meq/. ! The cation exchange membrane (51) according to claim (2), which is a dry resin, has a thickness of 0.05-/ttrm, and the weakly acidic cation exchange group type cation exchange resin layer has a thickness of 7 μm. ~Membrane 1
The cation exchange membrane 1 according to claim 21, which has a thickness of A, has a structure in which the main chain has +CF2-CF10 repeating units, and the side chain has -(-0CF2・CFR+, The cation exchange membrane described in item (!) of the patent application, which is made of a fluorocarbonate bonded with an ion exchange group via F or CF,
.. ) (7) A film-like material made of a perfluorocarbon resin having a sulfonic acid group and a weakly acidic cation exchange group//
Stretching at a temperature of 0° C. or higher and lower than the decomposition temperature of the resin so as to give a degree of orientation such that the degree of crystal orientation (π) measured by wide-angle scattering of X-rays is equal to or higher than sθ when expressed by the following formula. What is the manufacturing method for the characteristic cation exchange membrane? However, H0 is the equator. Above (half price width of ON moromi diffraction strong one bon cloth (8
1. Stretching autumn clothes? The production of a cation exchange membrane according to item 1(7) of the claim, characterized in that the membrane is then subjected to heat treatment at a temperature of 1/θ° C. or higher for at least 1 minute or more. Method
JP15166482A 1982-09-02 1982-09-02 Cation exchange membrane Granted JPS5943033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15166482A JPS5943033A (en) 1982-09-02 1982-09-02 Cation exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15166482A JPS5943033A (en) 1982-09-02 1982-09-02 Cation exchange membrane

Publications (2)

Publication Number Publication Date
JPS5943033A true JPS5943033A (en) 1984-03-09
JPH0142293B2 JPH0142293B2 (en) 1989-09-12

Family

ID=15523524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15166482A Granted JPS5943033A (en) 1982-09-02 1982-09-02 Cation exchange membrane

Country Status (1)

Country Link
JP (1) JPS5943033A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151483A (en) * 1982-02-17 1983-09-08 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Method of setting ion exchange film in electrolytic cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151483A (en) * 1982-02-17 1983-09-08 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Method of setting ion exchange film in electrolytic cell

Also Published As

Publication number Publication date
JPH0142293B2 (en) 1989-09-12

Similar Documents

Publication Publication Date Title
AU2016260224B2 (en) Method for producing lithium hydroxide and lithium carbonate
CA2300934C (en) Composite solid polymer electrolyte membranes
JP5644506B2 (en) Aromatic polyamide porous membrane, and capacitor and battery separator using the same
TWI467776B (en) Polyester film for solar cells, solar battery backboard and solar cell using the same
KR100912800B1 (en) Porous film, separator for battery using the same, and battery comprising the separator
CN108249777B (en) Manganese dioxide/Prussian blue composite electrochromic film and preparation method thereof
US11607680B2 (en) Micropore-filled double-sided membrane for low vanadium ion permeability and method for manufacturing same
KR19990066818A (en) Microporous membrane and its manufacturing method
JP2004501213A (en) Method for producing bipolar membrane and use of the bipolar membrane
EP3611218B1 (en) Method for hydrophilizing porous membrane and method for manufacturing ion-exchange membrane using same
Khan et al. Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method
JPS5943033A (en) Cation exchange membrane
CN112546876B (en) Modified reverse osmosis composite membrane and preparation method thereof
Sha’rani et al. A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery
KR101710195B1 (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
JPH10506414A (en) Bipolar membrane and method of manufacturing bipolar membrane
JPS6026496B2 (en) Improved cation exchange membrane
KR100378022B1 (en) Manufacture of micrometer sclera with pore size difference in thickness direction
Wodzki et al. Permselectivity of ion exchange membranes from sorption data and its relation to nonuniformity of membranes
KR101377476B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
FR2462936A1 (en) PERFECTED CATION EXCHANGE MEMBRANE
KR101335950B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
WO2007092437A2 (en) Method for increasing the permeability of polymer film
JPS6317293B2 (en)
CN114437339B (en) Preparation method and application of high-absorbance honeycomb polyamide membrane