JPS5942959B2 - X-ray diagnostic equipment - Google Patents

X-ray diagnostic equipment

Info

Publication number
JPS5942959B2
JPS5942959B2 JP52032389A JP3238977A JPS5942959B2 JP S5942959 B2 JPS5942959 B2 JP S5942959B2 JP 52032389 A JP52032389 A JP 52032389A JP 3238977 A JP3238977 A JP 3238977A JP S5942959 B2 JPS5942959 B2 JP S5942959B2
Authority
JP
Japan
Prior art keywords
ray
ray tube
circuit
current
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52032389A
Other languages
Japanese (ja)
Other versions
JPS53117395A (en
Inventor
和光 河村
満 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52032389A priority Critical patent/JPS5942959B2/en
Publication of JPS53117395A publication Critical patent/JPS53117395A/en
Publication of JPS5942959B2 publication Critical patent/JPS5942959B2/en
Expired legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明はX線管フィラメント加熱回路の改良を図ったX
線診断装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an improved X-ray tube filament heating circuit.
The present invention relates to a radiation diagnostic device.

X線診断装置の一つにコンピュータ・トモグラフィ(C
omputer 1zed Tomography ;
以下CT装置と略称する)と呼ばれるコンピュータ操作
によるX線断層撮影装置がある。
Computer tomography (C
computer 1zed tomography;
There is a computer-operated X-ray tomography apparatus called a CT apparatus (hereinafter abbreviated as CT apparatus).

このCT装置はX線管とX線検出装置を対峙させながら
被検体の断層面ζこ沿って互いに同方向に同一速度で移
動させ、1回移動させる毎に断層面に対して角度を変え
て再びこれを行ない、以後順次角度を変えて被検体の断
層面の種々の角度に対するX線吸収率のデータを収集す
る。
This CT device moves an X-ray tube and an X-ray detector facing each other along the tomographic plane ζ of the subject in the same direction and at the same speed, and each time they move, the angle with respect to the tomographic plane changes. This is repeated again, and thereafter the angle is sequentially changed to collect X-ray absorption rate data for various angles of the tomographic plane of the subject.

そして、十分なデータを収集した後、このデータを電子
計算機で解析し、断層面の個々の位置のX線吸収率を算
出してその吸収率0こ応じた階調度で断層面を再構成す
るようにしたもので、断層面各部分の組成を2000段
階にも及ぶ階調度で分析することができるので、軟部組
織から硬質組織に至るまで明確な断層像が得られる。
After collecting sufficient data, this data is analyzed by a computer, the X-ray absorption rate of each position on the tomographic plane is calculated, and the tomographic plane is reconstructed at a gradation level corresponding to the absorption rate of 0. With this system, the composition of each part of the tomographic plane can be analyzed in as many as 2,000 gradations, making it possible to obtain clear tomographic images of everything from soft tissues to hard tissues.

このようなCT装置においてはX線吸収率の検出がすべ
ての基礎となるからこの検出は高精度で行なわなければ
ならないが、その前提条件として出力線量の極めて安定
したX線が曝射されなければならない。
In such a CT device, the detection of X-ray absorption rate is the basis of everything, so this detection must be performed with high precision, but a prerequisite for this is that X-rays with an extremely stable output dose must be irradiated. No.

ところで、安定した線量のX線を出力させるには線量の
変化に寄与するX線管の管電流の一定化を図らなければ
ならないが、このX線管電流は管電圧及びフィラメント
電流の関数であると共にX線管の温度にも依存し高温に
なるにつれX線管電流は減少する。
By the way, in order to output a stable dose of X-rays, it is necessary to stabilize the tube current of the X-ray tube, which contributes to changes in the dose, but this X-ray tube current is a function of the tube voltage and filament current. It also depends on the temperature of the X-ray tube, and the X-ray tube current decreases as the temperature increases.

第1図は管電圧及びフィラメント電流を一定とした場合
における管電流の特性の一例を示すもので、時間の経過
とともにX線管は加熱してゆくので、時間が立つにつれ
、管電流は減少してゆく。
Figure 1 shows an example of the characteristics of the tube current when the tube voltage and filament current are constant.As the X-ray tube heats up over time, the tube current decreases over time. I'm going to go.

第1a図は連続曝射における場合、第1b図はパレスX
線曝射の場合を示し、両者ともその管電流の減少傾向は
良く似ている。
Figure 1a shows the case of continuous exposure, Figure 1b shows the case of palace
The case of radiation exposure is shown, and the decreasing tendency of the tube current is very similar in both cases.

X線管電流は管電圧及びフィラメント電流の関数であり
、X線管の温度に依存することは先(こ述べた。
As mentioned earlier, the x-ray tube current is a function of the tube voltage and filament current, and is dependent on the x-ray tube temperature.

即わち、X線管電流は管電圧が一定であれはフィラメン
ト電流の変化により増減し、また管電圧とフィラメント
電流が一定であるとすると時間とともに上昇する温度に
依存することになり、即ちX線管の陽極熱容量ヒートユ
ニツ)Heat−Unit(以下H,Uと略す)に関係
して来る。
That is, if the tube voltage is constant, the X-ray tube current will increase or decrease due to changes in the filament current, and if the tube voltage and filament current are constant, it will depend on the temperature, which increases over time. It is related to the anode heat capacity of the wire tube (Heat-Unit) (hereinafter abbreviated as H and U).

ここで、H,CとはX線管の容量を示す一つの尺度であ
り、陽極温度を直接測定できないので、X線曝射を行な
ったときの各々条件の積をもって温度ζこ代る一つの目
安とし、X線管毎にその積の許容し得る最大値をH,U
で表示し、X線管を使用する際には定格で定められたH
、Uを越えないように使用する。
Here, H and C are a measure of the capacity of the X-ray tube, and since the anode temperature cannot be directly measured, the product of the respective conditions when X-ray irradiation is used to calculate the temperature ζ As a guide, the maximum allowable value of the product for each X-ray tube is H, U.
When using an X-ray tube, the H
, U should not be exceeded.

即ち、X線管はフィラメントを加熱して熱電子を放出さ
せ、これを陽極の一点に衝突させる(この点を焦点と云
う)ことによりX線を放出するものであり、焦点部分は
熱電子の衝突により発熱して温度が上昇しX線放出を連
続的に行なうとついには溶解する。
In other words, an X-ray tube emits X-rays by heating a filament to emit thermoelectrons, which collide with a point on the anode (this point is called the focal point). The collision generates heat, the temperature rises, and when X-rays are continuously emitted, the material eventually melts.

この溶解に至る前の許容限度がX線管の容量であり、こ
れをH,Uで定めである。
The allowable limit before this melting occurs is the capacity of the X-ray tube, which is determined by H and U.

従って、H,Uは管電圧とX線管電流とそれらが加わる
時間の積で表わされ、積算H,Uはそれに曝射を乗じて
表わす。
Therefore, H and U are expressed as the product of the tube voltage, the X-ray tube current, and the time during which they are applied, and the integrated H and U are expressed by multiplying them by the exposure.

従って、X線管に加えた管電圧、管電流、その印加時間
及び回数を積算H,Uで置き替え、この積算H,Uから
X線管の温度を推定することができ、そく推定温度に対
応したX線管電流の減少を補なう分だけフィラメント電
流を補正すればX線の線量を一定に保つことが可能とな
る。
Therefore, it is possible to replace the tube voltage, tube current, time and number of applications applied to the X-ray tube with the integrated values H and U, and estimate the temperature of the X-ray tube from the integrated values H and U. By correcting the filament current by an amount that compensates for the corresponding decrease in the X-ray tube current, it becomes possible to maintain the X-ray dose constant.

本発明は上記事情に鑑みて成されたもので、X線管に負
荷として与えたH、Uを計算して積算しX線曝射停止期
間におけるX線管の冷却分を補正してX線管の温度を知
り、その温度におけるX線管電流の減少分を補なうフィ
ラメント電流の補正信号を出力してフィラメント電流の
補正を行なうようにすることにより常に線量の一定なX
線を曝射することができるようにしたX線診断装置を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and calculates and integrates the loads H and U given to the X-ray tube, and corrects the amount of cooling of the X-ray tube during the period when X-ray exposure is stopped. By knowing the tube temperature and correcting the filament current by outputting a filament current correction signal that compensates for the decrease in the X-ray tube current at that temperature, it is possible to always maintain a constant X-ray dose.
An object of the present invention is to provide an X-ray diagnostic device capable of emitting radiation.

以下、本発明の一実施例について第2図を参照しながら
説明する。
An embodiment of the present invention will be described below with reference to FIG.

第2図は本発明によるフィラメント電流補正装置のブロ
ック図であり、図中1はX線管に与える管電圧及びX線
管電流及びその印加時間等の設定を行ないX線曝射指令
を与えられる毎にその設定された条件の制御出力を出す
X線制圏j器、2はこのX線制御器1の出力する上記3
種類の設定信号を乗算する計算回路、3はCT装置の断
層面当りのデータ収集に要するパルスX線の曝射回数を
指令する曝射回数指令回路で、X線曝射が1回路る毎に
曝射指令を出力し所定の曝射回数に達するまで動作する
FIG. 2 is a block diagram of the filament current correction device according to the present invention. In the figure, 1 is used to set the tube voltage and X-ray tube current to be applied to the X-ray tube, their application time, etc., and to give an X-ray exposure command. The X-ray controller 2 outputs the control output according to the set conditions for each time, and 2 is the above-mentioned 3 output from the X-ray controller 1.
3 is an exposure number command circuit that instructs the number of pulsed X-ray irradiations required to collect data per tomographic plane of the CT device; It outputs an exposure command and operates until a predetermined number of exposures is reached.

4はこの曝射回数指令回路3の指令信号に応動じ前記計
算回路2の演算値を積算する積算回路、5はX線曝射の
休止時間を計測する計時回路でXM射が止まると計時を
開始し、曝射を開始すると零に復帰する。
Reference numeral 4 denotes an integration circuit that integrates the calculated values of the calculation circuit 2 in response to the command signal from the exposure number command circuit 3. Reference numeral 5 denotes a timer circuit that measures the pause time of X-ray exposure and starts timing when the XM emission stops. When the exposure starts, it returns to zero.

6はこの計時回路5により計時された休止時間を基に休
止時間中に冷却されるX線管の温度低下分を前記積算回
路4の積算値から差引いて補正を加える冷却相当分補正
回路、7は前記X線制御器1からひ管電圧及びX線管電
流並びに印加時間等の条件設定に関する制;卸出力信号
と前記冷却相当分補正回路6からの補正出力信号とを受
けて使用しようとしているX線設定条件により得られる
X線線量率を導ひき、この線量率を維持するに必要なX
線管電流の現時点における不足分を導ひき出すX線条件
設定補正回路、8はこの補正回路7からの出力信号を受
けてその出力に応対するフィラメント電流補正出力信号
を出力するフィラメント電流補正回路である。
Reference numeral 6 denotes a cooling equivalent correction circuit which performs correction by subtracting the temperature drop of the X-ray tube cooled during the downtime from the integrated value of the integration circuit 4 based on the downtime measured by the timer circuit 5; is intended to be used after receiving from the X-ray controller 1 controls regarding condition settings such as tube voltage, X-ray tube current, and application time; wholesale output signal and correction output signal from the cooling equivalent correction circuit 6. Determine the X-ray dose rate obtained by the X-ray setting conditions, and determine the X-ray dose rate required to maintain this dose rate.
8 is a filament current correction circuit that receives the output signal from the correction circuit 7 and outputs a filament current correction output signal in response to the output signal; be.

9はX線制御器1に管電圧、管電流、曝射時間、X線曝
射開始信号等の指令信号を与えるCT装置本体である。
Reference numeral 9 denotes a CT apparatus main body which provides command signals such as tube voltage, tube current, exposure time, and an X-ray exposure start signal to the X-ray controller 1.

尚10はX線管、11はフィラメントトランス、12は
高圧発生装置である。
Note that 10 is an X-ray tube, 11 is a filament transformer, and 12 is a high pressure generator.

次に上記構成の本装置の動作について説明する。Next, the operation of this apparatus having the above configuration will be explained.

X線管10はX線制御器1に設定された条件でX線を曝
射する。
The X-ray tube 10 emits X-rays under the conditions set in the X-ray controller 1.

今、CT装置本体9が曝射開始信号を発生するとX線制
御器1は設定された管電圧、X線管電流、印加時間の制
御出力信号を出力しX線管10にこの設定条件の電圧、
電流を設定時間だけ加える。
Now, when the CT apparatus main body 9 generates an exposure start signal, the X-ray controller 1 outputs control output signals of the set tube voltage, X-ray tube current, and application time, and applies the voltage to the X-ray tube 10 according to the set conditions. ,
Apply current for a set time.

その際、これら制御出力信号は計算回路2及びX線条件
設定補正回路7にも送られ、計算回路2はX線制御器1
の設定条件値を乗算しX線管10に印加されたH、Uを
算出する。
At that time, these control output signals are also sent to the calculation circuit 2 and the X-ray condition setting correction circuit 7, and the calculation circuit 2
H and U applied to the X-ray tube 10 are calculated by multiplying by the setting condition values.

このH,U算出値は積算回路4に送られる。These H and U calculated values are sent to the integration circuit 4.

積算回路4は曝射回路数指令回路3からX線曝射を行う
毎にその指令信号を受け、計算回路2にて算出されたH
、U値を積算する。
The integrating circuit 4 receives the command signal from the irradiation circuit number command circuit 3 every time X-ray irradiation is performed, and calculates the H calculated by the calculation circuit 2.
, integrate the U value.

従って、積算回路4の積算値はX線管10に印加された
曝射開始時点から現在までの積算H,Uを表わしている
ことになる。
Therefore, the integrated value of the integrating circuit 4 represents the integrated values H and U from the start of the exposure applied to the X-ray tube 10 to the present.

一方X線管10は曝射を行なっている間だけ温度の上昇
を招くわけであり、パルスX線等のように曝射を断続的
に行なう場合にはその休止期間中に冷却作用によって温
度が低下するからこの温度低下に伴なうX線管電流の許
容範囲の補正をする必要がある。
On the other hand, the temperature of the X-ray tube 10 increases only while it is irradiating, and when irradiation is performed intermittently, such as with pulsed X-rays, the temperature increases due to the cooling effect during the pause period. Since the temperature decreases, it is necessary to correct the allowable range of the X-ray tube current due to this temperature decrease.

そこで、X線曝射の休止時間を測定する計時回路5によ
り計測された時間値を冷却相当分補正回路6に与え、こ
こで休止時間中に冷却される温度相当分の値を導ひき出
すと共に前記積算回路4の積算値を受けてこの積算値か
ら冷却される温度相当分を差引いて補正する。
Therefore, the time value measured by the timer circuit 5 that measures the pause time of X-ray irradiation is given to the cooling equivalent correction circuit 6, which derives the value equivalent to the temperature cooled during the pause time. The integrated value of the integration circuit 4 is received and corrected by subtracting the amount equivalent to the temperature to be cooled from this integrated value.

従って、この冷却相当分補正回路6からの出力信号は現
時点におけるX線管の温度4こ対応する積算H,Uを示
していることlこなる。
Therefore, the output signal from the cooling equivalent correction circuit 6 indicates the integrated values H and U corresponding to the current temperature of the X-ray tube.

この冷却相当分補正回路6の出力信号はX線設定条件補
正回路7に加えられる。
The output signal of the cooling equivalent correction circuit 6 is applied to the X-ray setting condition correction circuit 7.

一方、このX線設定条件補正回路7にはX線制御器1か
ら管電圧、X線管電流、印加時間の各設定条件を指令す
る制御出力信号が加えられており、このX線設定条件補
正回路Tは冷却相当分補正回路6からの出力信号を基に
X線制御器1の設定条件による目標とするX線管電流値
を維持するlこ必要なX線管電流値の減少分を導ひき出
す。
On the other hand, the X-ray setting condition correction circuit 7 is supplied with a control output signal from the X-ray controller 1 that instructs each setting condition of tube voltage, X-ray tube current, and application time, and this X-ray setting condition correction circuit The circuit T maintains the target X-ray tube current value according to the setting conditions of the X-ray controller 1 based on the output signal from the cooling equivalent correction circuit 6, and guides the necessary decrease in the X-ray tube current value. Pull it out.

そして、このX線設定条件補正回路7の導ひき出した値
をフィラメント電流補正回路8に与える。
Then, the value derived by the X-ray setting condition correction circuit 7 is given to the filament current correction circuit 8.

するとこのフィラメント電流補正回路8は入力されたX
線設定条件補正回路7からのX線管電流値の減少分を基
Qここの減少分を補なうに要するフィラメント電流値を
導ひき出す。
Then, this filament current correction circuit 8
Based on the decrease in the X-ray tube current value from the line setting condition correction circuit 7, the filament current value required to compensate for this decrease is derived.

従って、この導ひき出された値に相当する量だけX線管
10のフィラメント電流を補正すればX線管1oがらは
常に設定した線量率のX線が得られることになり、高精
度の再構成像を得ることが可能となる。
Therefore, if the filament current of the X-ray tube 10 is corrected by an amount corresponding to this derived value, the X-ray tube 1o will always be able to obtain X-rays at the set dose rate, allowing highly accurate reproduction. It becomes possible to obtain a configuration image.

このように本発明に依ればX線管に与えられた積算H,
U値を算出すると共にX線曝射休止期間中に冷却される
X線管の温度相当分のH,Uを前記積算H,U値から差
引いて現時点ζこおけるX線管の温度に対応するH、U
値を知り、このH,U値におけるX線管の目標とする線
量率を得るに不足するX線管電流の減少分を補正してそ
の値の分だけフィラメント電流を増加させるようにする
ことにより不足する線量重分をフィラメント電流補正に
より補なうようにし、目標とする線量率を得るようにし
たので、線量率は極めて安定し、従って、高精度でデー
タの収集が行なえるので、正確な再構成像を得ることが
できる優れたCT装置が得られる。
In this way, according to the present invention, the integral H given to the X-ray tube,
In addition to calculating the U value, H and U corresponding to the temperature of the X-ray tube cooled during the X-ray exposure suspension period are subtracted from the integrated H and U values to correspond to the temperature of the X-ray tube at the current time ζ. H, U
By knowing the value and correcting the decrease in the X-ray tube current that is insufficient to obtain the target dose rate of the X-ray tube at these H and U values, the filament current is increased by that value. Since the insufficient dose weight is compensated for by filament current correction and the target dose rate is obtained, the dose rate is extremely stable. Therefore, data can be collected with high precision, making it possible to obtain accurate data. An excellent CT device that can obtain reconstructed images can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはX線管の加熱によるX線管電流の減少の
状況を示す特性図、第2図は本発明の一実施例を示すブ
ロック図である。 1・・・・・・X線制御器、2・・・・・・計算回路、
3・・・・・・曝射回数指令回路、4・・・・・・積算
回路、5・・・・・・計時回路、6・・・・・・冷却相
当分補正回路、7・・・・・・補正回路、8・・・・・
・フィラメント電流補正回路、9・・・・・・CT装置
本体、10・・・・・・X線管、11・・・・・・フィ
ラメントトランス。
FIGS. 1a and 1b are characteristic diagrams showing how the X-ray tube current decreases due to heating of the X-ray tube, and FIG. 2 is a block diagram showing an embodiment of the present invention. 1... X-ray controller, 2... Calculation circuit,
3... Exposure frequency command circuit, 4... Integration circuit, 5... Timing circuit, 6... Cooling equivalent correction circuit, 7... ...Correction circuit, 8...
- Filament current correction circuit, 9...CT device main body, 10...X-ray tube, 11...Filament transformer.

Claims (1)

【特許請求の範囲】[Claims] 1 X線管に与えられζ、ヒートユニット値を算出する
回路と、このヒートユニット値をX線曝射毎に積算する
回路と、前記X線管の曝射体上期間中に冷却される前記
X線管の温度低下相当分のヒートユニット値を導ひき出
すと共にこの導ひき出したヒートユニット値を前記積算
したヒートユニット値から差引いて補正する回路と、こ
の回路にて補正された前記ヒートユニット値における前
記X線管の目標とする線量率を得るに不足するX線管電
流の減少分を求める回路と、この回路にて求めた減少分
を捕なうに要する分だけ前記X線管のフィラメント電流
を補正する回路とを具備して成るX線診断装置。
1. A circuit for calculating a heat unit value of ζ applied to the X-ray tube, a circuit for integrating this heat unit value for each X-ray exposure, and a circuit for calculating the heat unit value ζ applied to the X-ray tube, a circuit that derives a heat unit value corresponding to a temperature drop in the X-ray tube and corrects the derived heat unit value by subtracting it from the integrated heat unit value; and the heat unit corrected by this circuit. A circuit for determining the amount of decrease in the X-ray tube current that is insufficient to obtain the target dose rate of the X-ray tube in the value, and a filament of the X-ray tube by the amount necessary to capture the decrease determined by this circuit. An X-ray diagnostic device comprising a circuit for correcting current.
JP52032389A 1977-03-24 1977-03-24 X-ray diagnostic equipment Expired JPS5942959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52032389A JPS5942959B2 (en) 1977-03-24 1977-03-24 X-ray diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52032389A JPS5942959B2 (en) 1977-03-24 1977-03-24 X-ray diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS53117395A JPS53117395A (en) 1978-10-13
JPS5942959B2 true JPS5942959B2 (en) 1984-10-18

Family

ID=12357588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52032389A Expired JPS5942959B2 (en) 1977-03-24 1977-03-24 X-ray diagnostic equipment

Country Status (1)

Country Link
JP (1) JPS5942959B2 (en)

Also Published As

Publication number Publication date
JPS53117395A (en) 1978-10-13

Similar Documents

Publication Publication Date Title
US7545915B2 (en) Dose rate control in an X-ray system
US6977989B2 (en) Method and device for X-ray exposure control
KR102201407B1 (en) X-ray imaging apparatus and control method thereof
EP0942682B1 (en) Adjustable computer tomography device
US3546461A (en) Automatic control of a nonsynchronous cine fluororadiographic apparatus
US6233310B1 (en) Exposure management and control system and method
US20020085672A1 (en) Automatic exposure control and optimization in digital x-ray radiography
US20130177130A1 (en) X-ray imaging apparatus and x-ray focus position control method of x-ray imaging apparatus
EP0809422B1 (en) Method and system for detecting and correcting erroneous exposures generated during x-ray imaging
US5680430A (en) Method and apparatus for controlling and optimizing output of an x-ray source
JPS639358B2 (en)
US6987834B2 (en) Optimized record technique selection in radiography and fluoroscopy applications
EP0648466B1 (en) Radiographic imaging apparatus
JPS5942959B2 (en) X-ray diagnostic equipment
JP2004221082A (en) Method of controlling emissivity of radiation from radiation source
US5001735A (en) X-ray dose compensation for radiographic apparatus with kV ripple
JP5604965B2 (en) Radioscopic imaging equipment
JP2000261724A (en) X-ray device and photographing condition setting method
JP3267548B2 (en) X-ray equipment
JPH08299332A (en) Radiation parameter automatic regulating method in tomographic device
US7286641B2 (en) Method and device for exposing x-ray images
EP3013237B1 (en) Imaging apparatus
JPH04366598A (en) X-ray photographic device with automatic exposing mechanism
JP2007213979A (en) X-ray diagnostic apparatus
US5432833A (en) Automatic exposure control system for tomographic applications