JPS5942823B2 - Graphite cuvette for atomic absorption spectrometer and its manufacturing method - Google Patents

Graphite cuvette for atomic absorption spectrometer and its manufacturing method

Info

Publication number
JPS5942823B2
JPS5942823B2 JP10191379A JP10191379A JPS5942823B2 JP S5942823 B2 JPS5942823 B2 JP S5942823B2 JP 10191379 A JP10191379 A JP 10191379A JP 10191379 A JP10191379 A JP 10191379A JP S5942823 B2 JPS5942823 B2 JP S5942823B2
Authority
JP
Japan
Prior art keywords
less
graphite
porosity
cuvette
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10191379A
Other languages
Japanese (ja)
Other versions
JPS5626244A (en
Inventor
光義 柏木
淳一 相沢
誠 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP10191379A priority Critical patent/JPS5942823B2/en
Publication of JPS5626244A publication Critical patent/JPS5626244A/en
Publication of JPS5942823B2 publication Critical patent/JPS5942823B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は原子吸光分光々度計用グラフアイトキユベツト
及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a graphite cuvette for an atomic absorption spectrophotometer and a method for producing the same.

原子吸光分析における試料原子化の手段として、アセチ
レン炎中に試料溶液を噴霧するフレーム法とグラファイ
トアトマイザ−を用いる方法がある。グラファイトアト
マイザ−は、フレーム法に比べ、つぎの特徴がある。
As means for atomizing a sample in atomic absorption spectrometry, there are a flame method in which a sample solution is sprayed into an acetylene flame and a method in which a graphite atomizer is used. The graphite atomizer has the following features compared to the flame method.

(1)検出感度が高い。(2)試料が少量でたりる。(
3)安全性が高い。(4)操作性がよくオートサンプラ
−を用いることができる。しかし、分析法として最も大
切な再現性がフレーム法に比べ劣ることが最大の欠点と
されている。グラファイトアトマイザ−は、小型のグラ
ファイト製キユベツトをグラファイト製電極で保持し、
キユベツトの中央部の試料注入孔からマイクロピペット
で試料を注入し、電極に電流を流すとジュール効果によ
り発熱し、試料が原子化される。従来グラファイトアト
マイザ−に使用されているグラファイトは、人造黒鉛や
人造黒鉛上に化学蒸着法(CVD−ChemicalV
apourDeposition法)によりパイログラ
フアイトを被覆したもの(以下パイログラフアイトキユ
ベツトという)を用いている。一般人造黒鉛製キユベツ
トは人造黒鉛の製法から必然的にもたらされるつぎのよ
うな欠点がある。(1)多孔質である。(2)密度のバ
ラツキが多く、従つて電気抵抗のバラツキが大きい。ま
た、パイログラフアイトキユベツトは、(1)使用中に
パイログラフアイト部が剥離しやすい、(2)電気抵抗
は基材として使用した人造黒鉛に右左されるのでバラツ
キが大きいなどの欠点がある。従来使用されているキユ
ベツトのこのような欠点は、グラフアイトアトマイザ一
の致命欠点である再現性が悪く1ケのキユベツトの寿命
が短いことに大きな関連をもつている。多孔質であるこ
とは、試料溶液がキユベツト表面にとどまらず黒鉛材内
部まで浸入する。
(1) High detection sensitivity. (2) A small amount of sample comes out. (
3) High safety. (4) It has good operability and can be used with an autosampler. However, its biggest drawback is that it is inferior to the flame method in terms of reproducibility, which is the most important analytical method. Graphite atomizers hold a small graphite cuvette with graphite electrodes,
A sample is injected with a micropipette through the sample injection hole in the center of the cuvette, and when a current is passed through the electrodes, heat is generated due to the Joule effect and the sample is atomized. Graphite conventionally used in graphite atomizers is produced by chemical vapor deposition (CVD-Chemical V) on artificial graphite or artificial graphite.
A material coated with pyrographite (hereinafter referred to as a pyrographite cuvette) by the apour deposition method is used. Ordinary artificial graphite cuvettes have the following drawbacks, which are inevitably caused by the method of manufacturing artificial graphite. (1) Porous. (2) There are many variations in density, and therefore there are large variations in electrical resistance. In addition, pyrographic cubes have drawbacks such as (1) the pyrographic parts tend to peel off during use, and (2) electrical resistance varies widely because it depends on the artificial graphite used as the base material. . These drawbacks of conventionally used cuvettes are closely related to the fatal drawback of graphite atomizers, which is poor reproducibility and short life of a single cuvette. Being porous allows the sample solution to penetrate not only on the surface of the cube but also into the inside of the graphite material.

いわゆるメモリー効果のため原子化の状態が、測定毎に
変化すること、キユベツト黒鉛が酸化消耗されやすく、
寿命が短いことに関連する。また、電気抵抗のバラツキ
が大きいことは、キユベツトの温度がキユベツト毎に変
わり、原子化状態に変化を生ずるため再現性に乏しい原
因となつている。人造黒鉛の製法は、一般的に次のよう
な工程で製造される。
The state of atomization changes with each measurement due to the so-called memory effect, and cuvette graphite is easily consumed by oxidation.
Associated with short lifespan. Further, the large variation in electrical resistance causes the temperature of the cube to vary from cube to cube, causing changes in the atomization state, resulting in poor reproducibility. Artificial graphite is generally produced through the following steps.

石油コークス、石炭コークスなどの炭素質原料を仮焼し
、粉砕ふるいわけを行ない、さらに粉末、粒子を任意の
割合に混合し、コールタール、ピツチなどの結合剤を加
え、結合剤の融点以上の温度、一般には150〜250
℃でねつ和する。次にねつ和物をそのまま加温下で押出
機にかけて押出成形するか、または、ねつ和物を冷却粉
砕後、型に入れて加圧成形して、生製品を製造する。次
に、このようにして製造した生製品を非酸化性雰囲気下
で一次焼成後さらに2,000〜3,000℃で黒鉛化
する。このような製造工程を経るため、一般人造黒鉛は
、結合剤中の揮発成分が一次焼成及び黒鉛化工程で揮散
するので、それに伴う気孔が発生する。なつ和、一次焼
成、黒鉛化工程の条件管理を慎重に行なつても複雑な分
解反応、微妙な雰囲気の影響のために黒鉛化製品の一般
的特性は大きなバラツキをもつている。キユベツトに用
いられている人造黒鉛の一般特性のバラツキ範囲は通常
つぎのとおりである。かさ比重約1.65〜1.85、
電気比抵抗約700〜1400μΩ−Cmその変動係数
約10%、気孔率約10〜20体積%。グラフアイトア
トマイザ一による測定再現精度は約±7%でフレーム法
の約±3%にくらべ半分以下である。
Carbonaceous raw materials such as petroleum coke and coal coke are calcined, pulverized and sieved, and powders and particles are mixed in a desired ratio, a binder such as coal tar or pitch is added, and a temperature exceeding the melting point of the binder is added. Temperature, generally 150-250
Soak at ℃. Next, a raw product is produced by either extruding the nectar as it is by passing it through an extruder under heating, or by cooling and pulverizing the anagen, and then putting it into a mold and pressurizing it. Next, the raw product thus produced is primarily fired in a non-oxidizing atmosphere and then further graphitized at 2,000 to 3,000°C. Due to this manufacturing process, volatile components in the binder in general artificial graphite are volatilized during the primary firing and graphitization processes, resulting in the generation of pores. Even if the conditions of the summer heating, primary firing, and graphitization processes are carefully controlled, the general characteristics of graphitized products vary widely due to complex decomposition reactions and delicate atmospheric influences. The range of variation in the general properties of artificial graphite used in cubes is usually as follows. Bulk specific gravity approximately 1.65-1.85,
Electrical specific resistance: about 700-1400 μΩ-Cm, coefficient of variation: about 10%, porosity: about 10-20% by volume. The measurement reproducibility accuracy with the graphite atomizer is approximately ±7%, which is less than half of the approximately ±3% of the flame method.

また、キユベツトの寿命は、人造黒鉛キユベツトで約3
0〜70回、パイログラフアイトキユベツトで約100
〜150回である。
In addition, the lifespan of the cuvette is approximately 3
0 to 70 times, about 100 times with pyrographic eye cubes
~150 times.

クラブアートアトマイザ一による測定再現性は、±3%
以内、キユベツトの寿命は、200回以上が要求されて
いる。
Measurement reproducibility with club art atomizer is ±3%
The lifespan of the cuvette is required to be 200 times or more.

本発明は、前述の欠点を改良し、要求を満足するグラフ
アイトキユベツトを提供することを目的とする。
SUMMARY OF THE INVENTION The object of the present invention is to improve the above-mentioned drawbacks and to provide a graphite cube that satisfies the requirements.

前述のとおり、現行グラフアイトアトマイザ一に用いら
れている人造黒鉛やバイログラフアイトは、気孔率が大
きいこと、組織が表面被覆と内部の二層になつているこ
と、電気比抵抗のバラツキが大きいことなどの性質をも
つている。
As mentioned above, the artificial graphite and birographite used in current graphite atomizers have a high porosity, a two-layer structure consisting of a surface coating and an internal layer, and large variations in electrical resistivity. It has properties such as things.

これらの性質は、グラフアイトアトマイザ一法の測定再
現性がフレーム法にくらべ劣ること、キユベツトの酸化
消耗や被覆層剥離にもとづく寿命が短いことなどの原因
と考えられる。そこで、本発明者らは、上記人造黒鉛の
性質を以下に述べる方法により、改良することによつて
、グラフアイトアトマイザ一法の測定再現精度とキユベ
ツト寿命を市場要求レベル以上に向上することができる
ことを見出した。
These properties are thought to be the cause of the fact that the measurement reproducibility of the graphite atomizer method is inferior to that of the flame method, and that the life span is short due to oxidative consumption of the cuvette and peeling of the coating layer. Therefore, the present inventors have discovered that by improving the properties of the above-mentioned artificial graphite using the method described below, it is possible to improve the measurement reproducibility and cube life of the graphite atomizer method to a level that exceeds the level required by the market. I found out.

キユベツトに用いる人造黒鉛の気孔を微細化し気孔率を
6体積%以下と従来品にくらべ小さくし、試料溶液の内
部への浸入を防止すること並ひに酸化消耗を防止し、ま
た、電気比抵抗のバラツキ幅を変動係数3%以下に縮少
することにより、ジユール効果による発熱を一定にし、
原子化状態の再現性が向上される。
The pores of the artificial graphite used in the cube are made finer and the porosity is less than 6% by volume, which is smaller than that of conventional products.This prevents the sample solution from penetrating into the interior, prevents oxidative consumption, and improves the electrical resistivity. By reducing the variation width to a coefficient of variation of 3% or less, the heat generation due to the Joule effect is kept constant,
The reproducibility of the atomization state is improved.

本発明は気孔率6体積%以下、電気比抵抗の変動係数3
%以下の黒鉛からなる原子吸光分光々度計用グラフアイ
トキユベツトおよび各種ピツチ類を熱重合晶質化して炭
素前駆体物質を生成し、これを平均粒径10μm以下に
粉砕し、ついでこれを他の結合剤を添加せず成形、焼成
及び黒鉛化処理して気孔率6体積%以下、電気比抵抗の
変動係数3%以下の人造黒鉛を製造し、ついで所定の形
状に機械加工する原子吸光分光々計度グラフアイトの製
造法ならびに各種ピツチ類を非酸化性雰囲気中で重質化
した重質化ピツチを製造した後粉砕し、さらに軟化点よ
り低い温度で酸水溶液、酸化性ガスを単独または2種以
上を導入して官能基を有する炭素前駆体物質を製造し、
これを平均粒径10ttm以下に粉砕し、ついでこれを
他の結合剤を添加せず、成形、焼成及び黒鉛化処理して
気孔率6体積%以下、電気比抵抗の変動係数3%以下の
人造黒鉛を製造し、ついで所定の形状に機械加工する原
子吸光分光々度計用グラフアイトキユベツトの製造法に
関する。
The present invention has a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3.
A graphite cuvette for an atomic absorption spectrophotometer consisting of less than 10% graphite and various pits are thermally polymerized and crystallized to produce a carbon precursor material, which is pulverized to an average particle size of 10 μm or less. Atomic absorption is produced by molding, firing and graphitizing without adding any other binder to produce artificial graphite with a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less, and then machined into a predetermined shape. Method for producing spectrophotometer graphite; After producing heavy pitches made by making various pitches heavy in a non-oxidizing atmosphere, they are crushed, and then an acid aqueous solution and an oxidizing gas are added separately at a temperature lower than the softening point. or introducing two or more types to produce a carbon precursor substance having a functional group,
This is pulverized to an average particle size of 10 ttm or less, and then molded, fired, and graphitized without adding any other binder to create an artificial product with a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less. The present invention relates to a method of manufacturing a graphite cuvette for an atomic absorption spectrometer, in which graphite is manufactured and then machined into a predetermined shape.

本発明においてキユベツトの気孔率を6体積%以下及び
電気比抵抗の変動係数を3%以下とした理由は、気孔率
が6体積%を越えると(イ)試料溶液がキユベツトに浸
入するメモリー効果のため測定毎の再現性が悪くなり、
(1:])キユベツトの酸化消耗が早く寿命を200回
以上に保持できないからであり、電気比抵抗の変動係数
が3%を越えると(ハ)試料溶液を加熱して原子化を行
なう際の加熱温度がキユベツト毎に異なり、キユベツト
ごとの再現性が悪くなり、(イ)と(ハ)により測定の
再現性を±3%以内に保持できないからである。
In the present invention, the reason why the porosity of the cuvette is 6% by volume or less and the coefficient of variation of the electrical resistivity is 3% or less is because if the porosity exceeds 6% by volume, (a) a memory effect occurs in which the sample solution permeates into the cuvette. Therefore, the reproducibility of each measurement becomes poor,
(1:]) This is because the oxidation consumption of the cuvette is rapid and the life cannot be maintained at more than 200 cycles, and if the coefficient of variation of electrical resistivity exceeds 3%, (c) when heating the sample solution to atomize it. This is because the heating temperature differs from cuvette to cuvette, resulting in poor reproducibility for each cuvette, making it impossible to maintain measurement reproducibility within ±3% due to (a) and (c).

以下本発明の詳細を説明する。The details of the present invention will be explained below.

コールタール、コールピツチ、石油の高温熱分解タール
、エチレンボトム油、エチレン製造時の副生タールピツ
チ、ポリ塩化ビニル熱分解ピツチ、アスフアルトなどの
熱重合により得られるピツチなどの各種ピツチ類を35
0〜550℃の温度で熱重合晶質化して炭素前1駆体物
質を得るか、または上記各種ピツチ類を窒素、水素等の
非酸化性雰囲気中で重質化した重質化ピツチを製造した
後粉砕し、さらに軟化点より低い温度で硝酸、硫酸、次
亜塩素酸などの酸水溶液、塩素ガス、空気、硫黄蒸気等
の酸化性ガスを単独または2種類以上を導入して酸素、
硫黄、ハロゲン、窒素などの官能基を有する炭素前駆体
物質を得る。
Coal tar, coal pitch, high-temperature pyrolysis tar of petroleum, ethylene bottom oil, by-product tar pitch during ethylene production, polyvinyl chloride pyrolysis pitch, pitch obtained by thermal polymerization of asphalt, etc. 35
A carbon precursor substance is obtained by thermal polymerization crystallization at a temperature of 0 to 550°C, or a heavy pitch is produced by heavyening the above various pitches in a non-oxidizing atmosphere such as nitrogen or hydrogen. After that, it is crushed, and then at a temperature lower than the softening point, an acid aqueous solution such as nitric acid, sulfuric acid, or hypochlorous acid, or an oxidizing gas such as chlorine gas, air, or sulfur vapor is introduced singly or in combination with oxygen,
A carbon precursor material having functional groups such as sulfur, halogen, and nitrogen is obtained.

次にこのようにして得た炭素前駆体物質を,炭化時にク
ラツク等の欠陥が生じないように、平均粒径を10μm
以下に粉砕し、その後常法の方法により形成、焼成及び
黒鉛化処理を行なつて気孔率6体積%以下、電気比抵抗
の変動係数3%以下の人造黒鉛を製造し、さらにこれを
所定の形状に機械加工することによつてグラフアイトキ
ユベツトを得ることができる。本発明において炭素前駆
体物質を平均粒径10μm以下に粉砕し、これを他の結
合剤を添加せず常法の成形、焼成及び黒鉛化処理するこ
とによつて気孔率6体積%以下、電気比抵抗の変動係数
3%以下の人造黒鉛が得られる。
Next, the carbon precursor material obtained in this way was adjusted to an average particle size of 10 μm to prevent defects such as cracks from occurring during carbonization.
The artificial graphite is pulverized as follows, and then formed, fired, and graphitized using conventional methods to produce artificial graphite with a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less. Graphite cuvettes can be obtained by machining into shapes. In the present invention, the carbon precursor material is pulverized to an average particle size of 10 μm or less, and then molded, fired, and graphitized in a conventional manner without adding any other binder to achieve a porosity of 6 volume % or less and an electrically Artificial graphite with a specific resistance variation coefficient of 3% or less can be obtained.

以下実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 1 軟化点270℃の原油高温熱分解ピツチを溶融法で平均
直径1mのピツチビーズをつくり、ベンゼンにて低沸点
分を抽出除去した。
Example 1 Pitch beads with an average diameter of 1 m were made by a melting method from high-temperature pyrolysis pitch of crude oil with a softening point of 270°C, and low boiling point components were extracted and removed with benzene.

その後220℃で2時間空気流動層中で処理した後、更
に500゜Cで10分間窒素気流中で処理した。この処
理ピツチを平均粒径が5μm以下になるように微粉砕し
た。これ以後は通常の人造黒鉛製法と同様に金型中で成
形し、生成型品を非酸化性雰囲気で5℃/時間の昇温速
度で1,000℃まで一次焼成した。さらに焼成品を2
,800′C非酸化性雰囲気中で黒鉛化した。このよう
にして得られた人造黒鉛の気孔率は1,5体積%であり
、電気比抵抗は、、=1,550μΩ−o、変動係数2
,0%(n=20ケであつた。実施例 2 エチレンボトム油を410℃で窒素気流中で重質化を行
ない水素/炭素(H/C)原子比=0.63軟化点30
0℃のピツチを製造した。
Thereafter, the sample was treated at 220°C for 2 hours in an air fluidized bed, and then at 500°C for 10 minutes in a nitrogen stream. This treated pitch was pulverized to an average particle size of 5 μm or less. Thereafter, it was molded in a mold in the same manner as in the usual artificial graphite manufacturing method, and the resulting molded product was primarily fired to 1,000°C at a heating rate of 5°C/hour in a non-oxidizing atmosphere. 2 more baked products
, 800'C in a non-oxidizing atmosphere. The porosity of the artificial graphite obtained in this way is 1.5% by volume, and the electrical resistivity is = 1,550μΩ-o, coefficient of variation 2
, 0% (n = 20. Example 2 Ethylene bottom oil was made heavy in a nitrogen stream at 410°C to obtain a hydrogen/carbon (H/C) atomic ratio = 0.63 and a softening point of 30.
A pitcher at 0°C was produced.

このピツチを200メツシユ以下に粉砕し、ピツチがと
けないように注意しながら、5『C/時間の昇温速度で
300℃まで加熱してピツチに酸素を導入した。
This pitch was pulverized to 200 mesh or less, and while being careful not to melt the pitch, it was heated to 300° C. at a heating rate of 5°C/hour to introduce oxygen into the pitch.

このピツチを平均粒径が10μm以下になるように粉砕
した。以下実施例1と同じ方法で人造黒鉛を製造した。
このようにして得られた人造黒鉛の気孔率は4.0体積
%で、電気比抵抗はx=3,500μΩ二0、変動係数
は1.2%(n一20ケ)であつた。比較例 1 平均粒径40μmの石油ピツチコークス粉に軟化点75
゜Cのタールピツチを加えたものを双腕型捏和機により
210℃の温度で捏和後の成形粉の揮発分が15重量%
になる時間捏和したのち、150メツシユ以下に粉砕し
て成形粉とし次いで加工成形により煉瓦形状のプロツク
を得た。
This pitch was pulverized to an average particle size of 10 μm or less. Artificial graphite was produced in the same manner as in Example 1.
The artificial graphite thus obtained had a porosity of 4.0% by volume, an electrical resistivity of x=3,500 μΩ20, and a coefficient of variation of 1.2% (n−20). Comparative Example 1 Petroleum pitch coke powder with an average particle size of 40 μm has a softening point of 75
The volatile content of the molded powder after kneading at 210°C with a double-arm kneading machine is 15% by weight.
After kneading for a period of time, the mixture was pulverized to 150 meshes or less to obtain a molding powder, and then processed and molded to obtain brick-shaped blocks.

このプロツクを非酸化性雰囲気中で950℃まで焼成し
て焼成プロツクとしたのち、非酸化性雰囲気中で300
0℃に加熱して黒鉛化した。比較例 2 比較例1の方法で得られた焼成プロツクを含浸槽に入れ
、槽内が水銀柱5[!I!1になるまで減圧脱気したの
ち、軟化点が75℃のタールピツチを加熱し液状にして
注入し、1kg/CTIiに加圧して焼成プロツクにタ
ールピツチを含浸した。
This block was fired to 950°C in a non-oxidizing atmosphere, and then heated to 300°C in a non-oxidizing atmosphere.
It was heated to 0°C to graphitize it. Comparative Example 2 The firing block obtained by the method of Comparative Example 1 was placed in an impregnating tank, and the inside of the tank was 5 [!] of mercury. I! After degassing under reduced pressure until the temperature reached 1, tar pitch having a softening point of 75° C. was heated, liquefied and injected, and the firing block was impregnated with tar pitch under pressure of 1 kg/CTIi.

次いで此較例1と同一条件で焼成及び黒鉛化を行なつた
。比較例 3平均粒径10μmに微粉砕された石油系ピ
ツチコークス粉に、軟化点150℃のタールピツチを加
えたものを双腕型捏和機により250℃の温度で捏和後
の成形粉の揮発分が10重量%になる時間捏和したのち
、400メツシユ以下に微粉砕して成形粉とし、次いで
加圧成形により煉瓦形状のプロツクを得た。
Next, firing and graphitization were performed under the same conditions as in Comparative Example 1. Comparative Example 3 Petroleum pitch coke powder finely pulverized to an average particle size of 10 μm and tar pitch with a softening point of 150°C were kneaded at a temperature of 250°C using a double-arm kneader. After kneading the mixture for a time to reach 10% by weight, the powder was finely pulverized to less than 400 mesh to form a molded powder, and then pressure molded to obtain a brick-shaped block.

このプロツクを比較例と同一条件で焼成及び黒鉛を行な
つた。上記の比較例で得られた人造黒鉛についても実施
例と同様に気孔率、電気比抵抗及び電気比抵抗の変動係
数(n=20ケ)を求めた。
This process was fired and graphitized under the same conditions as the comparative example. For the artificial graphite obtained in the above comparative example, the porosity, electrical resistivity, and coefficient of variation of electrical resistivity (n=20) were determined in the same manner as in the examples.

この値を実施例の値と共に第1表に示す。比例例2は焼
成プロツクの気孔にタールピツチの炭化物を充填したも
のであるが気孔率及び電気比抵抗の変動係数の減少は僅
かである。
These values are shown in Table 1 together with the values of Examples. In proportional example 2, the pores of the firing block were filled with tar pitch carbide, but the decrease in the coefficient of variation of the porosity and electrical resistivity was slight.

比較例3は微粉の原料粉を用いて気孔の減少をはかつた
ものであるが第1表に示す通り気孔率、電気比抵抗の変
動係数ともに実施例の値に及ばない。次にこのようにし
て製造し.た人造黒鉛を機械加工して第1図に示す形状
のチユーブ形グラフアイトキユベツト1を製作した。
Comparative Example 3 uses fine raw material powder to reduce the number of pores, but as shown in Table 1, both the porosity and the coefficient of variation of electrical resistivity are lower than those of the examples. Next, manufacture it in this way. A tube-shaped graphite cuvette 1 having the shape shown in FIG. 1 was manufactured by machining the artificial graphite obtained.

なお第1図において2はサンプル注入孔、3はグラフア
イト電極である。さらにゼーマン原子吸光分光光度計(
K.K。
In FIG. 1, 2 is a sample injection hole, and 3 is a graphite electrode. In addition, a Zeeman atomic absorption spectrophotometer (
K. K.

日製作所製、商品名170−70型)に上記キユベツト
を装着し、鉛1ngを含む水溶液を用い連続分析を行な
つた。その時の測定条件は波長:283.3nm,磁場
:1キロガウスで行なつた。その結果を第2図に示す。
実施例1は製造した人造黒鉛からなるキユベツトを用い
て測定した結果は、第2図の実線4で示すとおり、各測
定毎の再現性は±2%であつた。
The above-mentioned cuvette was installed in a model (trade name: Model 170-70, manufactured by Nippon Seisakusho), and continuous analysis was performed using an aqueous solution containing 1 ng of lead. The measurement conditions at that time were a wavelength of 283.3 nm and a magnetic field of 1 kilogauss. The results are shown in FIG.
In Example 1, the reproducibility of each measurement was ±2%, as shown by the solid line 4 in FIG. 2, as measured using the produced artificial graphite cuvette.

また、キユベツトの使用回数は300回以上であつた。
実施例2で製造した人造黒鉛からなるキユベツトを用い
て測定した結果も実施例1と同様に良好な再現性を示し
た。比較例1の従来市販されている一般人造黒鉛からな
るキユベツトを用いて測定した結果は第2図の点線5で
示すとおりで50回までの測定値の再現性は±6%であ
つた。またキユベツトの使用回数は、60回程度までが
限界であつた。同様にして比較例2及び比較例3につい
ても、50回測定における測定毎の再現性及び寿命(使
用回数)を求めたところ第2表の(イ)に示す通りであ
り、比較例3の微粒子を用いて緻密化をはかつたもので
も実施例の値に及ばない。
Furthermore, the cube was used more than 300 times.
The results measured using the artificial graphite cube produced in Example 2 also showed good reproducibility as in Example 1. The results of measurement using a cuvette made of conventionally available artificial graphite in Comparative Example 1 are as shown by the dotted line 5 in FIG. 2, and the reproducibility of the measured values up to 50 times was ±6%. Furthermore, the maximum number of times a cuvette could be used was about 60 times. Similarly, for Comparative Examples 2 and 3, the reproducibility and service life (number of uses) for each measurement in 50 measurements were determined as shown in (a) of Table 2. Even when densification was achieved using

また、実施例1で製造した人造黒鉛プロツク10ケから
製作したキユベツトを各1ケずつとり出し、計100回
の測定を行なつた。
Furthermore, one cube from each of the 10 artificial graphite blocks produced in Example 1 was taken out, and a total of 100 measurements were performed.

各キユベツトの測定再現性は、±3%以内であり各キユ
ベツト間の100回の平均値のバラツキ幅は2%であつ
た。上記と同じ方法で比較例のキユベツトについても測
定を行なつた。
The measurement reproducibility of each cuvette was within ±3%, and the variation width of the average value of 100 measurements between each cuvette was 2%. The comparative cuvette was also measured in the same manner as above.

その結果は第2表同に示す通りである。第2表の(口)
において再現性は50回まで使用できたものについての
最大値を示したものである。
The results are shown in Table 2. Table 2 (mouth)
The reproducibility shown is the maximum value for those that can be used up to 50 times.

第2表の分析結果から比較的良い値を示した比較例3で
も測定の再現性は目的とする±3%より悪く、寿命も2
00回に達しない。実施例に示されるように本発明の気
孔率が6体積%以下、電気比抵抗の変動係数が3%以下
のグラフアイトキユベツトにすることにより目的とする
測定の再現性±3%以内、寿命200回以上が達成可能
となる。本発明によれば、分析対象の試料溶液がキユベ
ツトに浸入し難く従つて測定の再現性が優れ、寿命の長
い原子吸光分光光度計用グラフアイトキユペツトが得ら
れる。
Even in Comparative Example 3, which showed relatively good values from the analysis results in Table 2, the reproducibility of measurement was worse than the target ±3%, and the lifespan was 2.
It does not reach 00 times. As shown in the examples, by using the graphite cube of the present invention with a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less, the reproducibility of the intended measurement is within ±3% and the life span is improved. It is possible to achieve 200 times or more. According to the present invention, it is possible to obtain a graphite cube for an atomic absorption spectrophotometer, in which a sample solution to be analyzed is difficult to enter the cube, and therefore has excellent reproducibility of measurement and has a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するためのグラフアイトキユペツ
トの形状を示す平面図、第2図は本発明の実施例1で製
造した人造黒鉛からなるキユベツトと従来のキユベツト
による再現性の比較試験結果を示すグラフである。
Fig. 1 is a plan view showing the shape of a graphite cuvette for explaining the present invention, and Fig. 2 is a comparative test of reproducibility between a cuvette made of artificial graphite manufactured in Example 1 of the present invention and a conventional cuvette. It is a graph showing the results.

Claims (1)

【特許請求の範囲】 1 気孔率6体積%以下、電気比抵抗の変動係数3%以
下の黒鉛からなる原子吸光分光々度計用グラフアイトキ
ユベツト。 2 各種ピッチ類を熱重合晶質化して炭素前駆体物質を
生成し、これを平均粒径10μm以下に粉砕し、ついで
これを他の結合剤を添加せず成形、焼成及び黒鉛化処理
して気孔率6体積%以下、電気比抵抗の変動係数3%以
下の人造黒鉛を製造し、ついで所定の形状に機械加工す
ることを特徴とする原子吸光分光々度計用グラフアイト
キユベツトの製造法。 3 各種ピッチ類を非酸化性雰囲気中で重質化した重質
化ピッチを製造した後粉砕し、さらに軟化点より低い温
度で酸水溶液、酸化性ガスを単独または2種類以上導入
して官能基を有する炭素前駆体物質を製造し、これを平
均粒径10μm以下に粉砕し、ついでこれを他の結合剤
を添加せず、成形、焼成及び黒鉛化処理して気孔率6体
積%以下、電気比抵抗の変動係数3%以下の人造黒鉛を
製造し、ついで所定の形状に機械加工することを特徴と
する原子吸光分光々度計用グラフアイトキユベツトの製
造法。
[Scope of Claims] 1. A graphite cube for an atomic absorption spectrophotometer made of graphite having a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less. 2. Various pitches are thermally polymerized and crystallized to produce a carbon precursor material, which is pulverized to an average particle size of 10 μm or less, and then molded, fired, and graphitized without adding any other binder. A method for producing a graphite cuvette for an atomic absorption spectrophotometer, which comprises producing artificial graphite with a porosity of 6% by volume or less and a coefficient of variation of electrical resistivity of 3% or less, and then machining it into a predetermined shape. . 3. Heavy pitch is produced by heavyizing various pitches in a non-oxidizing atmosphere, and then pulverized, and then at a temperature lower than the softening point, an acid aqueous solution or an oxidizing gas is introduced singly or two or more to create functional groups. A carbon precursor material having a porosity of 6% by volume or less is produced, pulverized to an average particle size of 10 μm or less, and then molded, calcined and graphitized without adding any other binder to give a carbon precursor material with a porosity of 6% by volume or less, A method for producing a graphite cube for an atomic absorption spectrophotometer, which comprises producing artificial graphite having a specific resistance variation coefficient of 3% or less, and then machining it into a predetermined shape.
JP10191379A 1979-08-09 1979-08-09 Graphite cuvette for atomic absorption spectrometer and its manufacturing method Expired JPS5942823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10191379A JPS5942823B2 (en) 1979-08-09 1979-08-09 Graphite cuvette for atomic absorption spectrometer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10191379A JPS5942823B2 (en) 1979-08-09 1979-08-09 Graphite cuvette for atomic absorption spectrometer and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5626244A JPS5626244A (en) 1981-03-13
JPS5942823B2 true JPS5942823B2 (en) 1984-10-17

Family

ID=14313141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10191379A Expired JPS5942823B2 (en) 1979-08-09 1979-08-09 Graphite cuvette for atomic absorption spectrometer and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5942823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3720376A1 (en) * 1987-06-19 1988-12-29 Bodenseewerk Perkin Elmer Co OVEN FOR ELECTROTHERMAL ATOMIZATION FOR THE ATOMIC ABSORPTION SPECTROSCOPY
CN103792199B (en) * 2014-02-19 2016-05-11 杭州富铭环境科技有限公司 A kind of water monitoring device based on colorimetric method

Also Published As

Publication number Publication date
JPS5626244A (en) 1981-03-13

Similar Documents

Publication Publication Date Title
US2582764A (en) Manufacture of carbon electrodes
US20120241691A1 (en) Nitrogen-containing porous carbon material and method of producing the same, and electric double-layer capacitor using the nitrogen-containing porous carbon material
US9718690B2 (en) Method for producing a porous carbon product
CA1073166A (en) Method for producing solid carbon material having high flexural strength
JPH06333783A (en) Glassy carbon-active carbon composite material, manufacture thereof and polarizable electrode for electrical double layer capacitor using the material
US4094897A (en) Resin-bonded graphite body for a dry cell
JP4565384B2 (en) Method for producing carbon nanofibers with excellent dispersibility in resin
US2527595A (en) Carbon body and method of making
US3284334A (en) Molded carbon bodies
JPS5942823B2 (en) Graphite cuvette for atomic absorption spectrometer and its manufacturing method
EP0276563B1 (en) Carbonaceous granular heat insulator and process for preparing the same
US3865713A (en) Carbonaceous reagent for carbonaceous binder used in the manufacture of fired carbon articles and carbon-bonded refractories
JPS59121107A (en) Manufacture of carbon electrode rod
RU2337895C2 (en) Method of natural clayey suspension manufacturing for electrode material production
US3009886A (en) Electrical resistance heating compositions
KR102036990B1 (en) Mesoporous carbon materials and method for preparing the same
US2960726A (en) Process for fabricating electrodes
US2805199A (en) Electrodes from fluid coke
US3505090A (en) Process for the production of carbon articles
CN108675292A (en) The method that combination method prepares isotropic graphite material
KR102657635B1 (en) Precursor composition for needle cokes
JPH03103375A (en) Production of cellular carbon grain
JPS5839458B2 (en) Acetylene black manufacturing method
JPS61197412A (en) Production of porous carbon material having high strength
JPH04311794A (en) Production of coke