JPS5942751B2 - Method for preventing local corrosion of stainless steel structures - Google Patents

Method for preventing local corrosion of stainless steel structures

Info

Publication number
JPS5942751B2
JPS5942751B2 JP4074580A JP4074580A JPS5942751B2 JP S5942751 B2 JPS5942751 B2 JP S5942751B2 JP 4074580 A JP4074580 A JP 4074580A JP 4074580 A JP4074580 A JP 4074580A JP S5942751 B2 JPS5942751 B2 JP S5942751B2
Authority
JP
Japan
Prior art keywords
film
corrosion
thickness
stainless steel
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4074580A
Other languages
Japanese (ja)
Other versions
JPS56136981A (en
Inventor
宏之 拓植
博夫 長野
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4074580A priority Critical patent/JPS5942751B2/en
Publication of JPS56136981A publication Critical patent/JPS56136981A/en
Publication of JPS5942751B2 publication Critical patent/JPS5942751B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はステンレス鋼構造物の局部腐食防止方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing localized corrosion of stainless steel structures.

ステンレス鋼は周知の通り、表面に酸化物保護皮膜であ
るいわゆる不動態皮膜を形成することにより良好な耐食
性を有しているため海水利用装置等腐食環境下の構造物
の材料として広く利用されている。
As is well known, stainless steel has good corrosion resistance due to the formation of a so-called passive film, which is a protective oxide film, on its surface, so it is widely used as a material for structures in corrosive environments such as seawater utilization equipment. There is.

しかしながらステンレス鋼でも例えば高温の海水又は高
濃度の溶存酸素含有溶液等の環境下で長期間使用したと
きには、部材のある特定の個所に集中して前記保護皮膜
が破れて局部腐食を生じる欠点がある。即ち僅かな隙間
をもつ材料接合部に生じる隙間腐食、孔食又は溶接接合
の熱影響部に生じる孔食、応力腐食割れがこの例であり
、いずれも鋼表面における活性態−不動態間の電池形成
によるものである。上記局部腐食を防止するためには通
常、鋼全体の合金組成を変えて耐食性を向上させる方法
がとられ、孔食、隙間腐食に対してはCr、Ni量の増
量あるいはMoの添加、応力腐食割れに対しては前記に
加えて更にCの低下あるいはTi、Nb等の安定化元素
の添加が行われている。
However, even stainless steel has the disadvantage that when it is used for a long period of time in an environment such as high-temperature seawater or a solution containing high concentration of dissolved oxygen, the protective film is broken in a certain part of the member, causing localized corrosion. . Examples of this include crevice corrosion and pitting corrosion that occur in material joints with small gaps, and pitting corrosion and stress corrosion cracking that occur in the heat affected zone of welded joints, both of which are caused by batteries between active and passive states on the steel surface. This is due to formation. In order to prevent the above-mentioned local corrosion, a method is usually taken to improve the corrosion resistance by changing the alloy composition of the entire steel. For pitting corrosion and crevice corrosion, increasing the amount of Cr and Ni or adding Mo, stress corrosion, etc. To prevent cracks, in addition to the above, reduction of C or addition of stabilizing elements such as Ti and Nb are carried out.

この方法はステンレス鋼が既に高価の上に更に高価な合
金元素を増量又は添加する等のため極めて高価となり経
済的の面から実用性に難点が生じる問題がある。本発明
は上記欠点を解決することを目的とするもので、ステン
レス鋼構造物の局部腐食発生個所である材料接合部にM
o、W、Vの膜又は箔を0.1μm以上の厚さに介在せ
しめるか又は溶接接合の熱影響部の表面にMo、W、V
の膜又は箔を0.1μm以上の厚さに付着せしめること
により、安価簡便にしかも長期安定して局部腐食を防止
するようにした点を特徴とする。以下本発明を詳細に説
明する。
This method has the problem that stainless steel is already expensive, and since it requires increasing or adding an even more expensive alloying element, it becomes extremely expensive and impractical from an economic point of view. The purpose of the present invention is to solve the above-mentioned drawbacks.
o, W, V film or foil with a thickness of 0.1 μm or more, or Mo, W, V on the surface of the heat affected zone of the welded joint.
By attaching the film or foil to a thickness of 0.1 μm or more, local corrosion can be prevented easily and inexpensively and stably over a long period of time. The present invention will be explained in detail below.

本発明者等はステンレス鋼の局部腐食を防止する合金元
素として効果の著るしいMo、W、Vに着目して、それ
らの塩水、高濃度の溶存酸素含有溶液等の腐食環境下で
の局部腐食防止機構について詳しく調査研究した結果、
Mo、W、VはそれぞれM。
The present inventors have focused on Mo, W, and V, which are highly effective alloying elements for preventing local corrosion of stainless steel, and have focused on Mo, W, and V, which are highly effective as alloying elements for preventing local corrosion of stainless steel. As a result of detailed research on the corrosion prevention mechanism,
Mo, W, and V are each M.

042−、WO42−、H2VO丁イオンとして溶液中
に溶出して腐食の加速要因である塩素イオン等の局部腐
食個所への侵入又は仝個所での濃縮を妨げると共に、局
部腐食個所の鋼表面の再不動態化を促進して前記隙間腐
食、孔食、応力腐食割れ等が防止されることを知見した
042-, WO42-, H2VO ion is eluted into the solution and prevents chloride ions, which are a factor in accelerating corrosion, from penetrating into or concentrating at locally corroded areas, and prevents the steel surface of the locally corroded areas from being re-infiltrated. It has been found that the above-mentioned crevice corrosion, pitting corrosion, stress corrosion cracking, etc. can be prevented by promoting mobilization.

そこでステンレス鋼構造物の材料接合部の接合部にMo
,W,Vの膜又は箔を介在せしめるか又は溶接接合の熱
影響部表面に同じくMo,W,Vの膜又は箔を付着せし
めておけば、腐食環境下で局部腐食発生個所のみに集中
してM0042LWO42−,H2VO7イオンの濃度
が高められて鋼表面の再不動態化が促進され、鋼全体の
合金組成を変化させる従来方法に比較して合金元素の総
添加量が大巾に低減され、安価に局部腐食の防止を図る
ことが可能となる。上記ステンレス鋼構造物の材料接合
部の接合面又は溶接接合部の熱影響部表面にMo,W,
Vの膜又は箔を付加する方法としては、Mo,W,Vの
それぞれの真空蒸着膜、溶射膜、電気メツキ層又は展延
した箔を鋼の表面に付着せしめればよく、かかる膜又は
箔の鋼表面への付着操作は常法によつて極めて簡単であ
る。
Therefore, Mo is applied to the material joints of stainless steel structures.
If a film or foil of Mo, W, or V is interposed, or a film or foil of Mo, W, or V is attached to the surface of the heat-affected zone of a welded joint, localized corrosion will be concentrated only at the location in a corrosive environment. The concentration of M0042LWO42-, H2VO7 ions is increased to promote repassivation of the steel surface, and the total amount of alloying elements added is greatly reduced compared to the conventional method of changing the alloy composition of the entire steel, making it cheaper. This makes it possible to prevent local corrosion. Mo, W,
The V film or foil may be applied by attaching a vacuum-deposited film, a thermal sprayed film, an electroplated layer, or a spread foil of Mo, W, and V to the surface of the steel. The operation of adhering to the steel surface is extremely simple using conventional methods.

本発明において、材料接合部に介在させるか又は溶接熱
影響部表面に付着させるMo,W,Vの膜又は箔の厚さ
をO.1μm以上に限定したのは、O.1μm未満では
材料接合部の接合面又は溶接接合部の熱影響部表面のM
0042−,WO42LH2VO′4イオンによる再不
動態化の効果が十分に得られないからである。
In the present invention, the thickness of the Mo, W, or V film or foil interposed in the material joint or attached to the surface of the weld heat affected zone is set to O. The reason why it is limited to 1 μm or more is because O. If it is less than 1 μm, the M of the joint surface of the material joint or the surface of the heat affected zone of the weld joint
This is because the effect of repassivation by 0042-, WO42LH2VO'4 ions cannot be sufficiently obtained.

なお材料接合部の接合面にMo,W,Vの膜又は箔を介
在せしめる場合、Mo,W,Vの膜又は箔は接合部の一
方の面、両方の面いずれでもよい。
Note that when a Mo, W, or V film or foil is interposed on the bonding surface of the material bonding portion, the Mo, W, or V film or foil may be provided on either one surface or both surfaces of the bonding portion.

次に実施例を掲げて本発明の効果を説明する。実施例
1試験材として、第5図に示す如く長さ15×巾15×
厚さ2mm0SUS304の試験片1,2を、該試験片
1,2の接合面にO.05〜10μmの範囲で厚さを種
々に変えたMo,W,■の真空蒸着膜3又は厚さ100
μmの箔3を介在せしめてテフロンボルトナツト4で締
付けて使用した。
Next, the effects of the present invention will be explained with reference to Examples. Example
1 test material, length 15 x width 15 x as shown in Figure 5.
Test pieces 1 and 2 of 0 SUS304 with a thickness of 2 mm were placed on the bonding surfaces of the test pieces 1 and 2. Vacuum deposited films of Mo, W, ■ with various thicknesses in the range of 0.05 to 10 μm 3 or thickness of 100 μm
It was used by interposing a μm foil 3 and tightening it with Teflon bolt nuts 4.

前記各試験材を30℃の3%Nacl+1/20MNa
2SO4の溶液に浸漬せしめ、浸漬したままの電位及び
甘こう電極(標準電極)に対しそれぞれ−50,0,1
00,200mVの電位に保持して30日間継続して通
電した後、試験材の接合部の隙間腐食発生を隙間腐食発
生部分の面積率を用いて評価し、Moの膜又は箔の厚さ
と前記面積率の関係を第1図に、Vの同関係を第2図に
、Wの同関係を第3図に示した。第1〜3図は縦軸に隙
間腐食発生面積率(%)を、横軸にそれぞれMo,■,
Wの膜又は箔の厚さ(μm)をとり、それぞれ浸漬した
ままの電位における膜又は箔の厚さと隙間腐食発生面積
率の関係を○−で、甘こう電極に対し−50mVの電位
における同関係を・・・・・・△・・・・・・、甘こう
電極に対しOm■の電位における同関係をー−−]−−
一、甘こう電極に対し100mVの電位における同関係
を−−−−−−−、甘こう電極に対し200mVの電位
における同関係をー−−一◎−−一−−で示した。
Each of the above test materials was treated with 3% NaCl + 1/20 MNa at 30°C.
It was immersed in a solution of 2SO4, and the potential as it was immersed was -50, 0, and 1, respectively, with respect to the agaric electrode (standard electrode).
After holding the potential at 0.00, 200 mV and continuously applying current for 30 days, the occurrence of crevice corrosion at the joints of the test materials was evaluated using the area ratio of the crevice corrosion occurrence area, and the thickness of the Mo film or foil and the The relationship of area ratio is shown in FIG. 1, the same relationship of V is shown in FIG. 2, and the same relationship of W is shown in FIG. 3. In Figures 1 to 3, the vertical axis shows the crevice corrosion occurrence area rate (%), and the horizontal axis shows Mo, ■,
The thickness (μm) of the W film or foil is measured, and the relationship between the thickness of the film or foil and the crevice corrosion occurrence area rate at the potential while immersed is indicated by ○-, and the same at a potential of -50 mV with respect to the agaric electrode. The relationship is...△..., and the same relationship at the potential of Om■ with respect to the sweet tooth electrode is ---]--
1. The same relationship at a potential of 100 mV with respect to the sweet tooth electrode is shown as -------, and the same relationship at a potential of 200 mV with respect to the sweet tooth electrode is shown as ----1◎---1---.

第1〜3図から明らかなように、Mo,V,W共にいず
れも膜厚がO.1μm以上の場合は全く隙間腐食が発生
せず、本発明方法が隙間腐食防止に有効なことが示され
た。
As is clear from FIGS. 1 to 3, the film thicknesses of Mo, V, and W are O. When the thickness was 1 μm or more, no crevice corrosion occurred at all, indicating that the method of the present invention is effective in preventing crevice corrosion.

実施例 2 試験材として第6図に示す如く、それぞれU字形に曲げ
た長さ75×巾10×厚さ2mmの、650゜C3hr
空冷の熱処理(溶接熱影響部に相当する熱処理)を施し
たSUS304の試験片5,6を、該試験片5,6の接
合面に、O.O5〜10μmの範囲で厚さを種々に変え
たMo,W,Vの真空蒸着膜7又は厚さ100μmの箔
7を介在せしめてステンレスボルトナツト8で締付けた
ダブルUべンド試験材を使用した。
Example 2 As shown in Figure 6, the test materials were bent into a U shape, each having a length of 75 x width of 10 x thickness of 2 mm, heated at 650°C for 3 hours.
SUS304 test pieces 5 and 6 that have been subjected to air cooling heat treatment (heat treatment equivalent to welding heat affected zone) are placed on the joint surfaces of the test pieces 5 and 6 with an O. A double U-bend test material was used in which a vacuum-deposited film 7 of Mo, W, and V with various thicknesses in the range of O5 to 10 μm or a foil 7 with a thickness of 100 μm was interposed and tightened with stainless steel bolt nuts 8. .

前記各試験材を250℃、溶存酸素8ppm1の純水の
3l循環式オートクレイブ中に500時間浸漬した後、
応力腐食割れの有無を調査した。応力腐食割れの判定は
ダブルUべンド試験片内側5のUべンド部接合側の中央
縦断面において光学顕微鏡を用いて計測した最大割れ深
さにより行い、最大割れ深さと膜厚の関係を第4図の図
表に示した。
After immersing each of the test materials in a 3L circulation autoclave at 250°C and 8 ppm dissolved oxygen for 500 hours,
The presence or absence of stress corrosion cracking was investigated. Stress corrosion cracking is determined based on the maximum crack depth measured using an optical microscope at the center longitudinal section of the U-bend joint side of the inner side 5 of the double U-bend specimen, and the relationship between the maximum crack depth and film thickness is This is shown in the diagram in Figure 4.

第4図は縦軸に最大割れ深さ(4)を、横軸に膜厚(μ
)をとり、Moについての膜厚と最大割れ深さの関係を
ー○一、■について・・・・・・△・・・・・・、Wに
ついてー−−D−−−で示す。
In Figure 4, the vertical axis shows the maximum crack depth (4), and the horizontal axis shows the film thickness (μ
), and the relationship between the film thickness and the maximum crack depth for Mo is shown as -○1, ■... Δ..., and W -D---.

図に見る通り、Mo,V,Wはいずれも膜厚0.1μm
以上で最大割れ深さが25μ以下となり、耐応力腐食割
れ性が著しく改善されたことを示した。
As shown in the figure, the film thickness of Mo, V, and W is 0.1 μm.
As a result, the maximum crack depth was 25μ or less, indicating that the stress corrosion cracking resistance was significantly improved.

実施例 3試験材として実施例2と同一寸法で、第6図
に示す内側試験片5に代えて、SUS304の溶接材よ
り切出した試験片を第7図に示すように溶接部9が円弧
頂部になるようにしてU字形に曲げ、その外表面に溶線
式ガス破射法によりMO溶射被膜7一を膜厚を種々変え
て形成した内側試験片52を用い、実施例2と同一材質
の外側試験片6と組合せて第6図に示す試験材と同一形
状としたダブルUベンド試験材を使用した。
Example 3 As a test material, a test piece having the same dimensions as Example 2 and cut from a welded SUS304 material instead of the inner test piece 5 shown in FIG. 6 was used, as shown in FIG. The inner test piece 52 was bent into a U-shape, and the outer surface was coated with MO sprayed coatings 71 with various thicknesses by the wire gas blasting method. A double U-bend test material having the same shape as the test material shown in FIG. 6 was used in combination with test piece 6.

該試験材を250℃、溶存酸素8ppmの純水31循環
式オートクレーブ中に500時間浸漬した後応力腐食割
れの有無を調査した。応力腐食割れの判定はダブルUベ
ンド試験材の内側試験片5′のUベンド部接合側の溶接
部9近傍熱影響部の縦断面において光学顕備鏡を用いて
計測した最大割れ深さにより行い、最大割れ深さとMO
溶射膜厚の関係を第8図の図表に示した。
The test material was immersed for 500 hours in a pure water 31 circulating autoclave at 250° C. and 8 ppm of dissolved oxygen, and then the presence or absence of stress corrosion cracking was investigated. Stress corrosion cracking was determined based on the maximum crack depth measured using an optical microscope in the longitudinal section of the heat-affected zone near the weld 9 on the U-bend joining side of the inner test piece 5' of the double U-bend test material. , maximum crack depth and MO
The relationship between sprayed film thickness is shown in the diagram of FIG.

第8図は縦軸に最大割れ深さ(μ)を、横軸に膜厚(μ
)をとつている。図に見る通りMO溶射を行なわない場
合は溶接熱影響部において1401tmの粒界応力腐食
割れを発生するが、MO溶射膜厚が0.1μmでは最大
割れ深さが25μm以下となり、耐応力腐食割れ性が著
しく改善される。
Figure 8 shows the maximum crack depth (μ) on the vertical axis and the film thickness (μ) on the horizontal axis.
) is taken. As shown in the figure, if MO spraying is not performed, intergranular stress corrosion cracking of 1401 tm will occur in the weld heat affected zone, but if the MO spray film thickness is 0.1 μm, the maximum crack depth will be less than 25 μm, and stress corrosion resistant cracking will occur. performance is significantly improved.

実施例 4 試験材として第9図に示す如き、溶接部9を含む長さ7
0×巾30×厚さ5mmの試験片$US3O4)の溶接
熱影響部に、厚さ100μmで10mm×30韮のMO
箔7をSUS3O4のボルトナツト8により付着せしめ
た。
Example 4 As a test material, length 7 including welded part 9 was used as shown in FIG.
MO of 10 mm x 30 pieces with a thickness of 100 μm was placed on the weld heat affected zone of a test piece of 0 x width 30 x 5 mm thick ($US3O4).
The foil 7 was attached using bolts and nuts 8 made of SUS3O4.

この試験材を3%NaCll3O℃の溶液中に100日
間浸漬したが、なんら異状はなく局部腐食の発生はなか
つた。一方MO箔7を付着させなかつた場合には、同一
条件で溶接熱影響部に孔食が発生した。なおMO箔に代
えてWあるいは,V箔を使用しても同様に効果があるこ
とを確認した。実施例 5 海水淡水化装置の製塩工程において、60゜Cの300
1)NaCl溶液に浸漬する環境下のステンレス鋼製の
バルブのフランジ接合部は、通常3ケ月程度の継続使用
で隙間腐食を生じて使用不可能となるが、前記フランジ
接合部の接合面にMOの真空蒸着膜を2μmの厚さに介
在せしめた結果、1年間継続使用後もフランジ接合部に
全く隙間腐食を生じなかつた。
This test material was immersed in a 3% NaCl solution at 30° C. for 100 days, but no abnormalities were observed and no local corrosion occurred. On the other hand, when MO foil 7 was not attached, pitting corrosion occurred in the weld heat affected zone under the same conditions. It has been confirmed that the same effect can be obtained by using W or V foil instead of MO foil. Example 5 In the salt production process of a seawater desalination equipment,
1) The flange joints of stainless steel valves that are immersed in NaCl solution usually develop crevice corrosion after about 3 months of continuous use and become unusable. As a result of interposing a vacuum-deposited film with a thickness of 2 μm, no crevice corrosion occurred at the flange joint even after one year of continuous use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMOの膜又は箔の厚さと隙間腐食発生面積率の
関係を示した図表、第2図はVの同厚さと同面積率の関
係を示した図表、第3図はWの同厚さと同面積率の関係
を示した図表、第4図はMO,V,Wの膜又は箔の厚さ
と最大割れ深さの関係を示した図表、第5図は隙間腐食
試験の試1験材の断面図、第6図は応力腐食割れ試1験
の試験材の断面図、第7図は、第6図の内側試1験片の
他の実施例を示す試験片の断面図、第8図はMOの溶射
膜厚と溶接熱影響部における最大割れ深さの関係を示し
た図表、第9図は溶接熱影響部にMO,W,V箔を付着
せしめた試験材の斜視図である。 1,2,5,5′,6:試1験片、3,7:膜又は箔、
7′:溶射被膜、4:テフロンボルトナツト、8:ステ
ンレスボルトナツト、9:溶接部。
Figure 1 is a chart showing the relationship between the thickness of the MO film or foil and the crevice corrosion occurrence area rate, Figure 2 is a chart showing the relationship between the same thickness and the same area rate for V, and Figure 3 is the same for W. A chart showing the relationship between the thickness and the same area ratio, Figure 4 is a chart showing the relationship between the thickness of MO, V, and W films or foils and the maximum crack depth, and Figure 5 is the first test of the crevice corrosion test. Figure 6 is a cross-sectional view of the test material for stress corrosion cracking test 1. Figure 7 is a cross-sectional view of a test piece showing another example of the inner test 1 test piece in Figure 6. Figure 8 is a chart showing the relationship between the sprayed MO film thickness and the maximum crack depth in the weld heat affected zone, and Figure 9 is a perspective view of the test material with MO, W, and V foils attached to the weld heat affected zone. be. 1, 2, 5, 5', 6: 1 test piece, 3, 7: membrane or foil,
7': Thermal spray coating, 4: Teflon bolt nuts, 8: Stainless steel bolt nuts, 9: Welded parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼構造物の材料接合部にMo、Wもしく
はVの膜又は箔を0.1μm以上の厚さに介在せしめて
接合するか又は、溶接接合の熱影響部表面にMo、Wも
しくはVの膜又は箔を0.1μm以上の厚さに付着せし
めることを特徴とするステンレス鋼構造物の局部腐食防
止方法。
1 Stainless steel structures are bonded by interposing a Mo, W or V film or foil with a thickness of 0.1 μm or more at the material joints, or Mo, W or V is applied to the surface of the heat-affected zone of welded joints. A method for preventing local corrosion of stainless steel structures, which comprises depositing a film or foil to a thickness of 0.1 μm or more.
JP4074580A 1980-03-29 1980-03-29 Method for preventing local corrosion of stainless steel structures Expired JPS5942751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074580A JPS5942751B2 (en) 1980-03-29 1980-03-29 Method for preventing local corrosion of stainless steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074580A JPS5942751B2 (en) 1980-03-29 1980-03-29 Method for preventing local corrosion of stainless steel structures

Publications (2)

Publication Number Publication Date
JPS56136981A JPS56136981A (en) 1981-10-26
JPS5942751B2 true JPS5942751B2 (en) 1984-10-17

Family

ID=12589162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074580A Expired JPS5942751B2 (en) 1980-03-29 1980-03-29 Method for preventing local corrosion of stainless steel structures

Country Status (1)

Country Link
JP (1) JPS5942751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610183B2 (en) * 1988-12-23 1997-05-14 日立冷熱株式会社 Electric water heater
US5368223A (en) * 1993-05-06 1994-11-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Pipe welding process using a metallic insert for improved corrosion resistance of the welded zone

Also Published As

Publication number Publication date
JPS56136981A (en) 1981-10-26

Similar Documents

Publication Publication Date Title
EP0001173A1 (en) A process for the diffusion welding of copper and stainless steel
EP2241654A2 (en) Surface-treated metal material excelllent in resistance against galvanic corrosion and joined article of dissimilar materials including the surface-treated metal material
JPS60125360A (en) Zinc alloy hot-dipped steel material and its production and flux composition
JPS5942751B2 (en) Method for preventing local corrosion of stainless steel structures
US3478416A (en) Bonding of beryllium members
EP0480404A2 (en) Corrosion-resistant and heat-resistant metal composite and method of producing
JP3986878B2 (en) Manufacturing method for welded steel pipe with excellent weld corrosion resistance
Sequeira et al. Formation of diffusion coatings on iron and steel: 3 aluminium, chromium, and zinc coatings
JPH045753B2 (en)
JPH07303977A (en) Manufacture of aluminum clad material for stainless steel excellent in high temperature peeling resistance
JP2003213459A (en) Surface treated steel sheet having excellent corrosion resistance and spot weldability and production method therefor
JPH05345969A (en) Al series alloy metallic material excellent in solderability and plating adhesion
GB2076432A (en) Cu-Ni coatings on ferrous substrates
JP2963806B2 (en) Aluminum alloy plate with excellent phosphatability and corrosion resistance after painting
Bratean et al. Research on anticorrosion characteristics of AlZn pseudo-alloy obtained by metal-arc process
Mor et al. Intercrystalline Corrosion of Welded Stainless Steel Pipelines in Marine Environment/Interkristalline Korrosion geschweißter Rohrleitungen aus rostfreiem Stahl bei Meerwassereinwirkung
JP3645042B2 (en) Laser welding method between plated steel plate and stainless steel plate
Victorovna ABOUT CONDITIONS OF THE OCCURRENCE AND COURSE OF CONTACT CORROSION OF METALS
JP2010144223A (en) Surface treated metallic material having excellent anticorrosive performance to dissimilar metal contact corrosion and dissimilar material joint body provided with surface treated metallic material
Vazirani Surface preparation of steel for adhesive bonding and organic coatings
JPH0794163B2 (en) Glass-lining equipment using stainless steel and manufacturing method thereof
JP2761963B2 (en) Manufacturing method of aluminum clad steel sheet with excellent workability
JPS6311651A (en) Steel products having excellent weatherability, sea water resistance and weldability
JPH06264260A (en) High corrosion resistant material having zinc hydroxide corrosion preventing film
JPH07157883A (en) Al based plated steel sheet for spot welding