JPS5942662B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid

Info

Publication number
JPS5942662B2
JPS5942662B2 JP51091679A JP9167976A JPS5942662B2 JP S5942662 B2 JPS5942662 B2 JP S5942662B2 JP 51091679 A JP51091679 A JP 51091679A JP 9167976 A JP9167976 A JP 9167976A JP S5942662 B2 JPS5942662 B2 JP S5942662B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
methacrolein
producing methacrylic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51091679A
Other languages
Japanese (ja)
Other versions
JPS5318509A (en
Inventor
慎一 田所
鉄男 鈴木
雅夫 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP51091679A priority Critical patent/JPS5942662B2/en
Publication of JPS5318509A publication Critical patent/JPS5318509A/en
Publication of JPS5942662B2 publication Critical patent/JPS5942662B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はメタクロレインを酸化してメタクリル酸を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing methacrylic acid by oxidizing methacrolein.

更に詳しくはメタクロレイン又はメタクロレイン含有ガ
スを分子状酸素又は分子状酸素含有ガスで接触気相酸化
してメタクリル酸を製造するに際し、Mo、P、V3W
と、Mg、Caのいづれか1種、Cu、Ag、Ce、B
iのいづれか1種および酸素を構成成分とした混合物を
触媒として使用することを特徴とするメタクリル酸の製
造方法に関するものである。メタクロレインの接触気相
酸化によつてメタクリル酸を製造するための触媒組成物
としてMoおよびPを主要構成々分とする触媒が従来か
ら数多く提案されて来た。しかしその収率はまだ低く工
業的にはいまだ使用できるものではない。例えばMo−
P−Vから成る触媒が特開昭48−15817号特開昭
49−100027号さらに特開昭49−工26616
号の各公開明細書に於て使用されているが、そのメタク
リル酸選択率、メタクリル酸収率は低い。また日本化学
会誌1975巻3号481頁でもMo−P−V系触媒が
使われていたが、メタクリル酸選択率58%、メタクリ
ル酸収率43%を得ているにすぎない。しかもこのMo
−P−V触媒を使用した場合選択率が低く副反応が多い
のでその為反応熱の発生が大きく、そのため触媒層と熱
媒との温度差が39゜Cにも達し(比較例1)反応制御
が難かしく、工業的には極めて実施しがたい。一方特願
昭51−7254号明細書においてはMo、PおよびM
g、Ca、Br、Ba、Znよりなる群から選ばれる少
なくとも1種及び酸素からなる触媒が提案された。
More specifically, when producing methacrylic acid by catalytic gas phase oxidation of methacrolein or methacrolein-containing gas with molecular oxygen or molecular oxygen-containing gas, Mo, P, V3W
and one of Mg, Ca, Cu, Ag, Ce, B
The present invention relates to a method for producing methacrylic acid, characterized in that a mixture containing one of i and oxygen as a catalyst is used. Many catalysts containing Mo and P as main constituents have been proposed as catalyst compositions for producing methacrylic acid by catalytic gas phase oxidation of methacrolein. However, the yield is still low and it cannot be used industrially. For example, Mo-
Catalysts consisting of PV are disclosed in JP-A-48-15817, JP-A-49-100027, and JP-A-26616-A.
However, its methacrylic acid selectivity and methacrylic acid yield are low. Also, Mo-PV type catalyst was used in Journal of the Chemical Society of Japan, Vol. 1975, No. 3, p. 481, but the methacrylic acid selectivity was only 58% and the methacrylic acid yield was only 43%. Moreover, this Mo
-When a PV catalyst is used, the selectivity is low and there are many side reactions, so a large amount of reaction heat is generated, and the temperature difference between the catalyst layer and the heating medium reaches 39°C (Comparative Example 1). It is difficult to control and extremely difficult to implement industrially. On the other hand, in Japanese Patent Application No. 51-7254, Mo, P and M
A catalyst comprising at least one member selected from the group consisting of G, Ca, Br, Ba, and Zn and oxygen has been proposed.

この触媒によるとメタクリル酸収率は著しく改善された
がメタクリル酸選択率がまだ充分でなかつた。本発明者
らはMo−P系触媒の触媒活性をさらに改良するために
多元素触媒について研究を重ね触媒構成元素の種類、原
子比及ひ調整方法等種々検討した結果、MO,P,V,
WとMg又はCa及びCu,Ag,Ce,Biからなる
元素のうち1種と酸素からなる金属酸化物がメタクロレ
インの接触気相酸化反応に於て優れた触媒活性を持つこ
とを見い出した。
Although the methacrylic acid yield was significantly improved using this catalyst, the methacrylic acid selectivity was still insufficient. In order to further improve the catalytic activity of Mo-P-based catalysts, the present inventors have conducted research on multi-element catalysts and have investigated various types of catalyst constituent elements, atomic ratios, adjustment methods, etc. As a result, MO, P, V,
It has been found that a metal oxide consisting of W and Mg or one of the elements consisting of Ca and Cu, Ag, Ce, and Bi and oxygen has excellent catalytic activity in the catalytic gas phase oxidation reaction of methacrolein.

本発明の触媒を用いた場合の特徴はメタクロレインのメ
タクリル酸への選択率が非常に高く、従つて酢酸、一酸
化炭素、炭酸ガス等の行き過ぎ酸化物の生成による反応
発熱量も少なく触媒層の温度分布も均一となり反応を制
御しやすいということにある。
The characteristics of using the catalyst of the present invention are that the selectivity of methacrolein to methacrylic acid is very high, and therefore the amount of heat generated by the reaction due to the generation of excessive oxides such as acetic acid, carbon monoxide, and carbon dioxide is small, and the catalyst layer The temperature distribution is also uniform, making it easier to control the reaction.

又副生物が少ないことから以後の精製も極めて容易とな
る。これらの点は工業的な面からみてそのメリツトは極
めて大きい。本発明の触媒を完成する過程において、本
発明者らはメタクロレインの酸化触媒として効果を有す
るMO−P−V−Wから成る新規な触媒を見出したが、
この触媒はMO−P−触媒に比べて収率は向上するが比
較例2に示すとおり選択率が不充分であり満足すべき触
媒とは言えない。
Further, since there are few by-products, subsequent purification becomes extremely easy. These points have extremely great merits from an industrial perspective. In the process of completing the catalyst of the present invention, the present inventors discovered a new catalyst consisting of MO-P-V-W that is effective as an oxidation catalyst for methacrolein.
Although this catalyst has an improved yield compared to the MO-P-catalyst, as shown in Comparative Example 2, the selectivity is insufficient and it cannot be said to be a satisfactory catalyst.

本発明はMO−P−V−W触媒にさらにMg,Caのう
ちの1種およびCu,Ag,Ce,Blのうちの1種を
加えることによつて選択率の向上をはかつたものであり
これによつて前述のMO−P−V触媒およびMO一P−
アルカリ土類金属触媒の持つ欠点を大巾に改良すること
ができた。例えば実施例1に示すとおりMO−P−V−
W一Mg−Cuの酸化物から成る触媒によつてメタクロ
レイン転化率84,1%、メタクリル酸選択率88.3
%、メタクリル酸の単流収率74.3%という好成績を
得た。
The present invention improves the selectivity by further adding one of Mg and Ca and one of Cu, Ag, Ce, and Bl to the MO-P-V-W catalyst. This allows the aforementioned MO-PV catalyst and MO-P-
We were able to significantly improve the drawbacks of alkaline earth metal catalysts. For example, as shown in Example 1, MO-PV-
With the catalyst consisting of W-Mg-Cu oxide, methacrolein conversion rate was 84.1% and methacrylic acid selectivity was 88.3%.
%, and a single flow yield of methacrylic acid of 74.3% was obtained.

このときの副成物は酢酸、一酸化炭素、炭酸ガスのみで
その量も少なく、触媒層の温度も均一であり熱媒との温
度差もわずかであつた。本発明において用いられる触媒
はMO,P,V,WとMg,Caのうちいずれか1種、
Cu,Ag,Ce,Biのうちいずれか1種および酸素
から成る7元系触媒であり、その構成元素の好ましい原
子比は下記一般式:で示した場合、a−12とすると、
b=1〜3,c=0.5〜3,d−0.5〜3,e−0
.5〜3,f一0.1〜1の各値であり、gは各元素の
原子価を満足するに足る酸素の原子数である。
The by-products at this time were only acetic acid, carbon monoxide, and carbon dioxide gas, and the amount thereof was small, and the temperature of the catalyst layer was uniform, and the temperature difference with the heating medium was small. The catalyst used in the present invention is any one of MO, P, V, W, Mg, Ca,
It is a seven-component catalyst consisting of any one of Cu, Ag, Ce, Bi and oxygen, and the preferable atomic ratio of its constituent elements is expressed by the following general formula: If it is a-12,
b=1~3, c=0.5~3, d-0.5~3, e-0
.. 5 to 3, f-0.1 to 1, and g is the number of oxygen atoms sufficient to satisfy the valence of each element.

ただしXはMg又はCaを示し、YはCu,Ag,Ce
,Biからなる元素のうち1種を表わす。本発明の触媒
においてcおよびdの値を上言似上に増加させることは
CO2の副生量が増大し、好ましくない。
However, X represents Mg or Ca, and Y represents Cu, Ag, Ce.
, Bi represents one type of element. Increasing the values of c and d in the catalyst of the present invention to the above-mentioned extent increases the amount of CO2 by-product, which is not preferable.

またe及びfの値を上記以上に増加させる事は転化率の
低下をきたし、逆にこれらの成分の減少は選択率を低下
させるため好ましくない。Y成分としてはCuが最も有
効な効力をもつている。本発明の触媒の製造にあたつて
は各元素の原料としてモリブデン化合物として(まリン
モ1ノブデン酸が好ましいが、モリブデン酸、三酸化モ
リブデン、モリブデン酸アンモニウム等も使用できる。
Increasing the values of e and f beyond the above levels lowers the conversion rate, and conversely, decreasing these components lowers the selectivity, which is not preferable. As the Y component, Cu has the most effective effect. In producing the catalyst of the present invention, a molybdenum compound (preferably molybdenum nobdic acid, but molybdic acid, molybdenum trioxide, ammonium molybdate, etc.) can also be used as a raw material for each element.

リン化合物としてはオルトリン酸、リン酸アンモニウム
等が、バナジウム化合物としては五酸化バナジウム、メ
タバナジン酸アンモニウム等が、タングステン化合物と
してはタングステン酸、三酸化タングステン、タングス
テン酸アンモニウム等が使用でき、マグネシウム及びカ
ルシウム化合物としては水酸化物が特に好ましいが、硝
酸塩も使用できる。また銅化合物としては硝酸銅、酢酸
銅等が、銀化合物としては硝酸銀が、セリウム化合物と
しては硝酸セリウム等が、ビスマス化合物として(ま硝
酸ビスマス、酸化ビスマス等が使用できる。本発明方法
における触媒の調製には従来から公知の蒸発乾固法、沈
澱法、酸化物混合法等を用いることができるが、再現性
良く調製するためには、触媒原料の水溶液又は懸濁液を
蒸発乾固して空気中で焼成する蒸発乾固法が特に好まし
い。
As phosphorus compounds, orthophosphoric acid, ammonium phosphate, etc. can be used, as vanadium compounds, vanadium pentoxide, ammonium metavanadate, etc. can be used, as tungsten compounds, tungstic acid, tungsten trioxide, ammonium tungstate, etc. can be used, and magnesium and calcium compounds can be used. Hydroxides are particularly preferred, but nitrates can also be used. Further, copper nitrate, copper acetate, etc. can be used as a copper compound, silver nitrate can be used as a silver compound, cerium nitrate etc. can be used as a cerium compound, and bismuth compound (bismuth nitrate, bismuth oxide, etc.) can be used. Conventionally known evaporation to dryness methods, precipitation methods, oxide mixing methods, etc. can be used for preparation, but in order to prepare with good reproducibility, it is necessary to evaporate to dryness an aqueous solution or suspension of the catalyst raw material. Particularly preferred is an evaporation to dryness method in which baking is performed in air.

また金属酸化物はそれ自体を触媒として用いることがで
きるが、担体上に担持して用いることも可能である。好
ましい担体としてはシリコンカーバイド、ジルコニア、
セライト、アルミナ、チタニア、マグネシアの様なもの
が挙げられる。本発明における反応物質はメタクロレイ
ン又はメタタロレイン含有ガスと分子状酸素又は分子状
酸素含有ガスが用いられる。
Further, the metal oxide itself can be used as a catalyst, but it can also be used by supporting it on a carrier. Preferred carriers include silicon carbide, zirconia,
Examples include celite, alumina, titania, and magnesia. The reactants used in the present invention are methacrolein or a gas containing metatalolein and molecular oxygen or a gas containing molecular oxygen.

原料ガスには水蒸気が希釈剤として用いられる。原料ガ
ス組成としては1〜10容量%のメタクロレイン2〜2
0容量%の酸素、20〜60容量%の水蒸気、残りは窒
素、炭酸ガス等の不活性ガスである。本発明方法を実施
する際の反応温度は200は〜400℃の範囲で行われ
るが、特に2500−350゜Cが好ましい。
Steam is used as a diluent for the raw material gas. The raw material gas composition is 1 to 10% by volume of methacrolein 2 to 2.
0% by volume of oxygen, 20-60% by volume of water vapor, and the rest is inert gas such as nitrogen and carbon dioxide. The reaction temperature when carrying out the method of the present invention is in the range of 200 to 400°C, but 2500 to 350°C is particularly preferred.

又圧力は常圧〜10気圧、好ましくは常圧〜5気圧の圧
力下、1000〜3000hr1の空間速度が好ましい
。触媒反応器の形式は固定床、移動床、流動床のような
従来周知のいづれの形式でもよい。
Further, the pressure is normal pressure to 10 atm, preferably normal pressure to 5 atm, and the space velocity is preferably 1000 to 3000 hr1. The type of catalytic reactor may be any conventionally known type such as a fixed bed, moving bed, or fluidized bed.

また反応生成物は既知の一般的な方法によつて捕集する
ことができる。例えば凝縮器によつて凝縮液化して集め
る方法、溶剤によつて捕集する方法等が用いられる。そ
の際未反応のメタクロレインは前記の捕集物から夫々の
捕集方法に応じた形で分離回収して再び酸化反応の原料
として循環使用できる。以下実施例を挙げて本発明をさ
らに具体的に説明するが、本発明はこれらの実施例によ
つて限定されるものではない。実施例中メタクロレイン
転化率、メタクリル酸選択率及びメタクリル酸収率の定
義は下記の如くである。
The reaction products can also be collected by known common methods. For example, a method of collecting the material by condensing it into a liquid using a condenser, a method of collecting it using a solvent, etc. are used. At this time, unreacted methacrolein can be separated and recovered from the collected material in a form depending on the respective collection method and recycled again as a raw material for the oxidation reaction. The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. In the examples, the definitions of methacrolein conversion rate, methacrylic acid selectivity, and methacrylic acid yield are as follows.

実施例 1 リンモリブデン酸1349を200m1のイオン交換水
に溶解した。
Example 1 Phosphormolybdic acid 1349 was dissolved in 200 ml of ion exchange water.

この溶液に8.5%オルトリン酸5.89、硝酸銅3.
69、五酸化バナジウム3.69、タングステン酸アン
モニウム13.09及び水酸化ングネシウム2.99を
順次添加し、70℃に加熱しながら3時間撹拌した。そ
の後蒸発乾固して得た黄緑色の固体を120℃で一夜乾
燥後3mm直径の球形に成型した。これを42『Cで3
時間焼成して組成比MOl2−P2−V1−W,−Mg
lCUO.3の触媒を得た。この触媒50m1を内径2
5mmのステンレス製固定床反応管に充填し、メタクロ
レイン:空気:水蒸気−3:42:55(容量%)の組
成の原料ガスを送入して酸化反応を行つたところ第1表
に示す結果を得た。比較例 1 タングステン酸アンモニウム、水酸化マグネシウム及び
硝酸銅を用いないほかは実施例1の方法と同様に行ない
、下記に示す組成の触媒を得た。
This solution contains 5.89% of 8.5% orthophosphoric acid and 3.8% of copper nitrate.
69, vanadium pentoxide 3.69, ammonium tungstate 13.09 and ngnesium hydroxide 2.99 were sequentially added thereto, and the mixture was stirred for 3 hours while heating to 70°C. Thereafter, the yellow-green solid obtained by evaporation to dryness was dried at 120° C. overnight and then molded into a sphere with a diameter of 3 mm. Change this to 42 "3 in C"
After time firing, composition ratio MOl2-P2-V1-W, -Mg
lCUO. A catalyst of No. 3 was obtained. This catalyst 50ml has an inner diameter of 2
An oxidation reaction was carried out by filling a 5 mm stainless steel fixed bed reaction tube with raw material gas having a composition of methacrolein: air: steam - 3:42:55 (volume %). The results are shown in Table 1. I got it. Comparative Example 1 A catalyst having the composition shown below was obtained in the same manner as in Example 1 except that ammonium tungstate, magnesium hydroxide, and copper nitrate were not used.

こうして得られた触媒を実施例1と同様に反応に供した
ところ第1表に示す結果を得た。比較例 2 水酸化マグネシウム及び硝酸銅を用いないほかは実施例
1の方法と同様に行ない、下記に示す組成の触媒を得た
When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained. Comparative Example 2 A catalyst having the composition shown below was obtained in the same manner as in Example 1 except that magnesium hydroxide and copper nitrate were not used.

こうして得られた触媒を実施例1と同様に反応に供した
ところ第1表に示す結果を得た。
When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained.

比較例 3 硝酸銅を用いないほかは実施例1の方法と同様に行ない
下記に示す組成の触媒を得た。
Comparative Example 3 A catalyst having the composition shown below was obtained in the same manner as in Example 1 except that copper nitrate was not used.

ことして得られた触媒を実施例1と同様に反応に供した
ところ第1表に示す結果を得た。
When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained.

実施例 2 ン酸を11.69、硝酸銅を9.69、五酸化バナジウ
ムを7.29、水酸化マグネシウムを5.8g用いた他
は実施例1の方法と同様に行ない、下記に示す組成の触
媒を得た。
Example 2 The method of Example 1 was repeated except that 11.69 g of phosphoric acid, 9.69 g of copper nitrate, 7.29 g of vanadium pentoxide, and 5.8 g of magnesium hydroxide were used, and the composition shown below was obtained. A catalyst was obtained.

こうして得た触媒を実施例1と同様に反応に供したとこ
ろ第1表に示す結果を得た。
When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained.

実施例 3 リン酸を用いず、硝酸銅を1,29、タングステン酸ア
ンモニウム26.09を用いた他は実施例1の方法と同
様に行ない、下記に示す組成の触媒を得た。
Example 3 A catalyst having the composition shown below was obtained in the same manner as in Example 1, except that phosphoric acid was not used, copper nitrate was used at 1.29, and ammonium tungstate was used at 26.09.

4▼轟V1乙 ^1 ▼L 日z ▲▼↓6L
Vμυ.1こうして得た触媒を実施例1と同様に反応に
供したところ第1表に示す結果を得た。
4▼Todoroki V1 Otsu ^1 ▼L Dayz ▲▼↓6L
Vμυ. 1 The catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, and the results shown in Table 1 were obtained.

実施例 4 水酸化マグネシウムのかわりに水酸化カルシウム3.7
9を用いた他は実施例1の方法と同様に行ない、下記に
示す組成の触媒を得た。
Example 4 Calcium hydroxide 3.7 instead of magnesium hydroxide
A catalyst having the composition shown below was obtained in the same manner as in Example 1 except that 9 was used.

こうして得た触媒を実施例1と同様に反応に供したとこ
ろ第1表に示す結果を得た。
When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained.

実施例 5〜15 実施例1に示した触媒調製方法に従つて第1表に示す組
成で触媒をそれぞれ調製した。
Examples 5 to 15 Catalysts were prepared according to the catalyst preparation method shown in Example 1 with the compositions shown in Table 1.

ただし銀としては硝酸銀、セリウムとしては硝酸第2セ
リウムアンモニウム、ビスマスとしては硝酸ビスマスを
用いた。こうして得た触媒を実施例1と同様 に反応に供したところ第1表に示す結果を得た。
However, silver nitrate was used as silver, ceric ammonium nitrate was used as cerium, and bismuth nitrate was used as bismuth. When the catalyst thus obtained was subjected to a reaction in the same manner as in Example 1, the results shown in Table 1 were obtained.

Claims (1)

【特許請求の範囲】 1 メタクロレインを分子状酸素又は分子状酸素を含む
気体によつて接触気相酸化してメタクリル酸を製造する
に際し下記一般式Moa−Pb−Vc−Wd−Xe−Y
f−Og(上式中、Moはモリブデン、Pはリン、Vは
バナジウム、Wはタングステン、Xはマグネシウム又は
カルシウム、Yは銅、銀、セリウム及びビスマスからな
る元素のうち1種を表わす。 又a〜gは各元素の原子比を表わし、a=12としたと
きb=1〜3、c=0.5〜3、d=0.5〜3、e=
0.5〜3、f=0.1〜1の各値をとり、gは各元素
の原子価を満足するに足る酸素の原子数である。)で表
わされる金属酸化物を触媒として用いることを特徴とす
る選択的なメタクリル酸の製造法。
[Claims] 1. When producing methacrylic acid by catalytic gas phase oxidation of methacrolein with molecular oxygen or a gas containing molecular oxygen, the following general formula Moa-Pb-Vc-Wd-Xe-Y is used.
f-Og (in the above formula, Mo represents molybdenum, P represents phosphorus, V represents vanadium, W represents tungsten, X represents magnesium or calcium, and Y represents one of the elements consisting of copper, silver, cerium, and bismuth. a to g represent the atomic ratio of each element, and when a = 12, b = 1 to 3, c = 0.5 to 3, d = 0.5 to 3, e =
Each value is 0.5 to 3, f=0.1 to 1, and g is the number of oxygen atoms sufficient to satisfy the valence of each element. ) A selective method for producing methacrylic acid, characterized by using a metal oxide represented by as a catalyst.
JP51091679A 1976-07-31 1976-07-31 Method for producing methacrylic acid Expired JPS5942662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51091679A JPS5942662B2 (en) 1976-07-31 1976-07-31 Method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51091679A JPS5942662B2 (en) 1976-07-31 1976-07-31 Method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPS5318509A JPS5318509A (en) 1978-02-20
JPS5942662B2 true JPS5942662B2 (en) 1984-10-16

Family

ID=14033168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51091679A Expired JPS5942662B2 (en) 1976-07-31 1976-07-31 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JPS5942662B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714219U (en) * 1993-08-11 1995-03-10 株式会社石川精器 Gap adjustment collar

Also Published As

Publication number Publication date
JPS5318509A (en) 1978-02-20

Similar Documents

Publication Publication Date Title
US4621155A (en) Process for preparation of methacrylic acid
US4524236A (en) Process for oxydehydrogenation of ethane to ethylene
KR890000517B1 (en) Catalyst for manufacturing methacrolein
US4568790A (en) Process for oxydehydrogenation of ethane to ethylene
KR100569632B1 (en) Catalysts for production of unsaturated aldehyde and unsaturated carboxylic acid and a process for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalysts
US4155938A (en) Oxidation of olefins
US4341900A (en) Catalytic process for the preparation of unsaturated carboxylic acid
US4118419A (en) Catalytic process for the preparation of an unsaturated carboxylic acid
JP2841324B2 (en) Method for producing methacrolein
JPS5811416B2 (en) Method for producing methacrylic acid
US4075127A (en) Catalyst for production of α,β-unsaturated carboxylic acids
JPS5946934B2 (en) Method for manufacturing methacrylic acid
EP0501794A1 (en) Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JPS6116507B2 (en)
EP0265733B1 (en) Process for producing methacrylic acid
KR920009118B1 (en) Process for preparing catalysts for producing methacrylic acid
JP2004298873A (en) Mixed metal oxide catalyst for producing unsaturated aldehyde from olefin
JPH0791212B2 (en) Method for producing methacrylic acid
EP0639404B1 (en) Process for producing methacrylic acid synthesis catalyst
GB2029721A (en) Catalytic oxidation of methacrolein
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
US5420091A (en) Method of preparing catalyst used for producing methacrylic acids
JPH029014B2 (en)
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons