JPS5942475B2 - Semiconductor laser light modulation circuit - Google Patents
Semiconductor laser light modulation circuitInfo
- Publication number
- JPS5942475B2 JPS5942475B2 JP51102391A JP10239176A JPS5942475B2 JP S5942475 B2 JPS5942475 B2 JP S5942475B2 JP 51102391 A JP51102391 A JP 51102391A JP 10239176 A JP10239176 A JP 10239176A JP S5942475 B2 JPS5942475 B2 JP S5942475B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- current
- light
- modulation circuit
- light modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
- H01S5/06213—Amplitude modulation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
Description
【発明の詳細な説明】
本発明は半導体レーザ光変調回路、さらに詳し<いえば
注入電流の直流バイアスレベルを制御するようにした半
導体レーザ光変調回路に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser light modulation circuit, and more particularly to a semiconductor laser light modulation circuit that controls a DC bias level of an injected current.
半導体レーザは電流を注入することによつて光を発生す
る。半導体レーザの電流−光出力特性(以下I−L特性
)は温度依存性を有し、素子の劣化によつても変化する
。第1図は半導体レーザのI−L特性を示すグラフであ
る。Semiconductor lasers generate light by injecting current. The current-light output characteristics (hereinafter referred to as I-L characteristics) of a semiconductor laser have temperature dependence, and change depending on the deterioration of the device. FIG. 1 is a graph showing the IL characteristics of a semiconductor laser.
図中曲線Aは正常時のI−L特性、Bは半導体レーザの
素子温度が何かの原因で上昇したり、あるいは半導体レ
ーザそのものが劣化した場合の特性を示す。このため、
信号電流に直流バイアス電流10を重畳した第1図中c
のような変調電流を半導体レーザに印加した場合、出力
光の強度はI−L特性曲線A、Bに対応して各々a、b
のようになる。つまり、半導体レーザの素子温度の変化
や、半導体レーザの劣化によつて変調特性が変化を受け
るので、このままでは光通信用の光源としては不適当で
ある。上記のような欠点を除くために、出力光の平均値
あるいは尖頭値が一定となるように前記直流バイアス電
流10、を制御するという方法が行なわれていた。In the figure, curve A shows the I-L characteristic under normal conditions, and curve B shows the characteristic when the element temperature of the semiconductor laser increases for some reason or the semiconductor laser itself deteriorates. For this reason,
c in Fig. 1 when DC bias current 10 is superimposed on the signal current.
When a modulation current such as
become that way. In other words, the modulation characteristics are subject to changes due to changes in the element temperature of the semiconductor laser or deterioration of the semiconductor laser, so that it is unsuitable as a light source for optical communications as it is. In order to eliminate the above drawbacks, a method has been used in which the DC bias current 10 is controlled so that the average value or peak value of the output light is constant.
しかし、テレビジョンのビデオ信号で半導体レーザ出力
光を変調する場合に、出力光の平均値を一定にする方法
では画面の明るさによつて直流レベルが変化を受け、急
激な画面の明るさの変化があると受信された光から再生
したテレビ画面に同期はずれや明暗の変動が生ずる。However, when modulating the output light of a semiconductor laser with a television video signal, the method of keeping the average value of the output light constant causes the DC level to change depending on the brightness of the screen, resulting in sudden changes in the brightness of the screen. If there is a change, the received light will cause out-of-sync or fluctuations in brightness on the TV screen played back.
一方尖頭値を制御する方法が2値パルス伝送の場合に使
用されている。On the other hand, a method of controlling the peak value is used in the case of binary pulse transmission.
この方法をビデオ信号伝送に適用するにはビデオ信号の
同期側を光出力の大なる側に対応させて光変調を行えば
、常に同期パルスの直流レベルが固定されて、前記のよ
うな欠点は生じない。しかし半導体レーザのI−L特性
は低電流域でわん曲しているため、歪の少い伝送を行う
にはビデオ信号のいかなる電圧に対しても半導体レーザ
のI−L特性のわん曲部に達しないよう同期パルス位置
の注入電流を第2図に示す12のごとく充分高く選んで
おく必要がある。To apply this method to video signal transmission, if optical modulation is performed by making the synchronization side of the video signal correspond to the greater optical output side, the DC level of the synchronization pulse will always be fixed, and the above drawbacks will be avoided. Does not occur. However, since the I-L characteristic of a semiconductor laser is curved in the low current range, in order to perform transmission with little distortion, the curved part of the I-L characteristic of the semiconductor laser must be adjusted for any voltage of the video signal. It is necessary to select the injection current at the synchronous pulse position to be sufficiently high, such as 12 shown in FIG. 2, so as not to reach this point.
しかしそのようにすると、注入電流が大きな値をとる時
間率は非常に大きく、半導体レーザの寿命に悪影響を与
える。本発明は、半導体レーザの直流バイアスレベルを
低くして、しかも画質を損なわないように光変調を行な
うことができる半導体レーザの光変調回路を提供するこ
とを目的とするものである。前記目的を達成するために
本発明による光変調回路は、半導体レーザの注入電流を
、ビデオ信号の同期パルス側が低電流、白レベルが高電
流となるような極性で変調し、同期パルスに対応する前
記半導体レーザ出力を検出し、この検出レベルによつて
、前記注入電流の直流バイアスレベルを制御するように
構成してある。上記構成によれば、同期パルスの尖頭レ
ベルに対して注入電流をクランプすることができ損失を
押えることができ、また良質な画像伝送が可能となるの
で本発明の目的は完全に達成される。However, in this case, the percentage of time when the injection current takes a large value is very large, which adversely affects the life of the semiconductor laser. SUMMARY OF THE INVENTION An object of the present invention is to provide an optical modulation circuit for a semiconductor laser that can lower the DC bias level of the semiconductor laser and perform optical modulation without impairing image quality. In order to achieve the above object, the optical modulation circuit according to the present invention modulates the current injected into the semiconductor laser with a polarity such that the sync pulse side of the video signal is a low current and the white level is a high current, and corresponds to the sync pulse. The output of the semiconductor laser is detected, and the DC bias level of the injection current is controlled based on the detection level. According to the above configuration, the injection current can be clamped to the peak level of the synchronization pulse, the loss can be suppressed, and high-quality image transmission is possible, so that the object of the present invention is completely achieved. .
以下図面等を参照して本発明をさらに詳しく説明する。
第3図は本発明による光変調回路の一実施例を示す回路
である。The present invention will be described in more detail below with reference to the drawings and the like.
FIG. 3 shows an embodiment of the optical modulation circuit according to the present invention.
14は電圧電流変換器であつて端子18に加えられたビ
デオ信号電圧を13なる電流に変換する。14 is a voltage-current converter which converts the video signal voltage applied to the terminal 18 into a current 13;
14は直流バイアス電流であつて13とともに半導体レ
ーザ11に注入され、光Ll,L2を発生する。14 is a DC bias current which is injected into the semiconductor laser 11 together with 13 to generate lights Ll and L2.
光L1は通信路に供給されて通信用の光として受信端ま
で伝送される。光L,は半導体レーザの他端から出射さ
れ、その強度は光L1に比例する。光L2は光検出器1
2によつて電流に変換される。一方同期分離回路16は
テレビ受像器で一般的に用いられているものとほぼ同じ
構成の回路であつてビデオ信号の同期パルスが到来する
と同時にパルスを出力し、ゲート回路15はこのパルス
によつて光検出器12の出力をサンプル・ホールドして
、光L2の同期パルスに相当する部分の光強度に比例し
た電流16を差動電流増幅器17に供給し、基準電流1
5との差が増幅されて14となる。ここでである。The light L1 is supplied to the communication path and transmitted to the receiving end as communication light. Light L, is emitted from the other end of the semiconductor laser, and its intensity is proportional to light L1. Light L2 is from photodetector 1
2 is converted into electric current. On the other hand, the synchronization separation circuit 16 has almost the same configuration as that commonly used in television receivers, and outputs a pulse at the same time as the synchronization pulse of the video signal arrives, and the gate circuit 15 uses this pulse to output a pulse. The output of the photodetector 12 is sampled and held, and a current 16 proportional to the light intensity of the portion corresponding to the synchronous pulse of the light L2 is supplied to the differential current amplifier 17, and a reference current 1 is supplied to the differential current amplifier 17.
The difference from 5 is amplified to 14. Here it is.
但し、μは差動電流増幅器17の利得であり正数である
。半導体レーザの注入電流(13+14)から6への変
換係数をβとすれば、(13+I4)β−16となり、
これを式(1)に代入することによつてとなる。However, μ is the gain of the differential current amplifier 17 and is a positive number. If the conversion coefficient from the semiconductor laser injection current (13+14) to 6 is β, it becomes (13+I4)β-16,
This can be obtained by substituting this into equation (1).
μβを充分大きな値に選べば、I6+I5となり同期パ
ルスの時点における光出力は半導体レーザの特性が変化
しても、つまりβが変化しても一定の値に保たれる。半
導体レーザの寿命の点からは少いほど良いのであるが出
力光の変調波形の歪の点からはあまり少くできない。If μβ is chosen to be a sufficiently large value, I6+I5, and the optical output at the time of the synchronization pulse is kept constant even if the characteristics of the semiconductor laser change, that is, even if β changes. From the viewpoint of the life of the semiconductor laser, the smaller the better, but from the viewpoint of the distortion of the modulated waveform of the output light, it cannot be reduced very much.
しかし同期パルスの部分の直線性は画質に影響を与える
ことはなく、振幅の伸縮は受信側における同期操作に支
障がない程度ならば許容される。そこで第4図に示すよ
うにI,+I4の同期パルスの時点での値を、I−L特
性の直線性の保たれる最低の動作点E点よりも低電流の
D点に選んでも支障を生じない。また、たとえE点に選
んでも第2図のような方法より注入電流の平均値が小さ
くなることは明らかである。同期パルス時点の光出力の
検出は上記のような構成の他第5図に示す構成でも可能
である。However, the linearity of the synchronization pulse portion does not affect the image quality, and expansion and contraction of the amplitude is allowed as long as it does not interfere with the synchronization operation on the receiving side. Therefore, as shown in Figure 4, there is no problem even if the value at the time of the synchronizing pulse of I, +I4 is selected at point D, which has a lower current than point E, the lowest operating point where the linearity of the IL characteristic is maintained. Does not occur. Furthermore, even if point E is selected, it is clear that the average value of the injection current will be smaller than in the method shown in FIG. Detection of the optical output at the time of the synchronization pulse is possible with the configuration shown in FIG. 5 in addition to the configuration described above.
光検出器101によつて光L3の強度に比例した電流を
得、次に抵抗102にこの電流を流して電圧Vllを得
る。この電圧Vllは半導体レーザの注入電流に従つて
第6図に示すように変化している。ダイオード103は
同期パルス時点でのVllの値Vl3より大なるバイア
ス電源104によつてVl2なる順バイアスがかけられ
ており、このため、ダイオード103、バイアス電源1
04、コンデンサ105、抵抗106より成るピーク検
波回路の出力端子107の電圧V,4は第6図に示され
るごとく(Vl3−Vl2)なる電圧にクランプされる
。同図ではVl4の変化を拡大して書いてあるが実際は
抵抗106とコンデンサ105の値の積を大きくとるの
でVl4はほとんど変化せず、ほぼVl3Vl2なる一
定値をとる。上記のような回路を第3図におけるゲート
回路15、同期分離回路16のかわりに置き換え、差動
電流増幅器17へ電圧電流変化して加えれば第3図と同
様に動作することは明らかである。ただし、5と16の
極性は反対にする必要がある。以上説明したように、本
発明によればビデオ信号の同期パルスのレベルを半導体
レーザの低電流域の所望の位置にクランプすることがで
きるので、半導体レーザの低電流動作域を有効に利用で
きるため同期パルス部分も比較的高電流域に設定する場
合に比べて半導体レーザの寿命を延長でき、さらに出力
光の直流レベルの固定ができる利点がある。A current proportional to the intensity of the light L3 is obtained by the photodetector 101, and then this current is passed through the resistor 102 to obtain the voltage Vll. This voltage Vll changes as shown in FIG. 6 in accordance with the injection current of the semiconductor laser. The diode 103 is forward biased to Vl2 by the bias power supply 104, which is larger than the value of Vll at the time of the synchronization pulse, Vl3. Therefore, the diode 103 and the bias power supply 1
04, a capacitor 105, and a resistor 106, the voltage V,4 at the output terminal 107 of the peak detection circuit is clamped to the voltage (Vl3-Vl2) as shown in FIG. In the figure, the change in Vl4 is shown in an enlarged manner, but in reality, the product of the values of the resistor 106 and the capacitor 105 is large, so Vl4 hardly changes and takes a constant value of approximately Vl3Vl2. It is clear that if the above-described circuit is substituted for the gate circuit 15 and synchronous separation circuit 16 in FIG. 3, and the voltage and current are applied to the differential current amplifier 17 with varying voltages, the same operation as in FIG. 3 can be obtained. However, the polarities of 5 and 16 need to be reversed. As explained above, according to the present invention, the level of the synchronization pulse of the video signal can be clamped at a desired position in the low current range of the semiconductor laser, so that the low current operating range of the semiconductor laser can be effectively utilized. Compared to the case where the synchronous pulse portion is also set in a relatively high current range, the life of the semiconductor laser can be extended, and the DC level of the output light can be fixed.
以上詳しく説明した実施例につき、本発明の範囲内で種
々の変形を施すことができる。Various modifications can be made to the embodiments described in detail above within the scope of the present invention.
例えばこれまでの説明では制御に用いるための光出力を
半導体レーザの通信用光を出力する端面と反対側の端面
から取り出していたが、ハーフミラーその他の手段によ
つて通信用出力光の一部を取り出して制御用光出力とし
て用いることもできる。For example, in the previous explanation, the optical output used for control was taken out from the end face of the semiconductor laser opposite to the end face that outputs the communication light, but a part of the communication output light is taken out by a half mirror or other means. It is also possible to take out and use it as a control light output.
本発明の範囲はそのような変形例を含めて、特許請求の
範囲記載のすべてにおよぶものである。The scope of the present invention extends to all of the claims, including such modifications.
【図面の簡単な説明】
第1図は半導体レーザの特性が変化した場合に変調光出
力が変動することを説明するためのグラフ、第2図は従
来の光出力の尖頭値を制御する方法によつた場合の変調
電流と光出力の関係を説明するためのグラフ、第3図は
本発明の実施例を示す回路図、第4図は第3図に示した
回路の動作を説明するためのグラフ、第5図は第3図に
示した回路に用いる光強度検出器の他の構成例を示す回
路図、第6図は第5図に示した回路の動作を説明するた
めのグラフである。
L1・・・・・・通信路に供給される通信用の光、L2
・・・・・・L,に比例する光検出用の光、11・・・
・・・半導体レーザ、12・・・・・・光検出器、14
・・・・・・電圧電流変換器、15・・・・・・ゲート
回路、16・・・・・・同期分離回路、17・・・・・
・差動増幅器、18・・・・・・変調入力端子、101
・・・・・・光検出器、102,106・・・・・・抵
抗、103・・・・・・ダイオード、104・・・・・
・電源、105・・・・・・コンデンサ、107・・・
・・・出力端子。[Brief explanation of the drawings] Figure 1 is a graph to explain that the modulated optical output changes when the characteristics of a semiconductor laser change, and Figure 2 is a conventional method for controlling the peak value of optical output. FIG. 3 is a circuit diagram showing an embodiment of the present invention, and FIG. 4 is a graph for explaining the operation of the circuit shown in FIG. 3. 5 is a circuit diagram showing another configuration example of the light intensity detector used in the circuit shown in FIG. 3, and FIG. 6 is a graph for explaining the operation of the circuit shown in FIG. 5. be. L1...Light for communication supplied to the communication path, L2
...Light for photodetection proportional to L, 11...
... Semiconductor laser, 12 ... Photodetector, 14
...Voltage-current converter, 15...Gate circuit, 16...Synchronization separation circuit, 17...
・Differential amplifier, 18...Modulation input terminal, 101
...Photodetector, 102,106...Resistor, 103...Diode, 104...
・Power supply, 105...Capacitor, 107...
...Output terminal.
Claims (1)
ス側が低電流、白レベルが高電流となるような極性で変
調し、同期パルスに対応する前記半導体レーザ出力を検
出し、この検出レベルによつて、前記注入電流の直流バ
イアスレベルを制御するように構成した半導体レーザ光
変調回路。1 Modulate the injection current of the semiconductor laser with a polarity such that the synchronization pulse side of the video signal is a low current and the white level is a high current, detect the semiconductor laser output corresponding to the synchronization pulse, and according to this detection level , a semiconductor laser light modulation circuit configured to control a DC bias level of the injection current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51102391A JPS5942475B2 (en) | 1976-08-27 | 1976-08-27 | Semiconductor laser light modulation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51102391A JPS5942475B2 (en) | 1976-08-27 | 1976-08-27 | Semiconductor laser light modulation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5327380A JPS5327380A (en) | 1978-03-14 |
JPS5942475B2 true JPS5942475B2 (en) | 1984-10-15 |
Family
ID=14326138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51102391A Expired JPS5942475B2 (en) | 1976-08-27 | 1976-08-27 | Semiconductor laser light modulation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5942475B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712767U (en) * | 1993-06-30 | 1995-03-03 | 象印マホービン株式会社 | Heat storage device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4680810A (en) * | 1985-06-28 | 1987-07-14 | American Telephone And Telegraph Company, At&T Bell Labs | Means for controlling a semiconductor device and communication system comprising the means |
JPS62131635A (en) * | 1985-12-02 | 1987-06-13 | Nec Corp | Optical output control circuit |
EP0273361B1 (en) * | 1986-12-29 | 1994-06-08 | Fuji Photo Film Co., Ltd. | Laser beam recording method and apparatus |
-
1976
- 1976-08-27 JP JP51102391A patent/JPS5942475B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0712767U (en) * | 1993-06-30 | 1995-03-03 | 象印マホービン株式会社 | Heat storage device |
Also Published As
Publication number | Publication date |
---|---|
JPS5327380A (en) | 1978-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5579328A (en) | Digital control of laser diode power levels | |
CA1149021A (en) | Control circuit for the drive current of a laser | |
US7308210B2 (en) | Optical modulating device, optical transmitting apparatus using the same, method of controlling optical modulating device, and control program recording medium | |
US5012475A (en) | Analog compensation system for linear lasers | |
JPH0685363A (en) | Laser bias and modulation circuit | |
US7853155B2 (en) | Method for adjusting bias in optical transmitter with external modulator | |
US5187713A (en) | Nonlinear device control methods and apparatus | |
US4101847A (en) | Laser control circuit | |
JPH0591047A (en) | Optical balanced transmitter | |
EP0048057B1 (en) | Arrangement for modulating the output signal of a converter, for example an electro-optical converter | |
JP2715206B2 (en) | Laser recording device | |
JPS5942475B2 (en) | Semiconductor laser light modulation circuit | |
FR2561051A1 (en) | VIDEO SIGNAL PROCESSING SYSTEM WITH AUTOMATIC LIMITER OF BEAM CURRENTS | |
FI76465B (en) | SIGNALBEHANDLINGSANORDNING. | |
JPH04249930A (en) | Low distortion optical communication system | |
US20020093999A1 (en) | Laser diode drive circuit and optical transmission system | |
US4757508A (en) | Tracking modulation limiter for lasers | |
US4092615A (en) | Method of and apparatus for stabilizing output light of a current modulation laser device whose output is changed by changing an anode current | |
JP2888989B2 (en) | Method and circuit arrangement for controlling the light output of a laser diode | |
JPS5941315B2 (en) | Semiconductor laser output stabilization method | |
JPH0548182A (en) | Laser diode optical output control device | |
JPH06177835A (en) | Optical transmitter | |
JPS61228682A (en) | Driving circuit for light emitting diode | |
JPS6142471B2 (en) | ||
JPH0342736B2 (en) |