JPS5942059B2 - Method for recovering Zn from Zn-containing materials - Google Patents

Method for recovering Zn from Zn-containing materials

Info

Publication number
JPS5942059B2
JPS5942059B2 JP56137201A JP13720181A JPS5942059B2 JP S5942059 B2 JPS5942059 B2 JP S5942059B2 JP 56137201 A JP56137201 A JP 56137201A JP 13720181 A JP13720181 A JP 13720181A JP S5942059 B2 JPS5942059 B2 JP S5942059B2
Authority
JP
Japan
Prior art keywords
extract
component
solution
zno
rodan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56137201A
Other languages
Japanese (ja)
Other versions
JPS5839753A (en
Inventor
孝夫 橋本
雄浄 丸川
正克 堤
主税 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56137201A priority Critical patent/JPS5942059B2/en
Publication of JPS5839753A publication Critical patent/JPS5839753A/en
Publication of JPS5942059B2 publication Critical patent/JPS5942059B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は工業廃棄物のZn陰有右動湿式処理を施して高
純度のZnを回収し同時に廃棄物を処理する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering high-purity Zn by subjecting industrial waste to Zn-containing wet-wet treatment and simultaneously treating the waste.

本発明において、”Znき右動″は製鉄所内で発生する
高炉ダスト、転炉ダスト等の各種ダスト類、亜鉛鋼板製
造の際のスクラップ類、廃液スラッジ等の亜鉛酸化物又
は製鋼所等の電気炉から発生する飛散ダストを捕集した
もの等の総てを指称する。
In the present invention, "Zn right-hand motion" refers to various types of dust such as blast furnace dust and converter dust generated in steel works, scraps during the production of galvanized steel sheets, zinc oxides such as waste liquid sludge, or electricity generated in steel works, etc. Refers to all collected scattered dust generated from furnaces.

製鉄所、製鋼所等においては多量のZnOをきむ酸化鉄
系ダストやZnメッキ鋼板片スクラップが発生しており
、ZnやFeを効率良く回収することを資源の有効利用
の面から非常に肝要である。
Iron oxide dust and scraps of Zn-plated steel sheets are generated in iron works, steel mills, etc., which process large amounts of ZnO, and it is extremely important to efficiently recover Zn and Fe from the perspective of effective resource utilization. be.

従来性なわれている回収方法の内、乾式方法ではZn3
有物をロータリーキルン中でコークスのような還元剤粉
末と混合し、約1200℃程度に加熱して、低沸点のZ
nを蒸発させ、キルン外で冷却固化させて酸化亜鉛(Z
nO)として捕集するが、この方法は他の粉塵も共に飛
散して同時に捕集されるため其の純度は低下し、通常Z
n:30〜50%の値しか得られない。
Among the conventional recovery methods, the dry method
The organic matter is mixed with reducing agent powder such as coke in a rotary kiln and heated to about 1200°C to reduce the low boiling point Z
Zn is evaporated and cooled and solidified outside the kiln to produce zinc oxide (Z
However, in this method, other dust particles are also scattered and collected at the same time, resulting in a decrease in purity.
n: Only a value of 30 to 50% can be obtained.

この他に蒸発したZnを金属状態で捕収する蒸留方法も
行なわれているが、何れも多量の熱エネルギーを消費す
ると共に煉瓦機材等の消耗が甚しいのが難点である。
In addition, distillation methods have been used to collect evaporated Zn in a metallic state, but these methods have the drawbacks of consuming a large amount of thermal energy and causing considerable wear and tear on brick equipment and the like.

又湿式方法ではアルカリ水溶液を使用してZn分を抽出
する方法があるが、試薬費が嵩むと言う難点があり他方
、酸を使用して処理する方法は他の重金属、特にFeが
同時に溶出して来るため試薬の使用はが多くなり、又異
種金属の分離操作が煩雑になると共に手数がかかり、そ
のため工業化には採用し難い。
In addition, there is a wet method in which Zn is extracted using an alkaline aqueous solution, but this method has the drawback of increasing reagent costs.On the other hand, a method using acid causes other heavy metals, especially Fe, to be eluted at the same time. As a result, a large number of reagents are used, and the separation of different metals becomes complicated and time-consuming, making it difficult to apply to industrialization.

本発明は、これ等の難点を解決してZni有物右動高純
度のZn分を効率的にしかも安価に回収すると同時に廃
棄物を効率的に処理する方法を提供することを目的とす
るもので、Z0陰有物にチオシアン酸アンモニウム水溶
液を加えることによってZn分のみをロダン化合物とし
て溶液側に抽出して純度の高いZn化合物として回収し
、Fe分を多量によみ同時にZn分を極小量に減少した
不溶解物は製鉄源として再利用処理することを要旨とす
るものである。
The object of the present invention is to solve these difficulties and provide a method for efficiently and inexpensively recovering Zn-containing high-purity Zn components and at the same time efficiently disposing of waste. Then, by adding ammonium thiocyanate aqueous solution to the Z0 anion, only the Zn component is extracted as a rhodan compound into the solution side and recovered as a highly pure Zn compound, and a large amount of Fe component is added while at the same time the Zn component is reduced to a minimum amount. The aim is to recycle the reduced insoluble matter as a source of iron production.

以下図面を参照して本発明の方法について詳細に説明す
る。
The method of the present invention will be explained in detail below with reference to the drawings.

第1図は本発明方法の一実施例の工程表、第2図はチオ
シアン酸アンモニウム水溶液によりZn分を抽出した抽
出液中のZn (S CN )2溶解度と湿度との関係
を示すグラフである。
FIG. 1 is a process chart of an embodiment of the method of the present invention, and FIG. 2 is a graph showing the relationship between Zn (S CN )2 solubility and humidity in an extract obtained by extracting Zn with an ammonium thiocyanate aqueous solution. .

第1図の工程表に示すように、Zn島有右動チオシアン
酸アンモニウム水溶液として本実施例の場合製鉄所内で
シアン、硫黄分をまむコークス炉ガスの洗浄の際発生す
るアンモニア媒体脱硫、脱シアン廃液(通称ロダン廃液
、チオシアン酸アンモニウム(NH4SCN)を主成分
としている)を添加混合し、40°C〜70℃で略々1
時間撹拌した後濾過し、Fe分をぎむ不溶物残渣は製鉄
源として再利用し、P液をZn分抽出液(Z n (S
CN)2溶液)として回収する。
As shown in the process chart in Figure 1, in this example, the ammonia medium generated during cleaning of coke oven gas containing cyanide and sulfur in a steelworks is used as a Zn island-based ammonium thiocyanate aqueous solution. Cyanide waste liquid (commonly known as Rodan waste liquid, whose main component is ammonium thiocyanate (NH4SCN)) is added and mixed, and the mixture is heated at approximately 1°C to 70°C.
After stirring for a period of time, it is filtered, the insoluble residue containing Fe content is reused as a source for iron production, and the P solution is converted into a Zn content extract (Zn (S
CN)2 solution).

その反応式は2NH,SCN+ZnO−+Zn(SCN
)2+2NH3+H20・・・・・・・・・ (1) 抽出のためのロダン廃液の使用量は(1)式を満足する
当量以上に必要である。
The reaction formula is 2NH,SCN+ZnO-+Zn(SCN
)2+2NH3+H20 (1) The amount of Rodan waste liquid used for extraction is required to be at least an equivalent amount that satisfies equation (1).

抽出温度は常温でも差支えないが、溶解度の差から、加
温した方が当然抽出速度が犬になると共に抽出濃度も高
くなる。
The extraction temperature may be room temperature, but due to the difference in solubility, heating will naturally result in faster extraction speed and higher extraction concentration.

Zn、l右動にロダン廃液を加えてZn分を抽出した場
合の抽出率及び抽出液中のZn濃度と温度との関係を第
1表に示す。
Table 1 shows the extraction rate and the relationship between the Zn concentration in the extract and the temperature when the Zn component was extracted by adding Rodan waste liquid to the Zn, l-right movement.

上述したように、格別の用途もなくて公害防止策上終局
的には焼却処理されているロダン廃液を活用してZni
有物右動n分を選択的にZn (SCN)2の形態で液
側に移行させるもので、他の金属特にFeは殆んど溶出
させず、抽出液中のFeイオンは数10ppm程度であ
ることが本発明方法の要点の一つである。
As mentioned above, Zni is produced by utilizing Rodan waste liquid, which has no particular use and is ultimately incinerated as a pollution prevention measure.
This is a method that selectively transfers the dextral kinetics of n components to the liquid side in the form of Zn (SCN)2, and hardly any other metals, especially Fe, are eluted, and the Fe ions in the extract are only about a few tens of ppm. This is one of the key points of the method of the present invention.

次に上記のようにして抽出されたZ n (S CN
) 2溶液から高純度のZn化合物を回収するのに本発
明においては以下に説明する(5)、(B)及び(Qの
3様の回収方法を用うる。
Next, Z n (S CN
) In the present invention, the following three recovery methods (5), (B), and (Q) can be used to recover high-purity Zn compounds from the two solutions.

(イ)法: 第1図工程表中の(5)欄に示すように、先ず抽出され
たZn (S CN )2溶液を濃縮して1次の冷却晶
析を行なう。
(A) Method: As shown in column (5) in the process chart of FIG. 1, first, the extracted Zn(SCN)2 solution is concentrated and primary cooling crystallization is performed.

冷却晶析の一例として、例えば第2図のグラフに示すよ
うりこ、P液中Z n (S CN )2の溶解度はろ
液の温度が70°Cの時ろ液11当りZn(SCN)2
は200 gr溶解しており(飽和状態で)、30℃の
時は100 gr溶解している。
As an example of cooling crystallization, for example, the solubility of Zn(SCN)2 in the P solution as shown in the graph of FIG. 2 is Zn(SCN)2 per 11 filtrate when the temperature of the filtrate is 70°C.
is 200 gr dissolved (at saturation) and 100 gr dissolved at 30°C.

従って炉液の温度を70℃より30℃迄降させることに
よって100 grのZ n (S CN ) 2が結
晶・とじて析出し、結晶Zn (S CN )2は粒子
が比較的粗く濾過性が良好なため固液分離は容易に達成
出来る。
Therefore, by lowering the temperature of the furnace liquid from 70°C to 30°C, 100 gr of Zn(SCN)2 is precipitated as crystals, and the crystalline Zn(SCN)2 has relatively coarse particles and is difficult to filter. Due to its good properties, solid-liquid separation can be easily achieved.

次にこの固液分離した結晶Zn (S CN ) 2を
新しいチオシアン酸アンモニウム水溶液の添加によって
再溶解し第2次の冷却晶析を行なって一次の場合より浄
化されて高純度の結晶Zn(SCN)2を生成する。
Next, this solid-liquid separated crystalline Zn(SCN) 2 is redissolved by adding a fresh aqueous ammonium thiocyanate solution, and a second cooling crystallization is performed to obtain highly purified crystalline Zn(SCN), which is purified compared to the first crystallization. )2.

この再溶、再結晶による浄化操作を繰返すことによって
、より高純度の結晶Z n(S CN、)2を生成する
ことが出来る。
By repeating this purification operation by redissolution and recrystallization, higher purity crystal Z n (S CN, ) 2 can be produced.

第2表に上記の第1及び第2次の冷却晶析の結晶Zn
(S CN )zの純度比較の一例を示す。
Table 2 shows the crystal Zn of the above first and second cooling crystallization.
An example of purity comparison of (S CN )z is shown.

(B)及び(Q法は第1図工程表に示すように、Zn陰
有右動りチオシアン酸アンモニウム水溶液(ロダン廃液
)によってZn分を抽出した抽出液(Zn (S CN
) 2溶液)を加熱焙焼してZn酸化物(ZnO)と
して捕集し、この捕集した粗Zn0(焙焼ダスト捕集の
際にZnO以外の不純物を陰んでいる)を−但鉱酸に溶
解した後浄化操作を行なうものである。
(B) and (Q method, as shown in the process chart in Figure 1, extract Zn (S CN
) 2 solution) is heated and roasted and collected as Zn oxide (ZnO), and this collected crude Zn0 (containing impurities other than ZnO during the roasting dust collection) is converted into a mineral acid. A purification operation is carried out after dissolving the material.

上記の加熱焙焼工程の反応式は 2Zn(SCN)2+1102−+2ZnO+4CO2
+4NO+4S02・・・・・・・・・ (2)鉱酸溶
解工程の反応式は(鉱酸として硫酸又は塩酸を使用する
場合) ■法は有機物によって浄化操作を行ないC)法は無機物
並びに共沈分離方法によって浄化操作を行なう。
The reaction formula for the above heating and roasting process is 2Zn(SCN)2+1102-+2ZnO+4CO2
+4NO+4S02... (2) The reaction formula for the mineral acid dissolution process is (when sulfuric acid or hydrochloric acid is used as the mineral acid). Purification is performed using a separation method.

この抽出液を加熱焙焼して粗ZnOを捕集する方法は、
抽出に使用するロダン廃液は従来、終局的には焼却処理
されるものであることから、処理に必要な熱的エネルギ
ーの消費量に変化が無く、工業的処理方法として有効な
方法である。
The method of collecting crude ZnO by heating and roasting this extract is as follows.
Conventionally, the Rodan waste liquid used for extraction is ultimately incinerated, so there is no change in the amount of thermal energy required for treatment, making it an effective industrial treatment method.

の)法: 第1図の工程表の(B)欄に示すように、粕、 Z n
Oを硫酸、塩酸等の鉱酸に溶解し、有機溶媒の添加に
よってZn分のみを優先的に抽出して他の不純物を水溶
液に残し、抽出したZn分を希酸によって逆抽出して高
純度のZn化合物を回収するものであるが、その一実施
例として、粗ZnOを塩酸で溶解してpHを1〜2に調
整味これにエチルへキシルホスホリックアシッドをケロ
シンに約10〜20%程度溶解した有機溶媒を加えてZ
n分のみを優先的に抽出する。
) Method: As shown in column (B) of the process chart in Figure 1, lees, Z n
O is dissolved in mineral acids such as sulfuric acid and hydrochloric acid, and only the Zn component is preferentially extracted by adding an organic solvent, leaving other impurities in the aqueous solution, and the extracted Zn component is back-extracted with dilute acid to achieve high purity. As an example, crude ZnO is dissolved in hydrochloric acid and the pH is adjusted to 1 to 2. Ethylhexyl phosphoric acid is added to kerosene by about 10 to 20%. Add dissolved organic solvent and Z
Only n minutes are preferentially extracted.

その反応式はZn2++2R−H−+R2Zn+2H+
R−アルキル基(CuH2n + 1 )この抽出した
ZnをpH2以上の希塩酸で逆抽出して高純度のZnC
12を回収する。
The reaction formula is Zn2++2R-H-+R2Zn+2H+
R-alkyl group (CuH2n + 1) This extracted Zn is back-extracted with dilute hydrochloric acid with a pH of 2 or higher to obtain high-purity ZnC.
Collect 12.

その反応式はR2・Zn+2HC1→ZnCl2+2R
−H(ZnC12は重く、比重差分離してZ n Cl
2を回収する) 文中和して水酸化亜鉛(Zn(OH)2)として沈殿さ
せで回収する。
The reaction formula is R2・Zn+2HC1→ZnCl2+2R
-H (ZnC12 is heavy, and ZnCl is separated by specific gravity difference.
2) is recovered by neutralization and precipitation as zinc hydroxide (Zn(OH)2).

この水酸化亜鉛を焼成してZnOとして回収することも
出来る。
This zinc hydroxide can also be recovered as ZnO by firing.

0法: 第1図の工程表の0欄に示すように、粗ZnOを鉱酸に
溶解した後、すなわち、硫酸を加えて不純物中のPbを
硫酸鉛(PbS04)として抽出沈殿させ、次にpHを
4〜6に調整することによってF e (OH) aが
沈殿し、同時にAs、Sb、Cd等の他の不純元素も共
沈する。
0 method: As shown in column 0 of the process chart in Figure 1, after dissolving crude ZnO in mineral acid, that is, adding sulfuric acid to extract and precipitate Pb in the impurity as lead sulfate (PbS04), then By adjusting the pH to 4 to 6, Fe (OH) a precipitates, and at the same time other impurity elements such as As, Sb, and Cd also co-precipitate.

この共沈方法は不純物の約5〜10倍のFe量を必要と
するため、溶解液中にFe分が少ない時は当然第2鉄塩
(Fe SO2,FeC12等)が加えpHを4〜6に
調整することで浄化操作を達成する。
This coprecipitation method requires about 5 to 10 times as much Fe as the impurity, so when the Fe content is low in the solution, ferric salts (FeSO2, FeC12, etc.) are naturally added to adjust the pH to 4 to 6. A purification operation is achieved by adjusting the

尚、鉛を沈殿させるのに上記の方法の池に、溶解液のp
Hを2以下に調整し、硫化水素を通ずることによって硫
化鉛(pbs)として沈殿させることが出来、この場合
銅分が硫化銅(Cu2S)となって同時に沈殿する。
In addition, in order to precipitate lead, the solution solution is added to the pond of the above method.
By adjusting H to 2 or less and passing hydrogen sulfide, lead sulfide (PBS) can be precipitated. In this case, copper becomes copper sulfide (Cu2S) and precipitates at the same time.

上記のようにして浄化された溶解液は不純物をままない
純粋な塩化亜鉛(Zn CI。
The solution purified as described above is pure zinc chloride (Zn CI) without any impurities.

)又は硫酸亜鉛(Zn S O4)であり、これを濃縮
して結晶(Znso4−7H20又はZnCl2−2H
20)として回収し或は溶解液を中和調整(pHを7〜
8に調整)して水酸化亜鉛(Zn(OH)2)として沈
殿させて回収する。
) or zinc sulfate (ZnSO4), which is concentrated to form crystals (Znso4-7H20 or ZnCl2-2H
20) or neutralize the solution (pH 7 to 7).
Zn(OH)2) is precipitated and recovered as zinc hydroxide (Zn(OH)2).

又この水酸化亜鉛を焼成してZnOとして回収すること
も出来る。
Moreover, this zinc hydroxide can be calcined and recovered as ZnO.

上記の(4)、 (B)及び(Q法によって回収した精
製(高純度)ZnOの純度の比較を第3表?こ示す。
Table 3 shows a comparison of the purities of purified (high purity) ZnO recovered by the above methods (4), (B) and (Q).

以上に説明するように、本発明のZnま右部からZn分
を回収する方法はZni有物右動高純度のZn分を効率
的にしかも安価に回収すると同時に廃棄物を側車的に処
理すると言う所期の目的を充分に達成するものである。
As explained above, the method of recovering Zn components from the Zn component of the present invention efficiently and inexpensively recovers Zn components with high purity and at the same time treats the waste in a sidecar manner. This fully achieves the intended purpose.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 lZn1有物にチオシアン酸アンモニウム水溶液を加え
て、Zn分をロダン化合物として抽出し、抽出液を濃縮
して冷却晶析によってロダンZnを結晶として固液分離
し、この固液分離したロダンZnに、新しいチオンシア
ン酸アンモニウム水溶液の添加によって再溶解し冷却晶
析によってロダンZnを再結晶させる浄化操作を操返し
施して高純度のロダンZnを得ることを特徴とするZn
陰有右動らZn分を回収する方法。 2Zn度有物にチオシアン酸アンモニウム水溶液を加え
て、Zn分をロダン化合物として抽出し、該抽出液を加
熱焙焼して粗ZnOとして捕集し、この捕集して得た粗
ZnOを鉱酸に溶解し、有機溶媒を加えてZn分のみを
優先的に抽出し、該Zn分を無機溶媒によって逆抽出し
て高純度のZn化合物を得ることを特徴とするZn陰有
右動らZn分を回収する方法。 3Zn含有物にチオシアン酸アンモニウム水溶液を加え
て、Zn分をロダン化合物として抽出し、該抽出液を加
熱焙焼して粗ZnOとして捕集し、この捕集して得た粗
ZnOを鉱酸に溶解し、該溶液によまれている不純物中
のpbを硫酸の添加によって沈殿分離させ他のAs、S
b、Cd等の不純元素を溶液のpHを4〜6に調整する
ことによってFe(OH)3と共に共沈させて分離して
溶液を浄化した後、該溶液を中和又は加熱焙焼して高純
度のZn化合物を得ることを特徴とするZni有物右動
Zn分を回収する方法。
[Claims] An ammonium thiocyanate aqueous solution is added to the Zn1 substance to extract the Zn component as a rhodan compound, the extract is concentrated, and solid-liquid separation is performed to form rhodan Zn crystals by cooling crystallization. Zn characterized in that high-purity Rodan Zn is obtained by repeatedly subjecting the separated Rodan Zn to a purification operation in which the separated Rodan Zn is redissolved by adding a fresh ammonium thiocyanate aqueous solution and the Rodan Zn is recrystallized by cooling crystallization.
A method for recovering Zn content. An ammonium thiocyanate aqueous solution is added to the Zn-containing material to extract the Zn component as a rhodan compound, the extract is heated and roasted and collected as crude ZnO, and the collected crude ZnO is treated with mineral acid. The Zn component is characterized by dissolving the Zn component in a liquid, adding an organic solvent to preferentially extract only the Zn component, and back-extracting the Zn component with an inorganic solvent to obtain a highly pure Zn compound. How to recover. 3 Add ammonium thiocyanate aqueous solution to the Zn-containing material to extract the Zn component as a rhodan compound, heat and roast the extract and collect it as crude ZnO, and add the collected crude ZnO to mineral acid. Pb in the impurities dissolved in the solution is precipitated and separated by the addition of sulfuric acid, and other As, S
After purifying the solution by co-precipitating and separating impurity elements such as b and Cd with Fe(OH)3 by adjusting the pH of the solution to 4 to 6, the solution is neutralized or heated and roasted. A method for recovering Zni-containing and dextral Zn components, which is characterized by obtaining a highly purified Zn compound.
JP56137201A 1981-08-31 1981-08-31 Method for recovering Zn from Zn-containing materials Expired JPS5942059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56137201A JPS5942059B2 (en) 1981-08-31 1981-08-31 Method for recovering Zn from Zn-containing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56137201A JPS5942059B2 (en) 1981-08-31 1981-08-31 Method for recovering Zn from Zn-containing materials

Publications (2)

Publication Number Publication Date
JPS5839753A JPS5839753A (en) 1983-03-08
JPS5942059B2 true JPS5942059B2 (en) 1984-10-12

Family

ID=15193149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56137201A Expired JPS5942059B2 (en) 1981-08-31 1981-08-31 Method for recovering Zn from Zn-containing materials

Country Status (1)

Country Link
JP (1) JPS5942059B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294757A (en) * 1990-07-18 1994-03-15 Otis Elevator Company Active vibration control system for an elevator, which reduces horizontal and rotational forces acting on the car
US5308938A (en) * 1990-07-18 1994-05-03 Otis Elevator Company Elevator active suspension system
US5321217A (en) * 1990-07-18 1994-06-14 Otis Elevator Company Apparatus and method for controlling an elevator horizontal suspension
US5322144A (en) * 1990-07-18 1994-06-21 Otis Elevator Company Active control of elevator platform
US5400872A (en) * 1990-07-18 1995-03-28 Otis Elevator Company Counteracting horizontal accelerations on an elevator car
JP2756207B2 (en) * 1991-03-13 1998-05-25 オーチス エレベータ カンパニー Method and apparatus for measuring horizontal deviation of an elevator car on a vertical shaft rail
JP2756208B2 (en) * 1991-03-13 1998-05-25 オーチス エレベータ カンパニー Horizontal deviation correction device for elevator cars running vertically
CA2072240C (en) * 1991-07-16 1998-05-05 Clement A. Skalski Elevator horizontal suspensions and controls
US5367132A (en) * 1993-05-27 1994-11-22 Otis Elevator Company Centering control for elevator horizontal suspension

Also Published As

Publication number Publication date
JPS5839753A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
CN105293564A (en) Method for recycling zinc-containing dust ash in steel plant
US5441712A (en) Hydrometallurgical process for producing zinc oxide
CN102747226B (en) Method for treating zinc hydrometallurgy waste residue by using alkali ammonium sulfur coupling method
CN104178642B (en) A kind of method of zinc and iron in separation of Zinc leached mud
US8012437B2 (en) Process for separating iron from other metals in iron containing feed stocks
CN105039722A (en) Method for preferably removing arsenic in lead and antimony smoke
CN104789786B (en) A kind of harmlessness disposing arsenic-containing waste residue and the method for synthetical recovery wherein valuable metal
CN105779774A (en) Lead concentrate and zinc anode mud combined recycling method
CN108588446B (en) Method for extracting molybdenum and rhenium from rhenium-containing molybdenum concentrate
CN113444886B (en) Valuable element leaching and recycling method for copper smelting smoke dust
CN102838158B (en) Method for producing high-purity nano-zinc oxide by ammonia decarburization of electrolytic zinc acid-leaching residues
CN102863007B (en) Method for producing high-purity nano-zinc oxide by ammonia method using electrolytic zinc acid-leaching residues
KR20200053524A (en) Method for purifying waste or industrial by-products containing chlorine
CN105439192A (en) Comprehensive utilization method for zinc oxide ore
JPS5942059B2 (en) Method for recovering Zn from Zn-containing materials
CN112158874A (en) Blast furnace cloth bag ash resource utilization process method
US5759503A (en) Method for the further purification of zinc oxide
CN106830077A (en) A kind of method of vanadic anhydride purification
CN104294032A (en) Comprehensive recovery method of gravity separation tailings of tin oxide ore
CN103159263A (en) Treatment method of artificial rutile mother solution
Shariat et al. Optimizing conditions for hydrometallurgical production of purified molybdenum trioxide from roasted molybdenite of sarcheshmeh
CN109136575B (en) Technological method for processing multi-metal dust by wet method
US5585079A (en) Method for leaching material containing zinc oxide and zinc silicate
CN104805297B (en) Method for recovering selenium, mercury, gold and silver from acid sludge
Sahu et al. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources