JPS5941834A - Electron-beam exposure method - Google Patents

Electron-beam exposure method

Info

Publication number
JPS5941834A
JPS5941834A JP15121582A JP15121582A JPS5941834A JP S5941834 A JPS5941834 A JP S5941834A JP 15121582 A JP15121582 A JP 15121582A JP 15121582 A JP15121582 A JP 15121582A JP S5941834 A JPS5941834 A JP S5941834A
Authority
JP
Japan
Prior art keywords
sections
pattern
size
proximity effect
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15121582A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Kanji Wada
和田 寛次
Tadahiro Takigawa
忠宏 滝川
Toshiya Muraguchi
要也 村口
Katsuya Kuniyoshi
克哉 国吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Machine Co Ltd
Original Assignee
Toshiba Corp
Toshiba Machine Co Ltd
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Machine Co Ltd, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15121582A priority Critical patent/JPS5941834A/en
Publication of JPS5941834A publication Critical patent/JPS5941834A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce edge roughness by positively utilizing a proximity effect of electron beams and giving the recessed section of an oblique line section the quantity of a dose more than other sections. CONSTITUTION:Size in the rectangular direction is made larger than raster width in the raster scanning of shaping beams 4. For example, a designed exposure pattern 1 is exposed by the shaping beams 4, and size in the direction rectangular to the direction of the raster scanning of the shaping beams 4 shall be 1.5mum that is, beam size is equal to (address size)X1.5. A drawing pattern 7 is obtained by developing the exposed resist, and swellings are generated in the pattern owing to the proximity effect in adjacent sections 8a, 8b by the presence of double exposure regions 6. The recessed sections of the adjacent sections 8a receive the proximity effect more than the adjacent sections 8b because only non-pattern sections at 90 deg. including an angle of 270 deg. in the pattern section is present in the recessed sections of the adjacent sections 8a. Accordingly, the irregularities of the oblique line sections extends over 0.3mum, and a side rectangular to the raster scanning can be inhibited up to the edge roughness of 0.2mum.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、整形ビームを用いた電子ビーム露光方法に係
わシ、特に斜線の描画に好適する電子ビーム露光方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam exposure method using a shaped beam, and particularly to an electron beam exposure method suitable for drawing diagonal lines.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、半導体ウェーハやレチクル等の試料に微細ノfタ
ーンを形成するものとして、整形ビームを用いた電子V
−ム露光装置が開発されている。この装置には、ビーム
の走査範囲(フィールド)内を・母ターンの有無に拘ら
ず端から端まで走査すると共にパターンの部分でビーム
を照射する、所謂ラスク走査方式のものと、パターンの
ある部分のみにビームを持っていき照射する、所謂ペク
タ走査方式のものとがある。これらの走査方式のうちラ
スク走査方式のものは、最小線幅が比較的大きい場合に
は高いスループ、トが得られると云う特長を有する。こ
のため、レチクル等を描画する場合には、ペクタ走査方
式よシラスタ走査方式の方が有利であシ、このラスク走
査方式の電子ビーム露光装置が多用されている。しかし
ながら、ラスク走査方式の電子ビーム露光装置を用い矩
形状の整形ビームをラスク走査してパターンを描画する
場合、パターンに斜線部があるとこの斜線部の凹凸が激
しくなシ、エツジラフネスが大きくなると云う問題があ
った。
Recently, electron V using a shaped beam has been used to form fine nof turns on samples such as semiconductor wafers and reticles.
-M exposure equipment has been developed. This device uses the so-called rask scanning method, which scans the beam scanning range (field) from end to end regardless of the presence or absence of a main turn, and irradiates the beam on the patterned portion, and the There is also a so-called spectral scanning method in which a beam is brought to the surface and irradiated. Among these scanning methods, the rask scanning method has the advantage of being able to obtain high throughput when the minimum line width is relatively large. For this reason, when drawing a reticle or the like, the sirasta scanning method is more advantageous than the pectoral scanning method, and electron beam exposure apparatuses of the rask scanning method are often used. However, when drawing a pattern by rask-scanning a rectangular shaped beam using a rask-scanning electron beam exposure device, if the pattern has a hatched area, the unevenness of the hatched area will be severe and edge roughness will increase. There was a problem.

以下、この問題を第1図および第2図を参照して説明す
る。正方形成いは長方形の整形ビームを用いラスク走査
で斜線部を含むパターンを描画する場合、まず第1図に
示す如くレジスト上に設計露光・々ターン1を整形ビー
ム2で露光する。ここで、整形ビーム2のラスク走査方
向に垂直な方向の寸法を1〔μm〕とし、ビーム寸法ニ
アドレス寸法とした。次いで、上記レジストを現像する
ことによシ、第2図に示す如き描画ノfターン3が得ら
れる。そしてこの場合、斜線部には約0.6〔μm〕の
凹凸ができることが実験上判明した。描画ノfターン3
が前記破線で示す設計露光パターン1と同一とならない
のは、電子ビームの近接効果およびビームのコーナ曲率
が有限であるためである。
This problem will be explained below with reference to FIGS. 1 and 2. When drawing a pattern including a diagonal line part by rask scanning using a square or rectangular shaped beam, first, as shown in FIG. 1, a designed exposure, each turn 1, is exposed with the shaped beam 2 on the resist. Here, the dimension of the shaped beam 2 in the direction perpendicular to the rask scanning direction was set to 1 [μm], and the beam dimension was defined as the near address dimension. Next, by developing the resist, a drawn f-turn 3 as shown in FIG. 2 is obtained. In this case, it has been experimentally found that an unevenness of approximately 0.6 [μm] is formed in the shaded area. Drawing no f turn 3
The reason why is not the same as the designed exposure pattern 1 shown by the broken line is because the proximity effect of the electron beam and the corner curvature of the beam are finite.

このように従来方法では、ラスク走査に垂直な辺および
平行な辺は確かに精度良い・臂ターンが得ら五るが、斜
線部に比較的に大きなエツジラフネスが生じると云う問
題があった口〔発明の目的〕 本発明の目的は、整形ビームを用いラスク走査によシバ
ターンを描画するに際し、斜線部のエツジラフネスを小
さくすることができ、斜線部の描画に有効な電子ビーム
露光方法を提供すことにある。
In this way, with the conventional method, although it is possible to obtain accurate elbow turns on the sides perpendicular to and parallel to the rask scan, there is a problem in that relatively large edge roughness occurs in the shaded areas. [Object of the Invention] An object of the present invention is to provide an electron beam exposure method that can reduce edge roughness in the shaded area and is effective in drawing the shaded area when drawing a shiba pattern by rask scanning using a shaped beam. It is in.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、電子ビームの近接効果を積極的に利用
し、斜線部の凹部分にドーズ量を多く与えることKより
、ニップラフネスを小さくしたことにある。
The gist of the present invention is to reduce the nip roughness by positively utilizing the proximity effect of the electron beam and applying a large dose to the diagonally shaded concave portion.

すなわち本発明は、試料上のレジストを整形ビームでラ
スク走査し該レジストに所望・やターンを露光する電子
ビーム露光方法において、上記整形ビームのラスク走査
方向に垂直な方向の寸法を、ラスタ幅よシも大きくする
ようにした方法である。
That is, the present invention provides an electron beam exposure method in which a resist on a sample is rask-scanned with a shaped beam to expose a desired turn on the resist, and the dimension in the direction perpendicular to the rask scanning direction of the shaped beam is set to be equal to the raster width. This method also increases the size of the area.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、斜線部の凹部分にドーズ量を多く与え
ることができ、これKよシ斜線部の74ターンの凹凸を
小さくすることができる。すなわち、斜線部のニップラ
フネスを極めて小さくすることができ、斜線を含むパタ
ーンの描画に絶大な効果を発揮する。
According to the present invention, a large dose can be applied to the concave portion of the shaded area, and the unevenness of the 74 turns of the shaded area can be reduced by K. That is, the nip roughness in the diagonal line portion can be extremely reduced, which is extremely effective in drawing patterns including diagonal lines.

〔発明の実施例〕[Embodiments of the invention]

第3図および第4図はそれぞれ本発明の一実施例方法を
説明するための模式図である。まず、第3図に示す如く
前記設計露光ツクターン1を整形ビーム4で露光した。
FIGS. 3 and 4 are schematic diagrams for explaining one embodiment of the method of the present invention, respectively. First, the designed exposure pattern 1 was exposed with a shaped beam 4 as shown in FIG.

ここで、整形ビーム4のラスク走査方向に垂直な方向の
寸法は1.5[:m]、すなわちビーム寸法ニアドレス
寸法×1.5とした。なお、第3図中2点鎖線5は実露
光ノリーンを示し、斜線部6は2重露光領域を示してい
る。
Here, the dimension of the shaped beam 4 in the direction perpendicular to the rask scanning direction was set to 1.5 [:m], that is, the beam dimension near address dimension x 1.5. In FIG. 3, a dashed double-dashed line 5 indicates an actual exposure area, and a hatched area 6 indicates a double exposure area.

次に、従来方法と同様に露光されたレジストを現像する
ことによって、第3図に示す如き描画パターン7が得ら
れた。すなわち、2重露光領域6の存在によシ該領域6
の近傍部8&。
Next, by developing the exposed resist in the same manner as in the conventional method, a drawing pattern 7 as shown in FIG. 3 was obtained. That is, due to the existence of the double exposure area 6, the area 6
The neighborhood of 8&.

8bでぽ近接効果のためにパターンにふくらみが生じる
。近傍部8a凹部ではパターン部が270度の角度を含
め非パターン部90度しかないため、近接効果の受は方
が近傍部8bよシ大きくなる。これによシ、斜線部の凹
凸が0.3〔μm〕で、ラスク走査に直角な辺を0.2
〔μm〕のエツジラフネスに抑えることができた。
In 8b, a bulge occurs in the pattern due to the proximity effect. In the concave portion of the adjacent portion 8a, since the pattern portion includes an angle of 270 degrees and the non-pattern portion has only a 90 degree angle, the proximity effect is larger in the recessed portion than in the adjacent portion 8b. With this, the unevenness of the shaded area is 0.3 [μm], and the side perpendicular to the rask scan is 0.2 [μm].
The edge roughness could be suppressed to [μm].

また、アドレス寸法よシ大きい寸法で露光することによ
シ、ラスク走査に平行な辺でパターンがふくらむが、平
均的なドーズ量が増えるため、レジスト現像時間を短か
めKすることによって1.0〔μm〕以下の79タ一ン
幅増加に抑えることができた。しかも、現像時間を短く
することによシ、パターンの凸部8cの丸まシ方が従来
以上に改善された。さらに、ビーム寸法をアドレス寸法
×2にした場合には、斜線の凹凸を0.2〔μm〕以下
に抑えることが可能であった。
Also, by exposing with a dimension larger than the address dimension, the pattern swells on the side parallel to the rask scan, but since the average dose increases, the resist development time can be shortened to 1.0 It was possible to suppress the increase in the tan width to 79 [μm] or less. Furthermore, by shortening the development time, the roundness of the convex portions 8c of the pattern was improved more than before. Furthermore, when the beam dimension was set to address dimension x 2, it was possible to suppress the diagonal line unevenness to 0.2 [μm] or less.

このように本実施例方法によれば、アドレス寸法×1.
5の整形ビームを用いてノ4ターンを露光することによ
り、斜線部におけるニップラフネスを従来方法の約1/
2にすることができる@したがって、斜線を含むパター
ンの描画に極めて有効となる。
In this way, according to the method of this embodiment, address size x 1.
By exposing 4 turns using a shaped beam of
2. Therefore, it is extremely effective for drawing patterns including diagonal lines.

なお1本発明は上述した実施例に限定されるものではな
い。例えば、前記整形ビームのラスク走査に垂直な方向
の寸法はラスタ幅X 1.5 K限るものではなく、ラ
スタ幅よシ大きなものであればよい。ただし、本発明者
等の実験によれば、上記ビーム寸法がラスタ幅×1.1
よシ小さい場合前述したニップラフネスの減小は殆んど
期待できず、またビーム寸法をラスタ幅×2よシ大きく
した場合ラスク走査と平行な辺での/4ターンのふくら
みが無視できない程大きくなることが確認された。した
がって、整形ビームの寸法は、好ましくはアドレス寸法
の1.1〜2倍にすればよい。まだ、実施例ではポジ型
レジストを用いた場合について説明したが、ネが型レゾ
ストを用いてもよいのは勿論のことである。
Note that the present invention is not limited to the embodiments described above. For example, the dimension of the shaped beam in the direction perpendicular to the raster scan is not limited to the raster width X 1.5 K, but may be larger than the raster width. However, according to experiments by the inventors, the above beam dimension is raster width x 1.1
If the width is small, the reduction in nip roughness mentioned above cannot be expected, and if the beam size is increased by 2 times the raster width, the bulge of the /4 turn on the side parallel to the rask scan is so large that it cannot be ignored. It was confirmed that Therefore, the dimension of the shaped beam may preferably be 1.1 to 2 times the address dimension. In the embodiment, the case where a positive type resist is used has been described, but it goes without saying that a negative type resist may also be used.

ネガ型レジストの場合、前述した近接効果をポジ型レジ
スト以上に受けるため、ニップラフネスの減小にはよシ
有効である。また、整形ビームの形状や露光t4ターン
の形状等は、仕様に応じて適宜定めればよい。その他、
本発明の要旨を逸脱しない範囲で種々変形して実施する
ことができる。
In the case of a negative resist, it is more effective in reducing nip roughness because it is subject to the above-mentioned proximity effect more than a positive resist. Further, the shape of the shaped beam, the shape of the exposure t4 turn, etc. may be determined as appropriate according to the specifications. others,
Various modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来方法を説明するだめ
の模式図、第3図および第4図はそれぞれ本発明の一実
施例に係わる電子ビーム露光方法を説明するための模式
図である。 1・・・股引露光/やターン、2,4・・・整形ビーム
、3・・・描画パターン、5,7・・・実露光パターン
、6・・・2重露光領域。 出願人代理人  弁理士 鈴 江 武 彦哨1図 第2図 第3図 第1頁の続き ■出 願 人 東芝機械株式会社 東京都中央区銀座4丁目2番11
FIGS. 1 and 2 are schematic diagrams for explaining a conventional method, respectively, and FIGS. 3 and 4 are schematic diagrams for explaining an electron beam exposure method according to an embodiment of the present invention, respectively. 1... Crotch exposure/or turn, 2, 4... Shaped beam, 3... Drawing pattern, 5, 7... Actual exposure pattern, 6... Double exposure area. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Continued from page 1 Applicant Toshiba Machine Co., Ltd. 4-2-11 Ginza, Chuo-ku, Tokyo

Claims (3)

【特許請求の範囲】[Claims] (1)整形ビームを用い、試料上のレジストにこの整形
ビームをラスク走査し該レジストに所望パターン露光す
る電子ビーム露光方法において、前記整形ビームのラス
ク走査に垂直な方向の寸法を、ラスタ幅よシ大きくした
ことを特徴とする電子ビーム露光方法。
(1) In an electron beam exposure method that uses a shaped beam and scans a resist on a sample with the shaped beam to expose the resist in a desired pattern, the dimension in the direction perpendicular to the rask scan of the shaped beam is set to be equal to the raster width. An electron beam exposure method characterized by increasing the size of the beam.
(2)  前記整形ビームのラスク走査に垂直な方向の
寸法を、ラスタ幅の1.1〜2倍に設定したことを特徴
とする特許請求の範囲第1項記載の電子ビーム露光方法
(2) The electron beam exposure method according to claim 1, wherein the dimension of the shaped beam in the direction perpendicular to raster scanning is set to 1.1 to 2 times the raster width.
(3)  前記レジストとして、ネガ型のレジストを用
いたことを特徴とする特許請求の範囲第1項記載の電子
ビーム露光方法。
(3) The electron beam exposure method according to claim 1, wherein a negative resist is used as the resist.
JP15121582A 1982-08-31 1982-08-31 Electron-beam exposure method Pending JPS5941834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15121582A JPS5941834A (en) 1982-08-31 1982-08-31 Electron-beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15121582A JPS5941834A (en) 1982-08-31 1982-08-31 Electron-beam exposure method

Publications (1)

Publication Number Publication Date
JPS5941834A true JPS5941834A (en) 1984-03-08

Family

ID=15513750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15121582A Pending JPS5941834A (en) 1982-08-31 1982-08-31 Electron-beam exposure method

Country Status (1)

Country Link
JP (1) JPS5941834A (en)

Similar Documents

Publication Publication Date Title
JPH056339B2 (en)
JPS594017A (en) Electron-beam exposure method
US7455938B2 (en) Methods of forming patterns in substrates
JPS5941834A (en) Electron-beam exposure method
US7222327B2 (en) Photo mask, method of manufacturing photo mask, and method of generating mask data
US20020051913A1 (en) Method and apparatus for making photomasks with improved inside corner resolution
JP2000068191A (en) Method of forming pattern by electron beam exposure
US20050036175A1 (en) Optical proximity correction in raster scan printing based on grayscale manipulation of the bitmap
JP3360666B2 (en) Drawing pattern verification method
JP3455103B2 (en) Pattern drawing equipment
JP3617223B2 (en) Alignment method
JPS6258622A (en) Resist pattern forming method
JP2928477B2 (en) Method for manufacturing semiconductor device
JP2834468B2 (en) Method of forming resist pattern
JPH02222524A (en) Electron beam exposure process
JPS5922324A (en) Electron beam drawing method
JPH10189409A (en) Correcting method for exposure pattern, correcting device for exposure pattern, mask for exposure, exposure method and semiconductor device
KR100317582B1 (en) Photomask Manufacturing Method of Semiconductor Device
JP2664218B2 (en) White point correction method
JP3453345B2 (en) EB drawing apparatus, method of manufacturing semiconductor device, and method of manufacturing photolithographic mask
JPH0546696B2 (en)
JPH01196124A (en) Formation of resist pattern
JPS61160929A (en) Charged beam exposure method
JPS60208756A (en) Alignment method and transfer method
JPS6169124A (en) Electron beam image drawing process