JPS5941391B2 - How to freeze food - Google Patents

How to freeze food

Info

Publication number
JPS5941391B2
JPS5941391B2 JP4115482A JP4115482A JPS5941391B2 JP S5941391 B2 JPS5941391 B2 JP S5941391B2 JP 4115482 A JP4115482 A JP 4115482A JP 4115482 A JP4115482 A JP 4115482A JP S5941391 B2 JPS5941391 B2 JP S5941391B2
Authority
JP
Japan
Prior art keywords
temperature
food
freezing
center
frozen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4115482A
Other languages
Japanese (ja)
Other versions
JPS58158165A (en
Inventor
仁一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIPCOM KK
Original Assignee
JIPCOM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIPCOM KK filed Critical JIPCOM KK
Priority to JP4115482A priority Critical patent/JPS5941391B2/en
Publication of JPS58158165A publication Critical patent/JPS58158165A/en
Publication of JPS5941391B2 publication Critical patent/JPS5941391B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Description

【発明の詳細な説明】 本発明は、食品、特に魚介類や畜肉その他の生鮮食料品
、あるいは鮨、もちその他の調理食品を長期に渡って保
存するための冷凍保存方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a frozen preservation method for preserving foods, particularly seafood, meat, and other fresh foods, or sushi, mochi, and other cooked foods for a long period of time.

本出願人は、既に特願昭55−146084号にて従来
の冷凍食品の概念を破る新しい冷凍保存方法を提案して
いる。
The present applicant has already proposed in Japanese Patent Application No. 55-146084 a new frozen preservation method that goes beyond the conventional concept of frozen foods.

本発明はこの出願の発明を基本にさらに研究を重ね、新
しい実験結果および理論によりなされたもので、生鮮食
品は個体レベルでは死であっても細胞レベルでは必ずし
も死んではいないという観点より分子生物学の理論を導
入して全く新しい冷凍保存方法を完成したものである。
The present invention was made based on new experimental results and theories based on further research based on the invention of this application. By introducing this theory, a completely new cryopreservation method was completed.

すなわち一般に食品の冷凍保存は、できる限り急速に冷
却し低温保存することがよいと考えられているが、従来
の冷凍保存技術は生鮮食品を生のない一個の物体である
という概念でとらえ、物理的側面より見た実験的手法に
よって造り出されて来ている。
In other words, it is generally considered that food should be frozen as quickly as possible and stored at a low temperature. However, conventional freezing preservation technology treats fresh food as a single, inanimate object, and It has been created through experimental methods viewed from a physical perspective.

ところがこのような従来技術によっては食品の変質を防
ぐ本質的な冷凍保存方法は到底得られない。
However, with such conventional techniques, it is impossible to obtain an essential freezing preservation method that prevents food from deteriorating in quality.

一般的には生命体が自己と同じものを再生産しうる機能
を生、その機能を失ったものを死と呼ぶが、生命体が秩
序だった機能(運動、呼吸、発芽、体温の保持、外敵に
対する防御など)を失った場合、個体レベルでは死と判
断できても細胞レベルでは必ずしも死と判断できない。
In general, a living organism has the ability to reproduce the same thing as itself, and when that function is lost, it is called death. If an animal loses its defenses against foreign enemies, etc., it can be judged as death at the individual level, but it cannot necessarily be judged as death at the cellular level.

細胞は細胞質からなり細胞膜で四重れている。A cell consists of cytoplasm and is surrounded by four cell membranes.

細胞核は染色体を含み遺伝子情報を伝えるメツセンジャ
ーRNAを合成する。
The cell nucleus contains chromosomes and synthesizes messenger RNA, which conveys genetic information.

もちろん遺伝子を構成するDNAの自己増殖系も持って
いる。
Of course, they also have a self-replication system for the DNA that makes up their genes.

細胞質は種々の可溶性物質(代謝物質や酵素)を溶かし
込んでいるとともに多ぐの微細構造を含んでいる(例え
ば呼吸酵素ヲ含みATPの生産の場であるミドコンド1
1アやタンパク質合成の場であるリボゾームなど) こ
のような細胞レベルで見た場合タンパク質の立体構造、
細胞内イオン濃度および脂質の変化等が細胞の活性に影
響することがすこぶる大である。
The cytoplasm dissolves various soluble substances (metabolites and enzymes) and contains many microstructures (for example, the cytoplasm contains respiratory enzymes and the midochondrum, which is the site of ATP production.
1a and ribosomes, which are the site of protein synthesis) When viewed at the cellular level, the three-dimensional structure of proteins,
Changes in intracellular ion concentration and lipids greatly affect cell activity.

細胞の生成のメカニズムは、酵素の働きで20種類ア才
りのアミノ酸に分解された物質を、細胞内のDNAの遺
伝子情報にしたがい、リボゾームと呼ばれる工場のよう
なところで、ミドコンド1)アで作られるエネルギAT
Pを使いながら、RNAの働き手として再び連室のアミ
ノ酸の構成による立体構造物を作り上げるというもので
ある。
The mechanism of cell production is that substances are broken down into 20 types of amino acids by the action of enzymes, and then produced in a factory-like place called a ribosome in a midcond (1) a, according to the genetic information in the DNA within the cell. energy AT
Using P as an RNA worker, a three-dimensional structure composed of consecutive amino acids is again constructed.

この立体構造物の結合がベブ壬ド結合であり、組上げら
れた物質がタンパク質に他ならない。
The bonds between these three-dimensional structures are Bev-bond bonds, and the assembled substance is nothing but protein.

実験によると、このオブジェのような立体構造物を押し
拉がすと酵素の働きが無くなり、元の構造に戻すと再び
酵素の働きをすることが明確になった。
Experiments have shown that when a three-dimensional structure like this object is pushed away, the enzyme's function disappears, and when it is returned to its original structure, it resumes its enzyme function.

捷だ生産活動はそれぞれの動植物に応じた適当な温度、
水分、ガス組成、圧力および光等を得ることによって行
なわれるが、特に水分、温度およびガス組成の変化は生
命活動に非常に大きな影響を与える。
Kada production activities are carried out at appropriate temperatures according to each animal and plant.
This is done by obtaining moisture, gas composition, pressure, light, etc., and changes in moisture, temperature, and gas composition in particular have a very large effect on life activities.

さらに細胞膜を自由に通過して移動する自由水は半トリ
ウムイオンやカリウムイオンの電解質濃度を変え、生体
反応の阻害要因を生じさせることも重要である。
Furthermore, it is important that free water, which freely passes through cell membranes and moves, changes the electrolyte concentration of half-thorium ions and potassium ions, causing a factor that inhibits biological reactions.

これらの諸点を勘案すると、分子生物学的には保存すべ
き食品を一20℃程度の低温で酵素の活性を抑制しつつ
自由水、結合水ともに未凍結の状態を作り出すことが理
想であるか、これは物理的に不可能である。
Taking these points into consideration, from a molecular biological perspective, is it ideal to keep food to be preserved at a low temperature of -20°C while suppressing enzyme activity and creating an unfrozen state for both free water and bound water? , this is physically impossible.

そこで食品中の自由水、結合水の凍結を当然に伴う冷凍
保存においては、これらの氷結晶かペプチド結合の継手
を切ることなく、タンパク質の立体構造を押し拉けるこ
となく、捷だ自由水、結合水が移動しないように凍結さ
せることが理想となる。
Therefore, in cryopreservation, which naturally involves the freezing of free water and bound water in foods, free water and bound water in food can be preserved without cutting these ice crystals or peptide bond joints or pushing away the three-dimensional structure of the protein. Ideally, the bound water should be frozen so that it does not move.

捷た立体構造物のすぐそばに水分がないと解凍したとき
別の物質と結合しやすく、そうすると酵素の俳iきがな
くなることから、氷結晶が微細均一に食品中に分布して
いることも必要である。
If there is no water in the immediate vicinity of the broken three-dimensional structure, it will easily combine with other substances when it is thawed, and this will prevent the enzyme from acting, so ice crystals may be distributed finely and uniformly in the food. is necessary.

本発明は、このような解析に基き、氷結晶が微細でペプ
チド結合の継手を切ることがないか極めて少なく、しか
も水分の移動を防止しながら食品中に均一に氷結晶を形
成できる方法を開発したもので、基本的には冷凍保存す
べき食品の外周面に氷結カプセルを形成するとともに食
品中心温度な0°C〜3°C前後とするように冷却する
氷結カプセル形成工程;続いて最大氷結晶生成帯を難凍
状態で通過させる過冷却状態を作り出し、食品中心温度
を一6°C以下とするように冷却する過冷却工程;食品
の外周温度と中心温度とを均衡させるように冷却する緩
慢冷却工程:および食品中に氷結晶を形成するように冷
却する氷結工程を含んでなっている。
Based on such analysis, the present invention has developed a method in which the ice crystals are so fine that they do not break peptide bond joints or are extremely small, and can form ice crystals uniformly in foods while preventing moisture movement. Basically, the freezing capsule forming process involves forming frozen capsules on the outer circumferential surface of the food to be stored frozen and cooling the food to the core temperature of 0°C to 3°C; A supercooling process in which food is cooled to a temperature below 16°C by creating a supercooled state in which the food passes through the crystal formation zone in an unfrozen state; the food is cooled so that the outer temperature and center temperature of the food are in balance. A slow cooling step: and a freezing step in which the food is cooled to form ice crystals in the food.

以下各工程について説明する。Each step will be explained below.

■)氷結カプセル形成工程 氷結カプセルは食品の外周部を強固なカプセルで固定す
ることにより、食品の凍結時膨圧の悪影響を除く目的を
持つもので、細胞構成体の間隙を固定化し極小間隙の存
在割合を多くして、最大氷結晶生成帯を通過する際の自
由水、結合水の凍結を防ぎ、あるいは凍結氷結晶を微細
化する可能性を高めるものである。
■) Freezing capsule formation process Freezing capsules have the purpose of removing the adverse effects of turgor pressure when food is frozen by fixing the outer periphery of the food with a strong capsule. By increasing its abundance, it prevents free water and bound water from freezing when passing through the maximum ice crystal formation zone, or increases the possibility of making frozen ice crystals finer.

寸たこの工程は食品中心温度を最大氷結晶生成帯(−1
℃〜−5°C)の直前、すなわち00C〜3℃前後に艦
上げる目的を持つ。
This process lowers the core temperature of the food to the maximum ice crystal formation zone (-1
The purpose is to lift the ship just before the temperature (00C~-5℃), that is, around 00C~3℃.

この氷結カプセル形成工程は、好捷しくは一25°C〜
−45°Cの冷風を10〜40分間食品の外周部に吹き
付けることによりで達成される。
This freezing capsule forming step is preferably carried out at -25°C.
This is achieved by blowing -45°C cold air around the outer periphery of the food for 10 to 40 minutes.

この際食品によっては外周部に適宜水分を補給する。At this time, depending on the food, moisture is appropriately added to the outer periphery.

冷却温度が一25℃以上では外周部氷結晶が300μm
〜900μmの大きさになり細胞を破壊する。
When the cooling temperature is 125°C or higher, the outer ice crystals are 300 μm thick.
It grows to a size of ~900 μm and destroys cells.

寸だ一45℃以下では外周温度と中心温度の差が犬きく
なり浸透圧の差による自由水の移動が生じpHを変える
おそれがある。
If the temperature is below 45°C, the difference between the peripheral temperature and the center temperature will be too large, and the difference in osmotic pressure will cause movement of free water, which may change the pH.

この工程においては中心温度と外周温度との差をできる
だけ少なくし、水分が中央部から外周に移動するのを防
止しながら中心温度を08C〜3°C前後にする。
In this step, the difference between the center temperature and the outer circumferential temperature is minimized, and the center temperature is kept at around 0.8 to 3.degree. C. while preventing moisture from moving from the center to the outer circumference.

氷結カブスルによる外周固定と内部一部凍結により内圧
が高捷り、はざ才水が固定されて難凍状態が作り出され
る。
By fixing the outer periphery and freezing a portion of the inside using the freezing cabbage, the internal pressure is high, the water is fixed, and a freeze-resistant condition is created.

2)過冷却工程 最大氷結晶生成帯(−1℃〜−5°C)を難凍状態で通
過させる過冷却状態を作り出すものである。
2) Supercooling step This process creates a supercooling state in which the maximum ice crystal formation zone (-1°C to -5°C) is passed through in a non-freezing state.

すなわち自由水、結合水ともにできるだけ凍結しないよ
うに冷却条件を定めるものであるが、好捷しくは一50
°C〜−90°Cの冷風を10〜30分間吹き付けると
よい。
In other words, the cooling conditions are determined so that both free water and bound water do not freeze as much as possible.
It is best to blow cold air at a temperature between 10°C and -90°C for 10 to 30 minutes.

−50°C以上では過冷却状態がつくれずに結氷し、捷
だ一90°C以下ではエネルギが無駄になる。
At temperatures above -50°C, a supercooled state cannot be created and freezing occurs, and below 90°C, energy is wasted.

この過冷却工程はコツプの水に一70°C〜−90°C
の冷風を吹き付は急冷すると一78C〜−10°Cにな
っても凍結ゼす、ショックを与えると一挙に凍結する現
象を利用するもので、細胞内の自由水、結合水は未凍結
の状態で最大氷結晶生成帯を通過し、食品の中心温度は
一6℃以下となる。
This supercooling process cools the water to -70°C to -90°C.
Blowing cold air takes advantage of the phenomenon that when rapidly cooled, it freezes even at -10°C to -78°C, and when shocked, it freezes all at once, and the free water and bound water in the cells are The food passes through the zone of maximum ice crystal formation, and the core temperature of the food becomes -6°C or lower.

3)緩慢冷却工程 食品中心温度が一6°C〜−10℃位になったとき、浸
透圧の差によって再び食物の中心部より外周部に自由水
が移動してpHの変化が起きないように、才だタンパク
質のアミノ酸のすぐそばが水利状態であるようにするた
め、中心部と外周部の温度差を小さくする工程であって
、好捷しくは一25°C〜−45°Cの冷風を10〜4
0分間吹き付けて行なう −25°C以上では温度伝達
時間がかかり過ぎて温度均衡が遅れる。
3) Slow cooling process When the temperature at the center of the food reaches about 16°C to -10°C, the difference in osmotic pressure causes free water to move from the center of the food to the periphery again, preventing pH changes from occurring. In order to ensure that the amino acids of the protein are in a state of water availability, it is a process to reduce the temperature difference between the center and the periphery, preferably between -25°C and -45°C. Cold air 10-4
Spray for 0 minutes. At temperatures above -25°C, it takes too much time for temperature transfer and temperature equilibrium is delayed.

また−45℃以下では外周部と中心部の温度差が拡がり
好捷しくない。
Further, if it is below -45°C, the temperature difference between the outer circumference and the center increases, which is not favorable.

4)氷結工程 以上の各工程を経て難凍状態にある食品中の水分を物理
的に凍結?しめ、氷結晶をペプチド結合の継手を切るこ
とのないlOμm台の大きさとするとともに、食品中に
均一に分布させる工程である。
4) Is it possible to physically freeze the moisture in foods that are difficult to freeze after going through the freezing process and above? In this process, the ice crystals are made into a size on the order of 10 μm without cutting the joints of peptide bonds, and are uniformly distributed in the food.

これは二段階に分けて行なうことが好寸しい。It is convenient to do this in two stages.

すなわち最初は過冷却状態の食品を一挙に凍結さ?て食
品中心温度を瞬時に一10°C以下とするもので、好才
しくは一50°C〜−90°Cの冷風を10〜30分間
吹き付けて行なう。
In other words, is the food that was initially supercooled frozen all at once? This is done by blowing cold air at a temperature of 150°C to -90°C for 10 to 30 minutes.

−50°C以上では当該食品を一挙に低温域に持込むこ
とができず、一度に花が咲いたような奸才しい結氷が得
られない。
At temperatures above -50°C, the food cannot be brought into the low-temperature range all at once, and a clever freeze that looks like a flower blooming all at once cannot be obtained.

才た一90℃以下としても結氷の微細化の効果は増大セ
スエネルギが無駄になる。
Even if the temperature is below 90°C, the effect of making the ice smaller is that the increased process energy is wasted.

次は脂質との結合が強い未凍結の水分をゆっくり凍結し
て変質を防止する工程である。
The next step is to slowly freeze unfrozen water, which has strong bonds with lipids, to prevent deterioration.

これは好ましくは一258C〜−45°Cの冷風を10
〜40分間吹き付けることによって達成され、中心温度
が一18°C以下になったとき氷結工程を終了して保存
状態とする。
This is preferably done by blowing cold air between -258C and -45C for 10
This is achieved by spraying for ~40 minutes, and when the core temperature falls below 118°C, the freezing process is completed and the storage state is achieved.

−25℃以上の冷却温度では結氷に時間がかかり過ぎて
冷凍サイクルが長くなり設備の利用度が落ちてコストが
上がる 捷だ一45℃以下としても、脂質との結合力の
強い水分の結氷については顕著な微細化の効果は得られ
ずエネルギの無駄になる。
At a cooling temperature of -25°C or higher, freezing takes too long, resulting in a longer refrigeration cycle, lowering the utilization of equipment, and increasing costs. In this case, significant miniaturization effects cannot be obtained and energy is wasted.

以上の各工程を経て冷凍保存された食品を真空解凍、自
然解凍等によって解凍すると、タンパク質の立体構造小
枝との間に微細にちらばっていたlOμm台の氷結晶が
とけ、再びタンパク質との水利状態に戻る。
When food frozen and preserved through the above steps is thawed by vacuum thawing, natural thawing, etc., the ice crystals on the order of 10 μm that were finely scattered between the three-dimensional structure twigs of the protein melt, and the water usage state with the protein is restored. Return to

これによってカリウムイオン、ナ) IJウムイオンの
電解質濃度も変化せず、分子生物学的に見て生細胞のよ
うな活性状態に復元することができる。
As a result, the electrolyte concentration of potassium ions and IJium ions does not change, and from a molecular biological point of view, it is possible to restore the cells to an active state similar to that of living cells.

以下実施例につき本発明方法の効果を説明する。The effects of the method of the present invention will be explained below with reference to Examples.

〈実施例 1〉 冷却用ボックス内温度15°C(常温)雰囲気下におい
て10(XX 10 CTI′Lx 3cm角で300
gの豚モモ肉3個を長さ40篩×巾20cTl×深さ5
crrLのステンレス製器の中に1c4のスペーサーを
おいて固定し、これに植物多糖類又はゼラチンを含むバ
ラケ剤液を注入して肉片の上下1cTLのカブリの出来
るよう浸漬さゼてから一35°Cの冷風を25分間吹付
けて、肉片の表面に強固なカプセルを形成させながら中
心温度が3°Cになるようセットした。
<Example 1> In an atmosphere where the temperature inside the cooling box is 15°C (ordinary temperature), 10 (XX 10 CTI'Lx 300
3 g of pork thighs through a sieve length 40 x width 20 cTl x depth 5
A 1c4 spacer was placed and fixed in a crrL stainless steel vessel, and a baling agent solution containing vegetable polysaccharide or gelatin was poured into it and immersed until 1cTL of fog was created above and below the meat pieces, then boiled at 135°. Cold air of C was blown for 25 minutes to form a strong capsule on the surface of the meat piece, and the temperature at the center was set to 3°C.

次に一65°Cの冷風を吹付け、前工程で内部圧の高捷
り等によってはざ1水の固定化が進み難凍状態にある該
食品を過冷却状態として更に難凍状態を増幅し最大氷結
晶生成帯を急速に通過?しめたところ中心温度は一6°
Cになった。
Next, cold air at -65°C is blown, and in the previous process the water is fixed due to high internal pressure, etc., and the food, which is difficult to freeze, is supercooled and the state is further amplified. and rapidly passing through the zone of maximum ice crystal formation? When I closed it, the center temperature was -6°.
It became C.

しかるのち冷風を一35°Cに切換えて25分間吹付は
外周と中心温度の均衡を図りながら緩慢に冷却したとこ
ろ中心温度が一8°Cになった。
Thereafter, the cold air was switched to -35°C and was blown for 25 minutes to slowly cool down while trying to balance the temperature at the outer periphery and the center, and the temperature at the center became 18°C.

次に冷風を一65°Cに切換え15分間冷却し、該食品
の中心温度を一13℃にしたところ10μm台の大きさ
の自由水の結晶が食品中に万遍にできた。
Next, the cold air was switched to -65°C and the food was cooled for 15 minutes to bring the temperature of the center of the food to -13°C. Free water crystals with a size on the order of 10 μm were formed all over the food.

次に冷風を一35℃に切り替えて30分間冷却し、結合
水と脂質の凍結固定を完了したところ中心温度は一20
°Cとなった。
Next, the cold air was switched to -35℃ and cooled for 30 minutes to complete the freeze-fixation of bound water and lipids, and the center temperature was -20℃.
It became °C.

その後、−18°Cの通常の冷凍庫に移して、6ケ月保
存した。
Thereafter, it was transferred to a regular freezer at -18°C and stored for 6 months.

別に同量の豚モモ肉3個ずつを一35℃のエアーフリー
ジング、エアブラストフリージングで24時間処理後厚
さ40μmのポリエチレン袋に包み一18℃の通常の冷
凍庫に6ケ月間保存して対照区とした。
Separately, the same amount of three pork thighs was treated with air freezing and air blast freezing at -35°C for 24 hours, then wrapped in a 40 μm thick polyethylene bag and stored in a regular freezer at -18°C for 6 months. And so.

本発明及対照区の冷凍肉を3℃で真空解凍し、解凍時の
ドリップ、肉色、肉の柔軟度、凍結切片による細胞破壊
度を顕微鏡下で観察し、さらにフライパンで焼いて風味
試験に供し表1の試験結果を得た。
The frozen meat of the present invention and the control group was thawed under vacuum at 3°C, and drips upon thawing, meat color, softness of the meat, and degree of cell destruction in frozen sections were observed under a microscope, and then fried in a frying pan and subjected to a flavor test. The test results shown in Table 1 were obtained.

本発明方法による冷凍保存肉は冷凍6ケ月後も元と同等
の品質ですぐれた保存効果を示すことが理解されよう。
It will be understood that the frozen preserved meat obtained by the method of the present invention exhibits excellent preservation effects with the same quality as the original meat even after 6 months of freezing.

〈実施例 2〉 冷却用ボックス内温度15℃(常温)雰囲気下で活魚鮎
(体重50 g)−・マチ(同1.tKp)各3匹を延
髄打撃により即殺し、鮎はステンレス金網上で魚体を回
転しながら植物多糖類又はゼラチンを含むバラケ剤を振
りきけ、ハマチはその1まステンレスの皿の上に乗せ一
35°Cの冷風で30分冷却し鮎の表面に厚さ1crr
Lの強固な氷結カプセル、ハマチは表皮を含む皮下脂質
0.5crILの氷結カプセルを形成させたところ両者
ともに中心温度は2℃となった。
<Example 2> In a cooling box with a temperature of 15°C (ordinary temperature), three live sweetfish (weight 50 g) and Machi (1.tKp) were killed instantly by medullary blow, and the sweetfish were placed on a stainless steel wire mesh. While rotating the fish body, shake off the loosening agent containing vegetable polysaccharide or gelatin, place the yellowtail on a stainless steel plate, cool it with cold air at 135°C for 30 minutes, and spread it on the surface of the sweetfish to a thickness of 1 crr.
When we formed a strong frozen capsule of L and 0.5 crIL of subcutaneous lipid including the epidermis for yellowtail, the center temperature of both was 2°C.

その後−75℃の冷風を20分間吹付けて鮎の中心温度
を一8℃、ハマチを一6℃とした 次に冷風を一35℃
に戻して30分間吹付は外周と中心温度との差を平均化
?しめたのち冷風を再び一75°Cとして15分間吹つ
け、中心温度が鮎−18℃、ハマチ−14°Cになった
とき冷風を一35℃に戻して30分間吹きつけ、中心温
度−23℃としたのち一18℃の通常の冷凍庫に移して
1年間保存した。
Afterwards, cool air at -75℃ was blown for 20 minutes to bring the center temperature of the sweetfish to 18℃ and the yellowtail to 16℃.Next, the cold air was blown to 135℃.
Does returning to the temperature and spraying for 30 minutes average out the difference between the outer temperature and the center temperature? After cooling, cool air is blown again at -75°C for 15 minutes, and when the center temperature is -18°C for sweetfish and -14°C for yellowtail, the cold air is returned to -35°C and blown for 30 minutes, and the center temperature is -23°C. ℃, then transferred to a regular freezer at -18℃ and stored for one year.

別に同量の鮎と・・マチ各3匹ずつを同様に即殺し一3
5℃のエアーフリージング、エアープラストフリージン
グ及びコンタクトフリージングで24時間処理後厚さ4
0μmのポリエチレン袋に包み一18℃の通常の冷凍庫
に1年間保存して対照区とした。
Separately, kill the same amount of sweetfish and... 3 of each type immediately.
Thickness: 4 after 24 hours of air freezing, airplast freezing and contact freezing at 5℃
It was wrapped in a 0 μm polyethylene bag and stored in a regular freezer at -18° C. for 1 year to serve as a control.

次に本発明及対照区の冷凍魚を3°Cで真空解凍し解凍
時のドリップ、肉色、肉の柔軟度、魚体中央背側皮膚よ
り5原深さの肉片の凍結切片による細胞破壊度を顕微鏡
下に観察し、さらに鮎は塩焼としハマチは刺身として風
味試験に供したところ本発明による冷凍魚は解凍後生鮮
魚と一様であった。
Next, the frozen fish of the present invention and the control group were thawed under vacuum at 3°C, and the drips, flesh color, and softness of the meat upon thawing were measured. When observed under a microscope and further subjected to a flavor test for sweetfish grilled with salt and yellowtail sashimi, the frozen fish according to the present invention was found to be similar to fresh fish after thawing.

表2はその試験結果を示すものである。〈実施例 3〉 冷却用ボックス内温度15℃(常温)雰囲気下で水揚げ
直後の8gのサヨリ、37gの活ホタテ貝柱の各3個ず
つを何れも巾15cTL×長さ30crrLX深す3c
mのステンレス製バットの中に入れ植物多糖類とかゼラ
チン又はアルコールを含有するバラケ剤液を注入して完
全に液中に浸漬させ、−35℃の冷風を20分間吹付は
強固な結晶による氷結カプセルを形成させて該食品を外
側より固定した。
Table 2 shows the test results. <Example 3> In a cooling box with a temperature of 15°C (room temperature), three each of 8g halfbeaks and 37g freshly caught live scallops were placed in a box with a width of 15 cTL x length of 30 crrL x depth of 3 c.
Pour a breaking agent solution containing plant polysaccharides, gelatin, or alcohol into a stainless steel vat, completely immerse it in the solution, and blow cold air at -35°C for 20 minutes to freeze capsules with strong crystals. was formed to fix the food from the outside.

このとき中心温度は3℃であった。その後−65℃の冷
風で10分間急速に冷却したところ中心温度はサヨリ、
ホタテ貝とも一10℃になった。
At this time, the center temperature was 3°C. After that, when I rapidly cooled it with -65℃ cold air for 10 minutes, the center temperature was still half-baked.
The temperature for the scallops was -10 degrees Celsius.

さらに冷風を一35℃に戻し15分間吹付けて外周と中
心温度の差を縮めた後再び一65℃の冷風で10分間冷
却し中心温度を共に一15℃とした。
Furthermore, cold air was returned to -35°C and blown for 15 minutes to reduce the difference in temperature between the outer periphery and the center, and then cooled again with cold air at -65°C for 10 minutes to bring the center temperature to -15°C.

その後、−35℃冷風を15分間吹付は中心温度を一2
0°Cとしたのち40μm厚さのポリエチレン袋に包み
一18℃の通常の冷凍庫に8ケ月間保存した。
After that, blowing -35℃ cold air for 15 minutes lowers the center temperature to 12
After cooling to 0°C, it was wrapped in a 40 μm thick polyethylene bag and stored in a regular freezer at -18°C for 8 months.

別に同量のサヨリ、ホタテ貝柱各3個をそれぞれ1群と
して一35℃のエアーフリージング、エアープラストフ
リージングおよびコンタクトフリージングで24時間処
理後厚さ40μmのポリエチレン袋に包み一18℃の冷
凍庫内に8ケ月間保存して対照区とした。
Separately, the same amount of halfbeaks and 3 scallops were treated as a group for 24 hours with air freezing, airplast freezing and contact freezing at 35°C, then wrapped in a polyethylene bag with a thickness of 40 μm and placed in a freezer at 18°C for 8 hours. It was stored for several months and used as a control.

次に本発明及び対照区のサヨリおよびホタテ貝柱を3℃
で真空解凍し、解凍時のドリップ、肉色、肉の柔軟度、
魚体中央側線直下の肉片(サヨリ)及び貝柱中心部(ホ
タテ貝柱)の肉片の凍結切片による細胞破壊度を顕微鏡
下で観察し、さらにサヨリは刺身として貝柱はフライパ
ンでバタ焼として風味試験に供し表3の試験結果を得た
が本発明による冷凍品は解凍後においても生鮮品と区別
がつかない程の高品質を保っていた。
Next, the halfbeaks and scallops of the present invention and the control were collected at 3°C.
Thaw the meat under vacuum, and check the drips, color, and softness of the meat during thawing.
The degree of cell destruction was observed under a microscope using frozen sections of the meat just below the central lateral line of the fish body (halfbeak) and the meat of the center of the scallop (scallop scallop), and the halfbeak was subjected to flavor tests as sashimi and the scallop was fried in a frying pan. Test results of No. 3 were obtained, and the frozen products according to the present invention maintained such high quality that they were indistinguishable from fresh products even after thawing.

〈実施例 4〉 冷却用ボックス内温度20℃(常温)湿度65係雰囲気
下でマグロにぎりずしく40g)及びのり甘きずしく3
00.?)各3個ずつを何れもステンレス板の上におき
、−35℃の冷風を30分間吹付けて冷凍庫内部の空間
の空気中の水分とすし表面の遊離水とを米飯の1粒1粒
の表面及びマグロ、のりの表面に凝結させ各々独立した
強固な氷結カプセルを形成させると中心温度0°Cにな
った。
<Example 4> Tuna Nigiri Zushiku 40g) and seaweed Sweet Kizushiku 3 in an atmosphere with a cooling box temperature of 20°C (normal temperature) and a humidity of 65%.
00. ? ) Place three of each on a stainless steel plate and blow cold air at -35℃ for 30 minutes to remove moisture in the air inside the freezer and free water on the surface of each grain of cooked rice. When it condensed on the surface, tuna, and seaweed to form independent and strong frozen capsules, the center temperature reached 0°C.

その後−75℃の冷風を20分間吹付けて急速に冷却し
たところ中心温度が一8°Cとなった。
Thereafter, when cold air at -75°C was blown for 20 minutes to rapidly cool the temperature, the center temperature became 18°C.

次に一35℃の冷風を30分間吹付は緩慢に温度を降下
させて外周と中心温度の均衡を計り、中心温度を一11
℃とした。
Next, blow cold air at -35℃ for 30 minutes to slowly lower the temperature to balance the outer circumference and center temperature, and bring the center temperature to -111℃.
℃.

そこで一挙に自由水を凍結させるために一75°Cの冷
風を15分間吹付けると中心温度が一17°(Jなった
To freeze the free water all at once, we blew cold air at 175°C for 15 minutes, resulting in a center temperature of 117° (J).

ミセル状の結合の固い水分を凍結させるため更に一35
℃の冷風で30分間冷却し中心温度が一23°Cになっ
たとき40μm厚のポリエチレン袋に包み一18℃の通
常の冷凍庫内に移して1年間保存した。
In order to freeze the solid water in micellar bonds, an additional 135
It was cooled for 30 minutes with cold air at -18°C, and when the center temperature reached 123°C, it was wrapped in a 40 μm thick polyethylene bag and transferred to a regular freezer at -18°C for one year.

別に同量のマグロにぎりずしとのり甘きすしを和紙に包
みそれぞれ3個1群として一35°Cのエアーフリージ
ング、エアープラストフリージング及びコンタクトフリ
ージングで24時間処理後40μmの厚さのポリエチレ
ン袋に包んで−18°Cの通常の冷凍庫に移し1年間保
存して対照とした。
Separately, the same amount of tuna nigiri sushi and nori sweet sushi were wrapped in Japanese paper, each grouped with 3 pieces, and treated with air freezing, airplast freezing, and contact freezing at 35°C for 24 hours, then wrapped in a 40 μm thick polyethylene bag. It was then transferred to a regular freezer at -18°C and stored for one year to serve as a control.

次に本発明及び対照区の冷凍ずしを室温25°Cで1時
間放置して自然解凍し、指先でおさえた時の形状のくず
れ(でんぷんの老化、β化による脆さに起因)、米粒相
互の粘着性、米飯のゲルコアミラーゼ法による糊化度(
α仕度)の維持、食べたときの食感、すしの色調などか
ら品質保持性を試験し、表4の結果を得たが、本発明に
よる冷凍ずしは1年後も生鮮品に近い品質を維持してい
た。
Next, the frozen sushi of the present invention and the control group were allowed to thaw naturally at room temperature of 25°C for 1 hour. Mutual adhesion, degree of gelatinization of cooked rice by gel coamylase method (
The quality retention was tested based on the maintenance of α-quality), the texture when eaten, the color of the sushi, etc., and the results shown in Table 4 were obtained. was maintained.

〈実施例 5〉 冷却用ボックス内温度22℃(常温)湿度65チ雰囲気
下で約100gののしもち3個を何れもステンレス板の
上におき、−35℃の冷風を30分間吹付けて冷凍庫内
の空間の空気中の水分ともち表面の遊離水とにより表面
3原を凝結させて強固なカプセルを形成し、各中心温度
を3°Cとする。
<Example 5> Three Noshimochi weighing about 100 g were each placed on a stainless steel plate in an atmosphere with a cooling box temperature of 22°C (room temperature) and a humidity of 65°C, and cold air at -35°C was blown for 30 minutes. Moisture in the air in the space inside the freezer and free water on the surface of the rice cake condense the surface three particles to form a strong capsule, each having a center temperature of 3°C.

その後、−60℃の冷風を20分間吹付けて急速冷却し
たところ中心温度は一10°Cとなった。
Thereafter, when the sample was rapidly cooled by blowing cold air at -60°C for 20 minutes, the center temperature became -10°C.

次いで一35°C冷風に切りかえ緩慢に30分間冷却し
て外周と中心温度の差を少なくしたのち更に一60°C
の冷風で15分間急冷し、単一多糖類でのα化したミセ
ル状の構造を破壊することなく保有水の結晶を完成さ?
た。
Next, switch to -35°C cold air and cool slowly for 30 minutes to reduce the difference in temperature between the outer periphery and the center, and then further cool to -160°C.
Rapid cooling with cold air for 15 minutes completes crystallization of retained water without destroying the gelatinized micellar structure of the single polysaccharide.
Ta.

中心温度は一17°Cとなった。The core temperature was -17°C.

再度−35°Cの冷風に切り替え30分間冷却して中心
温度を一25℃にしたのち40μm厚すのポリエチレン
袋に包み一18°Cの通常の冷凍庫内に移して1年間保
存した。
After switching to cold air at -35°C again and cooling for 30 minutes to bring the center temperature to -25°C, it was wrapped in a 40 μm thick polyethylene bag and transferred to a regular freezer at -18°C for one year.

別に同量のもち3個を1群として一35℃のエアーフリ
ージング、エアープラストフリージング及びコンタクト
フリージングで24時間処理後40μm厚さのポリエチ
レン袋に包み、−18°Cの通常の冷凍庫内に移して1
年間保存し対照区とした。
Separately, three mochi mochi of the same amount were treated as a group with air freezing, airplast freezing, and contact freezing at -35°C for 24 hours, then wrapped in a 40 μm thick polyethylene bag and transferred to a regular freezer at -18°C. 1
It was stored for a year and used as a control plot.

次に本発明及び対照区の冷凍もちを室温25°Cで1時
間放置して自然解凍し、指先で押えた時の形状の変形と
復原性、生の才\食べたときの食感、色調、風味などか
ら品質保持特性を試験し、表5の結果を得たが本発明に
よる冷凍もちは1午後生鮮なつきたでのもちに近い高品
質を維持した。
Next, the frozen mochi of the present invention and the control group were allowed to thaw naturally at room temperature of 25°C for 1 hour, and the deformation and stability of the shape when pressed with a fingertip, the texture and color tone when eaten were evaluated. The quality retention characteristics were tested in terms of flavor and the like, and the results shown in Table 5 were obtained.The frozen mochi according to the present invention maintained a high quality close to that of fresh mochi for one afternoon.

Claims (1)

【特許請求の範囲】[Claims] 1 冷凍保存すべき食品の外周面に氷結カプセルを形成
するとともに食品中心温度をO1℃〜3℃前後とするよ
うに冷却する氷結カプセル形成工程;続いて最大氷結晶
生成帯を難凍状態で通過させる過冷却状態を作り出し、
食品中心温度を一6℃以下とするように冷却する過冷却
工程;食品の外周温度と中心温度とを均衡させるように
冷却する緩慢冷却工程;および食品中に氷結晶を形成す
るように冷却する氷結工程を含む食品の冷凍保存方法。
1. A freezing capsule forming process in which a frozen capsule is formed on the outer circumferential surface of the food to be frozen and the food is cooled so that the temperature at the center of the food is around 01°C to 3°C; then, the food passes through the maximum ice crystal formation zone in a difficult-to-freeze state. Creates a supercooled state that causes
A supercooling process in which the food core temperature is cooled to below 16°C; a slow cooling process in which the food is cooled to balance the outer temperature and center temperature; and cooling to form ice crystals in the food product. A method of freezing food that includes a freezing process.
JP4115482A 1982-03-16 1982-03-16 How to freeze food Expired JPS5941391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4115482A JPS5941391B2 (en) 1982-03-16 1982-03-16 How to freeze food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4115482A JPS5941391B2 (en) 1982-03-16 1982-03-16 How to freeze food

Publications (2)

Publication Number Publication Date
JPS58158165A JPS58158165A (en) 1983-09-20
JPS5941391B2 true JPS5941391B2 (en) 1984-10-06

Family

ID=12600498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4115482A Expired JPS5941391B2 (en) 1982-03-16 1982-03-16 How to freeze food

Country Status (1)

Country Link
JP (1) JPS5941391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470681U (en) * 1990-10-30 1992-06-23

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634692B2 (en) * 1989-09-29 1994-05-11 ベストエフ株式会社 How to freeze food
JPH0553491U (en) * 1991-12-27 1993-07-20 ダイエー食品工業株式会社 Food freezing equipment
EP1249171B1 (en) * 2001-04-09 2006-06-14 Unilever Plc Freezing vegetables
JP3592668B2 (en) * 2001-12-13 2004-11-24 森永乳業株式会社 Food preservation method and unfrozen water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470681U (en) * 1990-10-30 1992-06-23

Also Published As

Publication number Publication date
JPS58158165A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
JPS5922509B2 (en) How to freeze food
US20110027439A1 (en) Method for freezing fruit and vegetable produce
JP2007153834A (en) Nonfreezing extract originating from daikon radish sprout, method for producing the same and use thereof
NZ206408A (en) Freezing organic tissue with substantially no vapourization of water from the tissue
US9204658B2 (en) Process for the production of frozen foods, particularly vegetables or fruits
JPS5941391B2 (en) How to freeze food
JPS6291170A (en) Method for freezing and preservation of food
Grout et al. Freezing of fruit and vegetables
JPS584904B2 (en) Freezing preservation method of raw nori leaves
JPS6012020B2 (en) Freezing method for fresh food
JP2670752B2 (en) Method for producing bound herring egg aggregate
JPS62201565A (en) Method for putting large-sized food in cold storage
JPS5922508B2 (en) How to freeze food
JP2003339338A (en) Method for processing fruit and vegetable
US20020106443A1 (en) Method of freezing salted meat products
JPS60241877A (en) Method for freezing hydrous food
KR20130083331A (en) Immersion coolant containing natural material
Osokina et al. Influence of freezing on changes in the structure of black currant fruits
SU1634223A1 (en) Method for preserving of small fish
JPS623785A (en) Storage of active cell and fresh tissue
JPH0412688B2 (en)
JPH0576332A (en) Method for keeping substance at low temperature by suppressing growrth of ice crystal
CN113317461A (en) Preparation method of dried mussels
Chen et al. Cryoprotective effect of glycopeptide complex from abalone viscera on frozen surimi and its underlying mechanism
JPH07303462A (en) Preparation of bound herring egg aggregate