JPS5941336A - Preparation of composite membrane - Google Patents

Preparation of composite membrane

Info

Publication number
JPS5941336A
JPS5941336A JP58132847A JP13284783A JPS5941336A JP S5941336 A JPS5941336 A JP S5941336A JP 58132847 A JP58132847 A JP 58132847A JP 13284783 A JP13284783 A JP 13284783A JP S5941336 A JPS5941336 A JP S5941336A
Authority
JP
Japan
Prior art keywords
membrane
cation exchange
vinyl
polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58132847A
Other languages
Japanese (ja)
Inventor
Toshikatsu Sada
佐田俊勝
Kensuke Moya
藻谷研介
Akihiko Nakahara
村田康雄
Yasuo Murata
中原昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP58132847A priority Critical patent/JPS5941336A/en
Publication of JPS5941336A publication Critical patent/JPS5941336A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To prepare a composite membrane suitable as an electrolytic membrane capable of keeping high current efficiency for a long period, by applying fine powder of a polylmer compound and a vinyl monomer to the surface of a fluorine-containing cation exchange membrane, etc., and polymerizing the monomer thereby bonding the polymer to the membrane. CONSTITUTION:Fine powder of a polymer compound (e.g. ethylene, ethylene oxide, etc.) having a particle diameter of preferably 0.01-10mu is dispersed in a vinyl monomer (e.g. styrene) to obtain a dispersion composed of 0.5-50wt% of the polymer compound and 5-80wt% of the vinyl monomer. The dispersion is applied to the surface of a polymer membrane having fluorine atom and cation exchange group (e.g. sulfonic acid group) or a functional group (e.g. acid ester group) to which a cation exchange group can be introduced easily, by impregnation or coating. The vinyl compound is polymerized on the surface of the membrane, and if necessary, ion exchange group is introduced to the product to obtain the objective composite membrane.

Description

【発明の詳細な説明】 本発明は特に電解用隔膜の製法に関し、その目的は高い
電流効率を長期間に維持しうる含ふっ素糸の複合イオン
交換膜を得るにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for producing a diaphragm for electrolysis, and its purpose is to obtain a composite ion exchange membrane made of fluorine-containing threads that can maintain high current efficiency for a long period of time.

アルカリ金属塩の電気分解、その他酸化性物筑を発生ず
る雰囲気において使用する隔膜としては、従来から陽イ
オンを選択的に透過する陽イオン父換樹脂属を使うこと
が提案されている。この種の隔膜として、今日商品名N
afion  という、パーフルオロビニルエーテルス
ルホニルフルオライドをテ、トラフルオルエチレンと共
重合して得た含ふっ素糸陽イオン交換膜があり、その耐
酸化性においては抜群の耐性を持つものである。しかし
ながら、含ふっ素糸陽イオン交換膜をアルカリ金属塩の
電気分解の隔膜等に使用した場合に電流効率が低(満足
できない。また、そのほか含ふっ素糸の高分子膜状物に
パーフルオロ(アルキルビニルエーテルスルホニルフル
オライド)あるいはパーフルオロ(アルキルビニルエー
テルスルホン酸)等を電離性放射線によってグラフト重
合させる方法、同じく含ふっ素糸高分子膜状物にパーフ
ルオロ(フルキルビニルエーテルカルボン酸)等を電離
性放射線によってグラフト重合させる方法、カルボン酸
基をもつ重合体とフルオルカーボン重合体とを含んでい
る陽イオン交換膜が提案されている。これらの含ふっ素
糸陽イオン交換膜は耐酸化性を有しかつ高い電流効率で
アルカリ金属水酸化物を取得する電解用隔膜の開発を指
向している。しかしながら、これらの含ふっ素糸陽イオ
ン交換膜も一般のイオン交換膜と同様に長期間にわたり
連続的に使用すると交換容量は若干低下するにしても含
水量が著しく増大していくため、膜の固定イオン濃度が
経時的に低下していくことKなり、ひいては電流効率が
低下することになる。これは電解における通電によって
膜内なイオンが透過し、発熱その他により経時的に膜に
おける高分子鎖にゆるみが発生することに基因するもの
と推測される。そのために膜は出来るだけ均一にかつ高
度に架橋構造を形成していることが望ましいが、膜の電
気抵抗が著しく高くなることは避けられない。従って、
電気抵抗の著しい増大がなくかつ隔+aの上記した経時
的な高分子鎖のゆるみを押える方法の一つとして本発明
者らは先にふっ素原子を結合しかつ陽イオン交換基を結
合した高分子膜状物にビニル単量体な含浸重合させるこ
とを提案したが、長期間高温雰囲気においてはその耐久
性はなお満足すべきものではな、かった。
As a diaphragm to be used in the electrolysis of alkali metal salts or in other atmospheres where oxidative debris is generated, it has been proposed to use cationic catalytic resins that selectively transmit cations. Today, the product name for this type of diaphragm is N.
There is a fluorine-containing cation exchange membrane called afion, which is obtained by copolymerizing perfluorovinyl ether sulfonyl fluoride with tetrafluoroethylene, and has outstanding oxidation resistance. However, when the fluorine-containing thread cation exchange membrane is used as a diaphragm for the electrolysis of alkali metal salts, the current efficiency is low (unsatisfactory). A method in which graft polymerization of perfluoro (sulfonyl fluoride) or perfluoro (alkyl vinyl ether sulfonic acid), etc. is performed using ionizing radiation, and a method in which perfluoro (furkyl vinyl ether carboxylic acid), etc. is grafted onto a fluorine-containing polymer film using ionizing radiation. A cation exchange membrane containing a polymer having a carboxylic acid group and a fluorocarbon polymer has been proposed. We are aiming to develop a diaphragm for electrolysis that can obtain alkali metal hydroxides with high current efficiency.However, like general ion exchange membranes, these fluorine-containing cation exchange membranes have problems when used continuously for long periods of time. Even if the exchange capacity decreases slightly, the water content increases significantly, so the fixed ion concentration in the membrane decreases over time, which in turn causes a decrease in current efficiency. It is presumed that this is due to the fact that ions in the membrane permeate through electricity, and the polymer chains in the membrane loosen over time due to heat generation and other factors.For this reason, the membrane must have a cross-linked structure as uniformly and highly as possible. Although it is desirable to form a film, it is unavoidable that the electrical resistance of the film becomes significantly high.
As a method for suppressing the above-mentioned loosening of polymer chains over time without significantly increasing electrical resistance, the present inventors developed a polymer to which fluorine atoms were first bonded and cation exchange groups were bonded. Although it was proposed to impregnate and polymerize a vinyl monomer into a film-like material, its durability was still unsatisfactory in a high-temperature atmosphere for a long period of time.

上記の観点から、本発明者らは長期間の高温雰囲気下で
の電解においても、性能の低下の著しく少ない膜につい
て更に鋭意研究を重ねた結果、新たな複合膜の′!R遣
方法を開発したものである。すなわち、本発明はふっ素
原子と陽イオン交換基または容易に陽イオン交換基を後
処理で導入しうる官能基とを結合した高分子膜状物の表
面に微粒子状高分子化合物とビニル単量体とを存在させ
て該ビニル単量体を重合させ必要に応じてイオン交換基
を導入することを特徴とする複合膜の製造方法である。
From the above point of view, the inventors of the present invention have conducted further intensive research on membranes that exhibit significantly less deterioration in performance even during long-term electrolysis in high-temperature atmospheres, and have developed a new composite membrane. This method was developed using the R-mailing method. That is, the present invention provides a method for forming a particulate polymer compound and a vinyl monomer on the surface of a polymer membrane in which a fluorine atom and a cation exchange group or a functional group into which a cation exchange group can be easily introduced in post-treatment are bonded. This is a method for producing a composite membrane, which is characterized by polymerizing the vinyl monomer in the presence of and introducing an ion exchange group as necessary.

本発明によって得られる複合陽イオン交換j漠が特に電
解用隔膜として、極めて優れた性能を示す理由は必ずし
も明確でない。通常、濃厚な電解質水溶液中において陽
イオン交換膜はその固定イオン濃度が低いときには陥イ
オンも陽イオン交換膜を透過するようKなる。
The reason why the composite cation exchange membrane obtained by the present invention exhibits extremely excellent performance, especially as a diaphragm for electrolysis, is not necessarily clear. Normally, when the fixed ion concentration of a cation exchange membrane is low in a concentrated electrolyte aqueous solution, the cation exchange membrane becomes so strong that even trapped ions permeate through the cation exchange membrane.

従って、濃厚な電解質水溶液系で適したイオン交換膜を
用いるには固定イオン濃度の著しく高いイオン交換膜が
必要である。本発明者らは先にイオン交換膜を脱水雰囲
気におくと’ih流効率が著しく向上することを見出し
たう更にこの現象はふっ素原子を結合した電解用隔膜に
おいて極めて顕著な作用を示すものである。1yl]え
ば、テトラフルオロエチレンとパーフルオロ(3,6−
シオキザー4−メチル−7−オクグンスルポニルフルオ
ライド)の共重合体な加水分解して得たパーフルオルス
ルホン酸型の陽イオン交換膜は120℃で乾燥状態に長
期間放置してアルカリ金属塩水溶液例えば飽和食塩水の
電気分解に使用すると、20%力性ソーダを取得して電
流効率は95%にも達する。また、同一の膜を純水中で
煮沸処理すると20%力性ソーダを取得して電流効率は
65%にすぎない。このような着しい膜性能の変化は疎
水結合力の髪化のために膜の含水量が増大し同定イオン
濃度が低下するためと推測される。勿論、加熱加圧によ
って電流効率の向上した隔膜は長9時間電解を実施して
いると電流効率は次第に低下し煮沸処理した膜性質と同
一になる。このような現象は三次元構造を有するイオン
交換膜でも程度の差こそあれ見られる。こσ〕ような観
点から本ジる明においてはふっ素糸の陽イオン交換11
Mに特に該陽イオン交換膜と異質の筒分子化合物の薄層
を接合させることによって、16イオン交Is膜の膨潤
が押えられ固定イオン濃度が高く安定して維持される効
果が、微粒状高分子化合物とビニル単量体の惠せによっ
て一段と強化されるものと推測される。
Therefore, in order to use an ion exchange membrane suitable for a concentrated electrolyte aqueous solution system, an ion exchange membrane with a significantly high fixed ion concentration is required. The present inventors have previously found that the 'ih flow efficiency is significantly improved when an ion exchange membrane is placed in a dehydrated atmosphere.Furthermore, this phenomenon is extremely pronounced in electrolytic diaphragms that have fluorine atoms bonded to them. be. For example, tetrafluoroethylene and perfluoro(3,6-
A perfluorosulfonic acid type cation exchange membrane obtained by copolymer hydrolysis of Shiokizer (4-methyl-7-ocgunsulfonyl fluoride) was left in a dry state at 120°C for a long period of time to remove alkali metals. When used for electrolysis of a salt aqueous solution, such as saturated saline, 20% sodium hydroxide can be obtained and the current efficiency can reach as high as 95%. Furthermore, when the same membrane is boiled in pure water, 20% strength soda is obtained, and the current efficiency is only 65%. It is presumed that such a drastic change in membrane performance is due to the increase in membrane water content due to the change in hydrophobic binding force, resulting in a decrease in the concentration of identified ions. Of course, if a diaphragm whose current efficiency has been improved by heating and pressurizing is subjected to electrolysis for a long time of 9 hours, its current efficiency will gradually decrease and the properties will become the same as those of the membrane treated by boiling. Such a phenomenon is observed to varying degrees even in ion exchange membranes having a three-dimensional structure. From this point of view, in this paper, we will discuss the cation exchange of fluorine yarn 11.
Particularly, by joining the cation exchange membrane with a thin layer of a different cylindrical molecular compound to M, the swelling of the 16 ion exchange Is membrane is suppressed and the fixed ion concentration is kept high and stable. It is presumed that the strength is further strengthened by the combination of molecular compounds and vinyl monomers.

本発明において、含ふり木系の陽イオン交換膜または容
易に陽イオン交換基な導入し得る映状物に微粒状高分子
化合物を、ビニル早一体のh合によって接合する方法に
ついて具体的に説明すると、例えば、含ふつ水系の陽イ
オン交換膜または容易にイオン交換基な導人し得る膜状
物に接合する微粒状高分子化合物を分散したビニル化合
物を付着、含浸等によって存在させ該ビニル化合物を重
合する方法等がある。
In the present invention, a method for bonding a fine particulate polymer compound to a wood-based cation exchange membrane or a mirror material into which a cation exchange group can be easily introduced is specifically explained. Then, for example, by adhering, impregnating, etc., a vinyl compound in which a fine particulate polymer compound to be bonded to a water-containing cation exchange membrane or a membrane-like material that can easily conduct an ion exchange group is present, and the vinyl compound is There are methods such as polymerizing.

本発明において、宮ふつ素基の1dイオン交換膜に微粒
状高分子化合物を接合することによって、得られる複合
陽イオン交換膜の電気抵抗が上昇することは好ましくな
い。従って一般に不発明の複合陽イオン交換膜の電気抵
抗は高分子化合物を接合する前の含ふつ素基[ゐイオン
交換膜の10倍好ましくは7倍をこえない程度にとどめ
存在させることが必要である。この複合陽イオン交換膜
の電気抵抗の点から、接廿する高分子化合9勿は含ふっ
素糸陽イオン交換膜の内部よりも表層部に、また該含ふ
つ系系陽イオン交換膜の画面よりも片■に出来るだけ薄
く形成させることが好ましい。また、得られた複合陽イ
オン交換膜を電解隔膜として使用する場合には、希薄な
境膜層が生じる陽極側よりも陰極側に接合した高分子化
合物が存在する薄層を向けた方が好ましい。
In the present invention, it is not preferable that the electrical resistance of the resulting composite cation exchange membrane increases by bonding a fine particulate polymer compound to the 1d ion exchange membrane of Miyafutsu elementary groups. Therefore, in general, the electrical resistance of the uninvented composite cation-exchange membrane must be kept to an extent that the fluorine-containing elementary group [2] before joining the polymer compound is 10 times, preferably 7 times, that of the ion-exchange membrane. be. From the point of view of the electrical resistance of this composite cation exchange membrane, the attached polymer compound 9 should be placed more on the surface layer than inside the fluorine-containing cation exchange membrane, and from the screen of the fluorine-containing cation exchange membrane. It is preferable to form it as thinly as possible on both sides. In addition, when the obtained composite cation exchange membrane is used as an electrolytic diaphragm, it is preferable to direct the thin layer containing the bonded polymer compound toward the cathode side rather than toward the anode side, where a thin film layer occurs. .

上記した如き接合の方法において、含ふっ素糸の陽イオ
ン交換膜または容易に陽イオン交換基を導入し得る膜状
物に微粒状高分子化合物をビニル単り体に分散させて接
合させる場合は、該分散物中に膜状物を浸がIあるいは
該分散物を膜状物の片面または両面に塗布。
In the bonding method as described above, when a fine particulate polymer compound is dispersed in a single vinyl body and bonded to a cation exchange membrane of fluorine-containing thread or a membrane material into which cation exchange groups can be easily introduced, The film-like material is immersed in the dispersion, or the dispersion is applied to one or both sides of the film-like material.

噴霧して含浸、付着せしめたのち重合を行う。After spraying to impregnate and adhere, polymerization is performed.

なお、高分子化合物を分散したビニル化合物の混合物中
におけるビニル単量体の蓋は、全単量体化合物に対して
1合で1〜90%好ましくは5〜80%含まれている場
合に有効であり、分散している高分子化合物の量はその
分子蓋1粒径等で異なるために一概に限定できないが、
全ビニル化合物に対してNILで0.5〜50%含1れ
ているときに好結果をもたらす。
In addition, the vinyl monomer lid in the mixture of vinyl compounds in which a polymer compound is dispersed is effective when it is contained in a proportion of 1 to 90%, preferably 5 to 80%, based on the total amount of monomer compounds. The amount of the dispersed polymer compound varies depending on the particle size of the molecular cap, etc., so it cannot be definitively determined.
Good results are obtained when the NIL content is 0.5 to 50% of the total vinyl compound.

上記のビニル化合物の混合物に含まれる分散性高分子化
合物は、接合する膜の細孔との関係で表ノコ部に薄層状
に存在することになる。
The dispersible polymer compound contained in the mixture of vinyl compounds described above exists in a thin layer in the surface saw part due to the relationship with the pores of the membrane to be joined.

本発明に用いられるふっ素原子と陽イオン交換基または
容易に陽イオン交換基を導入しうる官能基を有する高分
子膜状物としズは、特に制限されず従来公知の如何なる
ものでもよい。例えば、テトラフルオロエチレンとパー
フルオロ(3,6−シオキサー4−メチル−7−オクテ
ンスルホニルフルオライド)等のパーフルオロ(フルキ
ルビニルエーテルスルホニルフルオライド)との共重合
体を膜状にしたもの、あるいは加水分解処理した陽イオ
ン交換膜等である。すなわち、含ふっ素糸の陽イオン交
換膜としては、ふっ素原子を均一に結合しかつ陽イオン
交換基あるいは容易に陽イオン交換基に導入しうる官能
基を均一に結合している一方向が11以上の膜状物であ
る。高分子膜状物におけるふっ素原子は部分的に高分子
鎖に結合しでいてもよく、あるいはパーフルオー系の高
分子であってもよ(、特に高分子鎖の切断を防ぎかつ、
イオン交換基を安定に結合せしめておく位置にふっ素原
子が結合しているパーフルオー系の陽イオン交換膜が最
も好ましい。陽イオン交換基としては従来公知の陽イオ
ン交換基が一種以上用いられ、スルホン酸基、カルボン
酸基、硫酸エステル基、リン酸基、亜すン酸基、リン酸
エステル基゛、亜すン酸エステル基、チオール基、フェ
ノール性水酸基、解離しりる水素原子を結合した酸7ミ
ド基、金属キレート化合物で負の電荷を持つものなどの
うちから一種以上が好適に用いられる。また、容易に陽
イオン交換基に変換しうる官能基を有するふっ素原子を
結合した高分子膜状物であってもよ(、該官能基として
は、酸エステル類、酸無水物、酸ハライド等である2、
さらに、上記した陽イオン交換膜の製法としては、従来
公知の如何なる製法によったものでもよく、共M結合性
の架橋構造を有するもの、疎水結合によって不溶化され
ているもの、単なる高分子鎖のからみ合いによって不溶
化されているものなと如何なるものであってもよく、ふ
つ素原子と陽イオン交換基を均一に結合して有するもの
なら何ら制限されない。さらに、これらの含ふっ素糸の
陽イオン交換膜をアンモニヤで酸アミドを形成したもの
、−級アミンで酸アミド結合を形成したもの、ジアミン
、ポリアミンで酸アミド結合を形成しこれを170°C
以上陽イオン交換膜が劣化しない温度で処理する等によ
って改良された陽イオン交換膜を用いて本発明の複合膜
を製造すると、その改質されたR6膜の性能を一段と高
めることができかつその高い性能をより長時間に亘って
安定に維持することもできる。
The polymeric film-like material and beads having a fluorine atom and a cation exchange group or a functional group into which a cation exchange group can be easily introduced are not particularly limited and may be any conventionally known material used in the present invention. For example, a film made of a copolymer of tetrafluoroethylene and perfluoro(furkyl vinyl ether sulfonyl fluoride) such as perfluoro(3,6-thioxer-4-methyl-7-octensulfonyl fluoride), or These include hydrolyzed cation exchange membranes. In other words, the cation exchange membrane of fluorine-containing thread has 11 or more fluorine atoms in one direction that uniformly binds fluorine atoms and uniformly binds cation exchange groups or functional groups that can be easily introduced into the cation exchange groups. It is a film-like substance. The fluorine atoms in the polymer film may be partially bonded to the polymer chain, or may be perfluoro-based polymers (particularly to prevent polymer chain scission and
Most preferred is a perfluoro-based cation exchange membrane in which a fluorine atom is bonded to a position where an ion exchange group is stably bonded. As the cation exchange group, one or more conventionally known cation exchange groups are used, including a sulfonic acid group, a carboxylic acid group, a sulfuric acid ester group, a phosphoric acid group, a phosphorous acid group, a phosphoric acid ester group, and a phosphoric acid ester group. One or more selected from the group consisting of an acid ester group, a thiol group, a phenolic hydroxyl group, an acid 7-amide group bonded with a dissociated hydrogen atom, and a negatively charged metal chelate compound. It may also be a polymeric film-like material bonded with fluorine atoms having a functional group that can be easily converted into a cation exchange group (such functional groups include acid esters, acid anhydrides, acid halides, etc.). 2,
Furthermore, the above-mentioned cation exchange membrane may be manufactured by any conventionally known manufacturing method, including those having a co-M-bonding crosslinked structure, those insolubilized by hydrophobic bonds, and those having a simple polymer chain. It may be any material that is insolubilized by entanglement, and there is no restriction at all as long as it has fluorine atoms and cation exchange groups uniformly bonded. Furthermore, these cation exchange membranes of fluorine-containing threads were prepared by forming an acid amide with ammonia, forming an acid amide bond with a -class amine, forming an acid amide bond with a diamine or polyamine, and heating them at 170°C.
If the composite membrane of the present invention is manufactured using a cation exchange membrane that has been improved by treatment at a temperature at which the cation exchange membrane does not deteriorate, the performance of the modified R6 membrane can be further improved and High performance can also be stably maintained for a longer period of time.

次に、上記した含ふつ素糸陽イオン交換膜の高分子膜状
物に接合する微粒状高分子化合物としては、後記するビ
ニル単量体に膨潤する性質をゼするもので、分子量が5
00〜500万の範囲であれば紛状高分子9分岐性高分
子。
Next, the fine particulate polymer compound to be bonded to the polymer membrane of the above-mentioned fluorine-containing thread cation exchange membrane is one that has the property of swelling with the vinyl monomer described later and has a molecular weight of 5.
If it is in the range of 0.000 to 5.000 million, it is a powdered polymer and a 9-branched polymer.

架橋性高分子のいずれでもよい。例えばエチレン、プロ
ピレン、ブテン等のオレフィン類。
Any crosslinkable polymer may be used. For example, olefins such as ethylene, propylene, butene.

プロピレンオキサイド、エチレンオキサイド等のエポキ
シ化合物類、塩化ビニルlJt’化ビニル、沃化ビニル
、ぶつ化ビニル等のモノハロゲン化ビニル〃1.塩化ビ
ニリデン、弗化ビニリデン、−塩化三弗化エチレン、4
弗化エチレン等の多ハロゲン化ビニル類、スチレン。
Epoxy compounds such as propylene oxide and ethylene oxide, vinyl monohalides such as vinyl chloride lJt', vinyl iodide, and vinyl butthoride 1. Vinylidene chloride, vinylidene fluoride, -ethylene chloride trifluoride, 4
Polyhalogenated vinyls such as fluorinated ethylene, styrene.

クロルメナルスチレン、ビニルトルエン、エチルビニル
ベンゼン、ジビニルベンゼン、トリビニルベンゼン等の
芳香族ビニル化合物。
Aromatic vinyl compounds such as chlormenalstyrene, vinyltoluene, ethylvinylbenzene, divinylbenzene, trivinylbenzene.

ビニルピリジン、ビニルピペラジン等のa素環ビニル化
合物、アクリル酸エステル類、酢酸ビニル、メタアクリ
ル酸エステル類、スチレンスルホン酸エステル類、ビニ
ルスルホン酸エステル類等のビ旦ルエステル化合物、ズ
タシエン、インプレン、クロロプレン、パーフルオロブ
タジェン等その他アリル化合物。
a-ring vinyl compounds such as vinylpyridine and vinylpiperazine, vinyl ester compounds such as acrylic esters, vinyl acetate, methacrylic esters, styrene sulfonic esters and vinyl sulfonic esters, zutathiene, imprene, and chloroprene. , perfluorobutadiene, and other allyl compounds.

アリル7ミン、アリルアルコール、7リルクロライド等
、パーフルオロ(アルキルビニルエーテル)類、α−フ
ルオロスチレン、α、β。
Allyl 7mine, allyl alcohol, 7lyl chloride, etc., perfluoro(alkyl vinyl ether), α-fluorostyrene, α, β.

β’ −) !J フルオロスチレン、α−フルオI:
17クリル酸エステル類、α、β、ly’−+・リフル
オロアクリル酸エステル類等の含ふっ素ビニル単量体、
その他ふり化炭毛などの5)から一種以上選ばれた単量
体を重合あるいは共重合して得られた高分子化合物が好
適に用いられろう上記の高分子化合物の粒径は001〜
100μ好ましくは0.01〜10μで、出光るだけ小
さいものが好ましく、更に分散を均一にかつ安定にする
ために低分子量の分散剤を添加してもよい。なお、これ
らの高分子化合物を接合した8層には、M、離性のイオ
ン交換基が存在してもよいが、含ふっ素糸陽イオン父換
膜のイオン交換基よりも少な(することが必ガである 他方、本発明において用いるビニル単黄体は、上記した
ように高分子U状物に接合する高分子化合物を膨潤し、
重合可能なものであれば特に制限されないが、さらに高
分子膜状物をも膨潤ずろものが好ましい。例えば、モノ
ビニルモノマーとしてスチレン、ビニルトルエン類、メ
タアクリル酸エステル類、アクリル酸エステル類、アク
リロニトリル、ビニルピリジン類、N−ビニルピロ、リ
ドン類、ビニルイミダゾール類、ブタジェン類、イソプ
レン類、クロロプレン類、塩化ビニル、酢酸ビニル、ア
クロレイン、メチルビニルケトン。
β' −)! J Fluorostyrene, α-Fluo I:
17 acrylic acid esters, fluorine-containing vinyl monomers such as α, β, ly'-+・refluoroacrylic esters,
In addition, polymer compounds obtained by polymerizing or copolymerizing one or more monomers selected from 5), such as fluorinated carbon wool, may be suitably used.
100 microns, preferably 0.01 to 10 microns, preferably as small as light emission.Furthermore, a low molecular weight dispersant may be added to make the dispersion uniform and stable. In addition, although M and releasable ion exchange groups may be present in the 8 layers in which these polymer compounds are bonded, the number of ion exchange groups is smaller than that of the fluorine-containing cationic ion exchange membrane. On the other hand, the vinyl monoluteate used in the present invention swells the polymer compound bonded to the polymer U-shaped material as described above,
There is no particular restriction as long as it is polymerizable, but it is preferable that the polymer film-like material also swells. For example, monovinyl monomers include styrene, vinyltoluenes, methacrylates, acrylates, acrylonitrile, vinylpyridines, N-vinylpyro, lydones, vinylimidazoles, butadines, isoprenes, chloroprenes, and vinyl chloride. , vinyl acetate, acrolein, methyl vinyl ketone.

クロpメヂルスチレン類、モノクロルスチレン類、ポリ
クロルスチレン類、α−フルオロスチレン、α、β、β
1−トリフルオロスチレン。
Chloropomethylstyrenes, monochlorostyrenes, polychlorostyrenes, α-fluorostyrene, α, β, β
1-Trifluorostyrene.

α−メチルスチレン、塩化ビニリデン、弗化ビニル、弗
化ヒニリデン、クロルメチルスチレン類、ビニルスルボ
ン酸のエステル額、スチレンスルホン酸のエステルrA
 、 7 !Iルスルホン酸のエステル類、ビニルポス
ホン酸のエステルM、スチレンホスホン屯のエステル類
α-methylstyrene, vinylidene chloride, vinyl fluoride, hnylidene fluoride, chloromethylstyrenes, vinylsulfonic acid esters, styrenesulfonic acid esters rA
, 7! I esters of sulfonic acid, esters of vinyl phosphonic acid M, esters of styrene phosphonic acid.

スチレンホスフィンE歳のエステル類、ビニルホスフィ
ン酸のエステル類、ビニルフェノール酸のエステル類、
酢酸ビニル、4弗化エチレン、3弗化エチレン、エチル
ビニルベンゼン類、マレイン酸エステル類、イタコン酸
工ステル類、臭化ビニル、次に架橋剤(ポリビニル化合
物)として、m−、P−、O−ジビニルベンゼン、ジビ
ニルスルホン、ブタジェン、り0pプレン、イソプレン
、トリビニルベンゼン類、ジビニルナフタリン、トリビ
ニルナフタリン、ジアリルアミン、トリアリルアミン、
ジビニルピリジン類、ジビニルクロルベンゼン類、多価
アルコールのポリアクリレート、ポリメタクリレート類
、ジビニルエーテル、ジビニルアセチレン、ジビニルス
ルホン等のうちから一種以上が用いられる。その他にビ
ニルスルホン酸及び塩類、スチレンスルホン酸及び塩類
、アリルスルホン酸及び塩類、ビニルホスホン酸及び塩
類、スチレンホスフィン酸及び塩類、ビニルホスフィン
酸及び塩類、アクリル酸、メタアクリル酸、α−フェニ
ルアクリル酸、α−エチルアクリル酸、α−ハロゲン化
アクリル酸、マレイン酸。
Styrenephosphine E esters, vinylphosphinic acid esters, vinylphenolic acid esters,
Vinyl acetate, tetrafluoroethylene, trifluoroethylene, ethylvinylbenzenes, maleic esters, itaconic esters, vinyl bromide, and then as a crosslinking agent (polyvinyl compound), m-, P-, O - Divinylbenzene, divinylsulfone, butadiene, ri0pprene, isoprene, trivinylbenzenes, divinylnaphthalene, trivinylnaphthalene, diallylamine, triallylamine,
One or more types of divinylpyridines, divinylchlorobenzenes, polyacrylates of polyhydric alcohols, polymethacrylates, divinyl ether, divinylacetylene, divinyl sulfone, etc. are used. In addition, vinyl sulfonic acid and salts, styrene sulfonic acid and salts, allyl sulfonic acid and salts, vinyl phosphonic acid and salts, styrene phosphinic acid and salts, vinyl phosphinic acid and salts, acrylic acid, methacrylic acid, α-phenylacrylic acid , α-ethyl acrylic acid, α-halogenated acrylic acid, maleic acid.

イタコン酸、α−グチルアクリル酸、ビニル安息香酸類
、ナフタレン環にビニル基とカルボキシル基が結合した
もの等も一種以上全邦貨体混合物に対して5%以下なら
用いてもよい。これらを多くビニル単量体混合物中に用
いると高分子化合物ツメに陽イオン交換基が大量に導入
され高分子化合物層が著しく膨潤することになり、本発
明の複合膜の性能に好ましくない。゛本発明においては
、これらポリビニル化合物、モノビニル化合物の一種以
上を存在させたのち、該ビニル化合物を重合して高分子
化することが本発明の良好な複合膜を得るために必要で
ある。高分子化するためにはラジカル重合開始剤、X線
、放射線、’i子線、放電、光のエネルギー等を用いる
ことができる。ラジカル重合開始剤を用いる場合には重
合開始剤としては60℃以上の温度で半減期が10時間
以上のものなら何ら制限なく用いられる。例えば、ベン
ゾイルパーオキサイド、α、αIyゾインプチロニトリ
ル、ラウリルパーオキサイド、 1ert  −ブチル
クミルパーオキシド、クメンヒドロパーオキシド。
Itaconic acid, α-butyl acrylic acid, vinylbenzoic acids, naphthalene rings with a vinyl group and a carboxyl group, etc., may also be used in an amount of 5% or less based on the total compound mixture. If a large amount of these is used in the vinyl monomer mixture, a large amount of cation exchange groups will be introduced into the polymer compound claw, resulting in significant swelling of the polymer compound layer, which is unfavorable for the performance of the composite membrane of the present invention. In the present invention, it is necessary to make one or more of these polyvinyl compounds and monovinyl compounds exist and then polymerize the vinyl compound to form a polymer in order to obtain a good composite membrane of the present invention. In order to form a polymer, a radical polymerization initiator, X-rays, radiation, i-son beams, electric discharge, light energy, etc. can be used. When using a radical polymerization initiator, any polymerization initiator that has a half-life of 10 hours or more at a temperature of 60° C. or higher can be used without any restriction. For example, benzoyl peroxide, α, αIy zoinptyronitrile, lauryl peroxide, 1ert-butylcumyl peroxide, cumene hydroperoxide.

tert−ブチル−ラウリルパーオキサイド等はその一
1fllであるが、ここで用いられる付1着させる高分
子化合物の種類、及び処理方法によって適宜選択される
。微粒状高分子化合物を付層させると同時にビニル化合
物を共存させて軟化点以上に加熱する場合、M9粒状高
分子化合物を付着させたのちにビニル七/マーを共存さ
せて軟化点以上に加熱する場合には、その高分子化合物
の軟化点以上で分解する開始剤を用いたときに好結果を
もたらすまた付着に用いる微粒状高分子化合物の軟化点
、2oまたは陽イオン交換j摸、陽イオン又換膜に容易
に変換しうる高分子化合物の軟化点が著しく高い場合に
は、これにビニル化合物を共存させて軟化点まで加熱処
理すると解重合が生じることになる。このような場合に
は、予め高分子化合物を+J着させて軟化点まで加熱し
て後、ビニル化合物を付着・浸透させて重合させること
が有効である。またこの場合ビニル化合物を重合させる
方法としては、ラジカル開始剤を用いることも有効であ
るが、別に放射m、xm+’に子線、光のエネルギー。
Tert-butyl-lauryl peroxide is one of them, and is appropriately selected depending on the type of polymer compound used here and the treatment method. When a fine particulate polymer compound is layered and at the same time a vinyl compound is made to coexist and heated to above the softening point, after the M9 particulate polymer compound is attached, vinyl 7/mer is made to coexist and heated to above the softening point. In some cases, good results are obtained when using an initiator that decomposes at a temperature above the softening point of the polymer compound. If the softening point of a polymer compound that can be easily converted into a membrane is extremely high, depolymerization will occur if a vinyl compound is allowed to coexist with the polymer compound and heat-treated to the softening point. In such a case, it is effective to preliminarily attach a polymer compound to +J and heat it to its softening point, and then attach and infiltrate the vinyl compound for polymerization. In this case, as a method for polymerizing the vinyl compound, it is also effective to use a radical initiator;

放電等によって重合させてもよい。なお、例えば放射線
を使う場合には、ふっ素原子を結合した高分子化合物は
一般に分解性の高分子が多く、これの分解を防ぎ、望ま
しくは架橋構造を形成しうるような重合条件、ビニル化
合物の種類、組成を選定すべきことは言うまでもない。
Polymerization may also be carried out by electric discharge or the like. For example, when using radiation, polymer compounds with fluorine atoms bonded to them are generally degradable polymers, so polymerization conditions such as preventing the decomposition of these polymers and preferably forming a crosslinked structure, and Needless to say, the type and composition should be selected.

また、陽イオン交換膜あるいは容易に陽イオン交換膜に
変換しうる高分子j漠状物と微粒状高分子化合物とを安
定に付着させるためには、ビニル化合物のみでなくエポ
キシ化合物とアミンの如きイオン交換性のある化合物を
介在させるのもよい。例えばポリ四ふつ化エチレンの微
粒子なNN’ジメチルフォル7ミドに分散しこれをパー
フルオロ(フルキルビニルエーテルスルホン酸戯)の膜
に均一に塗布し膜面に溶液を付着させてこれを風乾した
のちに200℃前後で加熱処理し、更にこれにアクリル
酸のエステル類を浸み込ませγ線を照射し重合させ、聚
面層の高分子化合物に架橋構造を形成し、併せて陽イオ
ン交換膜の内部においてアクリル酸のエステルが結合さ
れる方法などはその一例である。
In addition, in order to stably attach a cation exchange membrane or a polymer compound that can be easily converted into a cation exchange membrane and a fine particulate polymer compound, it is necessary to use not only vinyl compounds but also epoxy compounds and amines. It is also good to use a compound with ion exchange properties. For example, polytetrafluoroethylene is dispersed in fine particles of NN'dimethylformamide, and this is applied uniformly to a perfluoro (furkyl vinyl ether sulfonic acid) film, the solution is adhered to the film surface, and the film is air-dried. is heated at around 200°C, and further impregnated with acrylic acid esters and irradiated with gamma rays to polymerize, forming a crosslinked structure in the polymer compound of the layer, and also forming a cation exchange membrane. An example of this is a method in which an ester of acrylic acid is bonded within the molecule.

以下の実施例によって本発明の内容が制限されるもので
はない。実施例中においてアルカリ金属塩の電気分解は
特に断わらない限り通電膜面積0.5 dm”の二室式
電解侑により、陽極としてはチタンの金網の上に、酸化
チタンと酸化ルテニウムをコーティングしたものを用い
、陰極としては鉄の金網を用いた。陽極室には飽和ハロ
ゲン化アルカリ水溶液を定常的に流し、また陰極室に得
られる水酸化アルカリが6Nになるように水を定常的に
加えた。陽極と陰極の間の間隙は3gmで膜は陽極に支
持して用いた。電解温度は60〜90℃で電流密度は3
0A/am’であった。なお、膜の電気抵抗し!6.0
N−NaOH中で80℃で、1000サイクル交流を用
いて測定した。
The content of the present invention is not limited by the following examples. In the examples, unless otherwise specified, the electrolysis of alkali metal salts was carried out using a two-chamber electrolysis system with a current-carrying membrane area of 0.5 dm'', and the anode was a titanium wire mesh coated with titanium oxide and ruthenium oxide. An iron wire mesh was used as the cathode.A saturated alkali halide aqueous solution was constantly flowed into the anode chamber, and water was constantly added to the cathode chamber so that the alkali hydroxide obtained was 6N. The gap between the anode and cathode was 3 gm, and the membrane was supported on the anode.The electrolysis temperature was 60 to 90°C, and the current density was 3 gm.
It was 0A/am'. In addition, the electrical resistance of the membrane! 6.0
Measurements were made in N-NaOH at 80° C. using 1000 cycles of alternating current.

また、取得した水酸化アルカリ中のハロゲン化アルカリ
の量はJIS  K−1200の比色法によって61り
定した。
Further, the amount of alkali halide in the obtained alkali hydroxide was determined by the colorimetric method of JIS K-1200.

実施例 l テトラフルオロエチレンとパーフルオロ(3,6−シオ
キサー4−メチル−7−オクテンスルホニル゛フルオラ
イド)を共重合して得た高分子化合物を加水分解して得
たパーフルオロスルホン酸凰陽イ万ン交換膜の1200
重量当Jt(交換容:i0.833ミリ当量/11乾燥
膜)、厚みが0.15囮のものを風乾して後、次の処理
を施した。すなわち、ジビニルベンゼン5部(純度約5
5+yo)+スチレン5部。
Example 1 Perfluorosulfonic acid fluoride obtained by hydrolyzing a polymer compound obtained by copolymerizing tetrafluoroethylene and perfluoro(3,6-thioxer-4-methyl-7-octensulfonyl fluoride) 1200 million ton exchange membrane
After air-drying the product having a weight equivalent Jt (exchange volume: i0.833 milliequivalent/11 dry membranes) and a thickness of 0.15 decoys, it was subjected to the following treatment. That is, 5 parts of divinylbenzene (approx. 5 parts purity)
5+yo)+5 parts of styrene.

メタアクリル112.5g、4−ビニルピリジン2.5
部にtert−ブチルラウリルパーオキサイド0.3部
を加えた単量体混合物にポリ塩化ビニル製のベーストレ
ジン(住友化学社製。
methacrylic 112.5g, 4-vinylpyridine 2.5g
A base resin made of polyvinyl chloride (manufactured by Sumitomo Chemical Co., Ltd.) is added to a monomer mixture containing 0.3 parts of tert-butyl lauryl peroxide.

PX−A)を1部加えて、均一に分散させたのちに、こ
れを上記陽イオン交換膜の片面に均一に塗布し、110
℃で加熱重合した。この場合にポリ塩化ビニルの償粒末
は単量体混合物で膨潤しかつ軟化点以上に達して陽イオ
ン交換膜」−に安定に固着されていた。この得られた複
合膜を6.0N−NaOH中に浸漬してNa型としたの
ち、電気抵抗を測定したところ2.8rノー−であった
After adding 1 part of PX-A) and uniformly dispersing it, this was applied uniformly to one side of the above cation exchange membrane, and 110
Polymerization was carried out by heating at ℃. In this case, the polyvinyl chloride powder was swollen by the monomer mixture and reached a softening point or higher, and was stably fixed to the cation exchange membrane. The resulting composite membrane was immersed in 6.0N NaOH to make it Na-type, and then its electrical resistance was measured and found to be 2.8r.

次に、この俟合膜を用いて飽和食塩水の電解を実施した
ところ、6.0N−NaOHを取得して電流効率は93
%であった。更に同一条件で3り゛月間連続してtli
解を実施したところ、3ケ月後電流効率は92%であっ
た。他方、上記の処理を施していない陽イオン交換膜の
電気抵抗は2.5Ω−dで、上記と同一条件の電解で電
流効率は68%であった。
Next, when electrolysis of saturated saline was carried out using this composite film, 6.0N-NaOH was obtained and the current efficiency was 93.
%Met. Furthermore, tli was carried out under the same conditions for 3 consecutive months.
When the solution was implemented, the current efficiency was 92% after 3 months. On the other hand, the electrical resistance of the cation exchange membrane not subjected to the above treatment was 2.5 Ω-d, and the current efficiency was 68% when electrolyzed under the same conditions as above.

比較例 1 実施i+l11のパーフル−10アルキルビニルエーテ
ル型の陽イオン交hhにスチレン5部。
Comparative Example 1 5 parts of styrene is added to the perfluor-10 alkyl vinyl ether type cation exchange hh of Example i+l11.

ジビニルベンゼン5部、メタアクリル酸2.51SIl
 、 4−ビニルピリジン2.5部に1ert−プチル
ラウリルバーオキザイド0.3部を加えた(ポリ塩化ビ
ニルを含まない)単量体混合物を実施例1と同様に均一
に塗布し加熱重合した。ここで得られた複合陽イオン交
換膜を6.0N−NaOHに浸漬してNa型としたのち
に、電気抵抗を測定したところ3,0Ω−dであり、実
施例1と同様に飽和食塩水の電気分解を実施゛したとこ
ろ、当初電流効率は93%であったが、3ケ月後には電
流効率は83%となった。
5 parts divinylbenzene, 2.51 SIl methacrylic acid
A monomer mixture containing 2.5 parts of 4-vinylpyridine and 0.3 parts of 1ert-butyl lauryl peroxide (not containing polyvinyl chloride) was uniformly applied in the same manner as in Example 1 and polymerized by heating. . After the composite cation exchange membrane obtained here was immersed in 6.0N-NaOH to form the Na type, the electrical resistance was measured to be 3.0Ω-d, and the same as in Example 1 was obtained using saturated saline solution. When electrolysis was carried out, the current efficiency was 93% initially, but after 3 months, the current efficiency was 83%.

実施例 2 テトラフルオロエチレンとパーフルオロ(3,6−シオ
キサー4−メチル−7−、、tクテンスルホニルフルオ
ライド)の共重合物で1100重量当f(交換容fIk
O,91ミlJ当景/9乾燥膜)の厚みQ、 l mr
aのシートと同じ<、1500重量当盆(交換容症0.
67#!J当址/g乾燥膜)の厚み0.05闘のシート
二枚の間に、テトラフルオロエチレンのイ■をはさんで
融層して得た萬分子膜状物を用いて、父俟各量の低い側
にジエチレントリアミンを@亜し、1時間常温で放置し
て膜状物の内部にある程度授透させ、スルポン酸アミド
結合を形成させたのちに軽く水洗し200℃で3時間加
熱した。
Example 2 A copolymer of tetrafluoroethylene and perfluoro(3,6-thioxer-4-methyl-7-, t-ctenesulfonyl fluoride) was used to obtain 1100 weight equivalent f (exchange volume fIk).
O, 91 mil J current view/9 dry film) thickness Q, l mr
Same as sheet a, 1500 weight tray (exchange capacity 0.
67#! Using a tensile membrane obtained by sandwiching tetrafluoroethylene (1) between two 0.05-thick sheets of 0.05 g dry film), each film was Diethylenetriamine was added to the lower side of the membrane and allowed to stand at room temperature for 1 hour to permeate the inside of the membrane to some extent to form sulfonamide bonds, after which it was lightly washed with water and heated at 200°C for 3 hours.

この膜表/#部に酸7ミド結合を有しかつ一部1(奥イ
オン交換性の基を有する高分子膜状物にスチレン5部、
純度55%のジビニルベンゼン5部、アクリル酸5部、
2−メチル−5−ビニルピリジン5部にtert−ブチ
ルラウリルパーオキサイド(商品名;バーブチルL。
This membrane surface/# part has an acid 7 amide bond and part 1 (inner part 5 parts styrene in a polymer membrane having an ion-exchangeable group,
5 parts of divinylbenzene with a purity of 55%, 5 parts of acrylic acid,
tert-butyl lauryl peroxide (trade name: Verbutyl L) in 5 parts of 2-methyl-5-vinylpyridine.

日本油脂製)0.4部を加え、これにポリエチレンの徽
粉末(商品名;フローセン)を1部分散し、更に分散性
を良くするためにスチレンーズタジエン共重合ゴムを0
.5部加えた混合溶液を均一に塗布した。なお、この塗
布は上記複合高分子膜の交換容量の低い酸アミド結合を
形成させた側である。次いで、この高分子膜状物の表面
をポリビニルアルコール製のシートでおおい120℃で
16時間加熱処理した。この本発明の処理を行ない得ら
れた複合膜の電気抵抗は2.6Ω−dで、飽和食塩水を
電解して7.0N−NaOHを取得して電流効率は94
%であった。また、同一条件で電解を続げたところ、3
ケ月後も7.0N−NaOHを取得して電流効率94%
であった、 実施例 3 テトラフルオロエチレンとパーフルオロ(3,6−シオ
°キサ−4−メチル−7−オクテンスルホニルフルオラ
イド)の共重合1勿で1100重量当i(交換容量0.
91ミ!J当量/g乾燥膜)の厚み0.1龍のシートと
同じ<1500重量昌量(交換容量0.67ミ!J当量
/9乾燥膜)の厚み0.05 mのシート二枚の間に、
テトラフルオロエチレンの布をはさんで融着して得た高
分子膜状物を6.0N−NaOH中に浸漬して加水分解
して複合膜イオン交換膜とした。この陽イオン交換膜を
酸屋にして、第1表の准1−〇に示す組成のものを交換
容量が低い方の膜面上に均一に塗布した後、110℃で
加熱重合して被合膜を得た。なお、上記の組成中でふり
化炭素は充分に攪拌し均一に分散させて塗布した。
0.4 parts of Nippon Oil & Fats Co., Ltd.) were added, 1 part of polyethylene powder (trade name: Frozen) was added, and 0.4 parts of styrene-tadiene copolymer rubber was added to improve dispersibility.
.. A mixed solution of 5 parts was applied uniformly. Note that this coating is on the side of the composite polymer membrane on which acid amide bonds with low exchange capacity are formed. Next, the surface of this polymer membrane was covered with a polyvinyl alcohol sheet and heat-treated at 120° C. for 16 hours. The electrical resistance of the composite membrane obtained by the treatment of the present invention is 2.6 Ω-d, and the current efficiency is 94 when 7.0N-NaOH is obtained by electrolyzing saturated saline.
%Met. In addition, when electrolysis was continued under the same conditions, 3
Obtained 7.0N-NaOH even after several months and current efficiency was 94%.
Example 3: Copolymerization of tetrafluoroethylene and perfluoro(3,6-thioxa-4-methyl-7-octensulfonyl fluoride).
91 mi! Between two sheets with a thickness of 0.05 m and a weight change of <1500 (exchange capacity 0.67 mm! J equivalent/9 dry membrane), which is the same as a sheet with a thickness of 0.1 dragon (J equivalent / g dry membrane) ,
A polymer membrane obtained by fusing a tetrafluoroethylene cloth was immersed in 6.0N-NaOH and hydrolyzed to obtain a composite ion exchange membrane. Using this cation exchange membrane as an acid house, the composition shown in Table 1, Section 1-0, was uniformly coated on the membrane surface with lower exchange capacity, and then heated and polymerized at 110°C to form a coating. A membrane was obtained. The carbon fluoride in the above composition was sufficiently stirred to be uniformly dispersed before being applied.

次いで得られた複合膜を60℃の6. ON −NaO
H中に浸漬してNaWとしたのち、二基法の会場電解に
供した。結果を第1表に示ずつ 実施例 4 テトラフルオロエチレンとバーフルオp(3,6−シオ
キサー4−メチル−7−オクテンスルボニルフルオライ
ド)の共重合体から得た高分子膜状物を加水分解して、
交換容量が0.83ミリ当量/9乾燥膜の陽イオン交換
膜を得た。この陽イオン交換膜を水素イオン型にして減
圧乾燥後、ぶつ化炭素の微粉末1部をメタ/−ル10部
に均一に分散した液を均一に薄層状に素早く片面に塗布
し、再び減圧乾燥してパーフルオロ系陽イオン交換膜の
表面にふつ化炭素の微粉末の均一な層を形成した。
The resulting composite membrane was then heated to 60°C in 6. ON-NaO
After being immersed in H to form NaW, it was subjected to on-site electrolysis using a two-base method. The results are shown in Table 1. Example 4 Hydrolysis of a polymer film obtained from a copolymer of tetrafluoroethylene and Verfluorop (3,6-thioxer-4-methyl-7-octensulfonyl fluoride) do,
A cation exchange membrane with an exchange capacity of 0.83 milliequivalents/9 dry membranes was obtained. After converting this cation exchange membrane into a hydrogen ion type and drying it under reduced pressure, a solution prepared by uniformly dispersing 1 part of fine carbon powder in 10 parts of methanol was quickly applied to one side in a uniform thin layer, and the pressure was reduced again. After drying, a uniform layer of fine carbon fluoride powder was formed on the surface of the perfluorinated cation exchange membrane.

次にこの膜を間隙が3mmある二枚のアルミニウム板の
間にはさみ、ふり化炭素の微粉末が付着している側を上
にして配したのち、この二枚のアルミニウム板に100
00Vの60サイクル交流を印加し、ふり化炭素が付着
している膜面上にテトラフルオロエチレン及びトリフル
オロモノクロルエチレンのガスな導入した。すなわち、
液体窒素で冷却したテトラフルオロエチレンにヘリウム
ガスを導入してヘリウムをキャリヤガスとしてテトラフ
ルオロエチレンを導入した。またトリフルオロモノクロ
ルエチレンはドライアイス−メタノールで冷却して、こ
れに同じ(ヘリウムガスをキャリヤガスとして導入して
トリフルオロモノクロルエチレンを膜面上に送った−こ
れらの七ツマ−は放電によって重合し、−11(ふり化
炭素が存在する膜の表層部に浸み込みながら膜表面に沈
着した。この放電重合による膜の重量増加はテトラフル
オロエチレンのときは5.6%、トリフルオロモノクロ
ルエチレンのときが1.8%であった。
Next, this film was sandwiched between two aluminum plates with a gap of 3 mm, and the side with the fine carbon fluoride powder adhering to it faced up.
A 60-cycle alternating current of 00V was applied, and tetrafluoroethylene and trifluoromonochloroethylene gases were introduced onto the membrane surface to which carbon fluoride was attached. That is,
Helium gas was introduced into tetrafluoroethylene cooled with liquid nitrogen, and tetrafluoroethylene was introduced using helium as a carrier gas. In addition, trifluoromonochloroethylene was cooled with dry ice and methanol, and helium gas was introduced as a carrier gas to send trifluoromonochlorethylene onto the membrane surface.These seven polymers were polymerized by electric discharge. , -11 (carbon fluoride was deposited on the membrane surface while penetrating into the surface layer of the membrane. The weight increase of the membrane due to this discharge polymerization was 5.6% for tetrafluoroethylene and 5.6% for trifluoromonochloroethylene. It was 1.8%.

得られた榎合膜を6.0N−NaOH中に60℃で浸漬
してNa型にしたのち、常法により二基法によって飽和
食塩水の電解用に供した。
The obtained Enoki composite film was immersed in 6.0N NaOH at 60°C to make it into Na type, and then used for electrolysis of saturated saline by a two-base method according to a conventional method.

テトラフルオロエチレンを放電重合させた数台膜は膜の
電気抵抗は2.5Ω−Cmlであったが6、5 N −
Na OHを取得して電6fe @−Jは90%であっ
た。これを3ケ月間連続して行ったが、3ケ月後も0.
5N  NaOHを取得して電流効率は90%であった
Several membranes prepared by discharge polymerizing tetrafluoroethylene had an electrical resistance of 2.5 Ω-Cml, but 6.5 N-
The concentration of NaOH obtained was 90%. I did this for 3 consecutive months, but after 3 months I still had 0.
5N NaOH was obtained and the current efficiency was 90%.

また、トリフルオロモノクロルエチレンを放N、重合せ
しめた複合膜は6.5 N = Na OHを取得し、
て電流効率は95%であった。3ヶ月彼は6.5N−N
aOHを取得して電流効率は94%であった。なお、こ
の膜の電気抵抗は2.3Ω−dであった。
In addition, a composite film made by polymerizing trifluoromonochloroethylene by releasing N has a value of 6.5 N = Na OH,
The current efficiency was 95%. 3 months he is 6.5N-N
AOH was obtained and the current efficiency was 94%. Note that the electrical resistance of this film was 2.3 Ω-d.

別に表面処理を施していない1値)イオン交換膜を同一
の条件で使用したところ、6.5N−NaOHを取得し
て電流効率は70%であったが3ケ月後は65%となっ
ていた。この膜の笥、負抵抗は2.2Ω−dであった1
、なお、上記の寛解においては、表面処理した膜は処理
面を陰極に向けて実施した。
When an ion exchange membrane without any surface treatment was used under the same conditions, 6.5N-NaOH was obtained and the current efficiency was 70%, but after 3 months it was 65%. . The negative resistance of this film was 2.2Ω-d.
In addition, in the above-mentioned remission, the surface-treated membrane was subjected to the treatment with the treated surface facing the cathode.

特許出願人 徳山曹達株式会社patent applicant Tokuyama Soda Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ふつ素原子と陽イオン交換基または容易に陽イオン交換
基を後処理で導入しうる官能基とを納会した高分子J良
状物の表面に研粒状高分子化合物とビニル単量体とを存
在させて該ビニルM ii’c Kを重合させ必要に応
じてイオン交換基を導入することを特徴とする板9級の
製造方法、
An abrasive granular polymer compound and a vinyl monomer are present on the surface of a high-quality polymer containing a fluorine atom and a cation exchange group or a functional group into which a cation exchange group can be easily introduced in post-treatment. A method for producing grade 9 plates, characterized in that the vinyl M ii'c K is polymerized and an ion exchange group is introduced as necessary.
JP58132847A 1983-07-22 1983-07-22 Preparation of composite membrane Pending JPS5941336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132847A JPS5941336A (en) 1983-07-22 1983-07-22 Preparation of composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132847A JPS5941336A (en) 1983-07-22 1983-07-22 Preparation of composite membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15185475A Division JPS6018692B2 (en) 1975-12-22 1975-12-22 Composite membrane manufacturing method

Publications (1)

Publication Number Publication Date
JPS5941336A true JPS5941336A (en) 1984-03-07

Family

ID=15090903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132847A Pending JPS5941336A (en) 1983-07-22 1983-07-22 Preparation of composite membrane

Country Status (1)

Country Link
JP (1) JPS5941336A (en)

Similar Documents

Publication Publication Date Title
US4101395A (en) Cathode-structure for electrolysis
US4683040A (en) Process for electrolysis of sodium chloride
US4090931A (en) Anode-structure for electrolysis
CN109071852B (en) Bipolar membrane
US4602045A (en) Cation-exchange resins and use as membranes in electrolytic cells
JPS5941336A (en) Preparation of composite membrane
JP2003246822A (en) Fluorinated ionomer
JPS60155238A (en) Production of composite membrane
US4414338A (en) Cation exchange membrane
JPS582970B2 (en) Youion Koukan Makunoseizouhouhou
JPS6018692B2 (en) Composite membrane manufacturing method
JPS6128752B2 (en)
WO2021192951A1 (en) Cation exchange membrane and method for producing same
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
JPH0288645A (en) Fluorine-containing cation exchange membrane for alkali chloride electrolysis
JPS6319535B2 (en)
JPS609052B2 (en) Method for manufacturing cation exchanger
JPS6055033A (en) Production of cation exchange membrane
JPS5939453B2 (en) Method for manufacturing cation exchanger
JPS59258B2 (en) Method for producing perfluorocarbon cation exchanger
JPS62131038A (en) Production of fluorine-containing ion exchange membrane
JPS5845233A (en) Manufacture of cation exchange membrane
JPH03130384A (en) Cation exchange membrane for electrolyzing alkali metal chloride
JPS6026141B2 (en) Cation exchange resin membrane
JPH0579249B2 (en)