JPS5940800B2 - Double-layer epitaxial growth equipment for compound semiconductor mixed crystals - Google Patents

Double-layer epitaxial growth equipment for compound semiconductor mixed crystals

Info

Publication number
JPS5940800B2
JPS5940800B2 JP55003848A JP384880A JPS5940800B2 JP S5940800 B2 JPS5940800 B2 JP S5940800B2 JP 55003848 A JP55003848 A JP 55003848A JP 384880 A JP384880 A JP 384880A JP S5940800 B2 JPS5940800 B2 JP S5940800B2
Authority
JP
Japan
Prior art keywords
vapor pressure
crystal
growth
compound semiconductor
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003848A
Other languages
Japanese (ja)
Other versions
JPS55121998A (en
Inventor
潤一 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55003848A priority Critical patent/JPS5940800B2/en
Publication of JPS55121998A publication Critical patent/JPS55121998A/en
Publication of JPS5940800B2 publication Critical patent/JPS5940800B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は少なくとも2つ以上の蒸気圧の高い元素の蒸気
圧下での化合物半導体混晶の二層エピタキシャル成長装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for two-layer epitaxial growth of a compound semiconductor mixed crystal under the vapor pressure of at least two or more high vapor pressure elements.

従来の化合物半導体の結晶成長は、融液成長、溶液成長
いづれの場合においても各構成元素の蒸気圧の違いがあ
りながら成長法としては蒸気圧の違いを考慮しない方法
が採用されていた。
Conventional crystal growth for compound semiconductors involves differences in the vapor pressure of each constituent element in both melt growth and solution growth, but a growth method that does not take into account the difference in vapor pressure has been adopted.

この数年来、高蒸気圧元素の飛び出しを防ぐという目的
で、GaPの融液成長において融液上にB2O3やBa
Cl2などの比重の小さい液体シールを置き燐の蒸発を
防ぐ方法(よAp p 1.Ph y s、33201
61962)などが用いられ高蒸気圧を有する元素の蒸
発を防ぐ手段は一応はなされているが、このような方法
では完全に蒸発を補償できず被覆膜を通して一部は飛散
してしまう。
For the past few years, B2O3 and Ba have been added to the melt during GaP melt growth to prevent high vapor pressure elements from flying out.
A method to prevent evaporation of phosphorus by placing a liquid seal with low specific gravity such as Cl2 (Yo Ap p 1. Ph y s, 33201
61962) etc. have been used to prevent the evaporation of elements with high vapor pressure, but such methods cannot completely compensate for evaporation and some of the elements scatter through the coating film.

また、これらの膜物質が結晶中に溶解する危険性が大き
い。
Additionally, there is a great risk that these film materials will dissolve into the crystal.

高温にせざるを得ない融液成長においてさえ蒸気圧を制
御することが行われておらず、結晶の融点以下で成長を
行う溶液成長においては、溶媒中の結晶の含有モル比が
少いので高蒸気圧を有する元素の蒸気圧は低下し、また
結晶の化学量論的組成は成長中に自然に正しい組成にな
るという定説があり蒸気圧の高い元素に対する考慮は全
くなされていなかったと言っても良い。
Even in melt growth, which requires high temperatures, vapor pressure is not controlled, and in solution growth, where growth is performed below the melting point of the crystal, the molar content of crystals in the solvent is small, so the vapor pressure is not controlled. It is a well-established theory that the vapor pressure of elements with high vapor pressure decreases, and that the stoichiometric composition of the crystal naturally becomes the correct composition during growth, so no consideration was given to elements with high vapor pressure. good.

しかしこれは完全にあやまりであった。But this was a complete mistake.

しかしながら結晶成長技術の進歩と社会的要求とから、
高品質、高純度の結晶を使用し、長寿命で信頼性の高い
半導体装置を作る必要がある。
However, due to advances in crystal growth technology and social demands,
It is necessary to use high-quality, high-purity crystals to create long-life, highly reliable semiconductor devices.

化合物半導体結晶で最も問題となる欠陥は化学量論的組
成(stoichiometry −−N−V化合物の
GaAsを例にとると、結晶格子を構成した場合にGa
とAsが同数の割合で存在する結晶)からのずれによっ
て生ずるものであることが予想される。
The most problematic defect in compound semiconductor crystals is stoichiometric composition (stoichiometry).
It is expected that this is caused by a deviation from a crystal in which As and As exist in the same proportion.

すなわち最高品質の結晶をつくるために残された最大で
最後の壁は、化学量論的組成からのずれをいかに制御す
ることができるかにあると考えられる。
In other words, it is thought that the biggest and final barrier to producing crystals of the highest quality lies in how the deviation from the stoichiometric composition can be controlled.

化合物半導体における現状が上記のようなので、今後大
きな需要が予想される3元系以上の混晶においては全く
蒸気圧制御は行なわれておらず、本発明により現在のす
べての混晶のデバイスの特性が飛躍的向上することがで
きる。
As the current state of compound semiconductors is as described above, vapor pressure control has not been performed at all for ternary or higher mixed crystals, which are expected to be in great demand in the future, and the present invention will improve the characteristics of all current mixed crystal devices. can be dramatically improved.

混晶としては ■ (■、■)・■の(InGa)p、(In。As a mixed crystal ■ (■,■)・■(InGa)p, (In.

Ga )As 、 (In 、 Ga )Sb 、 (
Ga 。
Ga)As, (In, Ga)Sb, (
Ga.

AI )P、(Ga、AI )As、(Ga 、AI
)Sb。
AI)P, (Ga, AI)As, (Ga, AI
) Sb.

(In、Ga)N、(Ga、AI)N、(In。(In, Ga)N, (Ga, AI)N, (In.

AI )P、(In、AI )Sb、(In 、AI
)As。
AI)P, (In, AI)Sb, (In, AI
)As.

(I n 、 A I ) N 、などがあり、この場
合には■族元素のp r A s y N + S t
)の蒸気圧制御が必要である。
(I n , A I ) N, etc. In this case, the group ■ element pr A sy N + S t
) vapor pressure control is required.

■ U−(V−V)のGa(As、P)、In(As、
P)、AI(As、P)、In(AsSb)、In(P
、Sb)、Ga(As、5b)Ga (P、Sb)、A
I (As、Sb)、AI (P。
■ Ga(As, P), In(As,
P), AI(As, P), In(AsSb), In(P
, Sb), Ga (As, 5b) Ga (P, Sb), A
I (As, Sb), AI (P.

Sb)、Ga(P、N)、AI (P、N)などの(■
・・・m)(v・・・■)族化合物が多数あり、この場
合には蒸気圧の高い2つ以上の■族元素の蒸気圧制御が
必要となる。
(■
...m)(v...■) Group compounds exist, and in this case, it is necessary to control the vapor pressure of two or more Group (■) elements having high vapor pressures.

■ (II、II)・VIの(Zn 、Cd)S 、(
Zn。
■ (Zn, Cd)S of (II, II) and VI, (
Zn.

Hg)S 、(Hg、Cd)S、(Zn、Cd)Se。Hg)S, (Hg,Cd)S, (Zn,Cd)Se.

(Zn、Hg)Se、(Hg、Cd)Se、(Zn。(Zn, Hg) Se, (Hg, Cd) Se, (Zn.

Cd)Te 、(Zn 、Hg)Te 、(Cd 。Cd)Te, (Zn, Hg)Te, (Cd.

Hg)Teなど および ■’ II(VI、VT)のZn(S、Se)、Cd(
S。
Hg) Te, etc. and ■' II (VI, VT) Zn (S, Se), Cd (
S.

Se)、Hg(S、Se)、Zn(S、Te)。Se), Hg (S, Se), Zn (S, Te).

Cd(Se、Te)、’Hg(S、Te)、Zn(Se
、Te)、Cd(S、Te)、Hg(Se。
Cd (Se, Te), 'Hg (S, Te), Zn (Se
, Te), Cd (S, Te), Hg (Se.

Te)など■■′などの(■・・・II)(VI・・・
■)などにおいてはいづれの元素の蒸気圧も高いので、
3つ以上の元素に対する蒸気圧制御をする方がよい。
Te) etc. ■■' etc. (■...II) (VI...
■) Since the vapor pressure of each element is high,
It is better to control vapor pressure for three or more elements.

さらに、(II−1[−VI)のCd I n2S4
Furthermore, Cd I n2S4 of (II-1[-VI)
.

CdInSe、などでは、■と■族元素の制御が必要で
ある。
For CdInSe, etc., it is necessary to control the ■ and ■ group elements.

又、CdGeAs2 + cci GeP2 t Cd
5nP2 pZnSnP2などのII−IV−V混晶
では、■とV族元素の蒸気圧制御が必要である。
Also, CdGeAs2 + cci GeP2 t Cd
In II-IV-V mixed crystals such as 5nP2 pZnSnP2, it is necessary to control the vapor pressures of group V elements.

さらに混晶系が増加し4元素の(Al tGa)AsP
、(In+Ga)AsP、(In 、AI )AsP、
(In 、。
Furthermore, the mixed crystal system increases and the four elements (Al tGa)AsP
, (In+Ga)AsP, (In, AI)AsP,
(In,.

Ga)SbAs 、(AI 、Ga)PSb 、AI(
As、P、Sb)などがあるがいづれの場合も、通常は
、■族、V族、■族元素の蒸気圧が高いので、この元素
の蒸気圧下での結晶成長が必要である。
Ga)SbAs, (AI, Ga)PSb, AI(
In all cases, the vapor pressure of group (1), group V, and group (2) elements is usually high, so crystal growth under the vapor pressure of these elements is required.

更に(Pb、5n)Te、(Ge、5i)Te。Furthermore, (Pb, 5n)Te, (Ge, 5i)Te.

Ge(Te、S)、5j(Se、Te)などの(IV・
IV ) (VI−VJ )混晶で、CuAlS2゜C
uGaS2.CuAlSe2.AgIn52.AgAl
Te2などのIIl[VI混晶、Cu5PS41 Ag
As S2’tAg3As83などのIVVI混晶、H
g3S2C12tZn3Se2C12r Cd3Te2
C12などのIIVI■混晶、GaGeTe2.In5
nTe2rInSjTe2.などのl[]VVI混晶、
さらに、4元素の混晶としては、GeAs−Ge5 、
GeP−Gene t SnP −8nTeなどのIV
VIVVI混晶、 Cu C1−Ga P。
(IV・Ge (Te, S), 5j (Se, Te), etc.
IV) (VI-VJ) Mixed crystal, CuAlS2°C
uGaS2. CuAlSe2. AgIn52. AgAl
IIl such as Te2 [VI mixed crystal, Cu5PS41 Ag
IVVI mixed crystals such as As S2'tAg3As83, H
g3S2C12tZn3Se2C12r Cd3Te2
IIIVI mixed crystal such as C12, GaGeTe2. In5
nTe2rInSjTe2. l[]VVI mixed crystals, such as
Furthermore, as mixed crystals of four elements, GeAs-Ge5,
IV such as GeP-Genet SnP-8nTe
VIVVI mixed crystal, CuCl-GaP.

CuC1−GaAs tcuBr−InAsなどのII
■混晶、(Cd Ge P2)−GaP 、 (Hg
S i As2 )−GaAs 、(ZnGeP2)−
InAsなどの■IIVV混晶、 Ge T e−Ga
A s 、 S i 5−GaP。
II such as CuC1-GaAs tcuBr-InAs
■Mixed crystal, (Cd Ge P2)-GaP, (Hg
S i As2 )-GaAs, (ZnGeP2)-
■IIVV mixed crystal such as InAs, Ge Te e-Ga
A s , S i 5-GaP.

5nSe−GarbなどのIl[IVVVI系混晶、C
uAlS2 ZnS 、CuGaS2 Zn5e
Il [IVVVI mixed crystal, C such as 5nSe-Garb
uAlS2 ZnS, CuGaS2 Zn5e
.

AgA I S C2−Cd T eなどのIIII[
VI系混晶、ZnTe−PbTe 、Cd5e−PbS
、HgTe5iTeなどのI−IV−V−VI混晶系な
どいずれの結晶成長においても、一つ以上の元素の蒸気
圧下で結晶成長するときが好ましい。
III [such as AgA I S C2-Cd T e
VI system mixed crystal, ZnTe-PbTe, Cd5e-PbS
, I-IV-V-VI mixed crystal systems such as HgTe5iTe, etc., it is preferable to grow the crystal under the vapor pressure of one or more elements.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は従来の液相エピタキシャル成長の成長装置1の
概略図でGa、Inなどの溶媒2中に成長すべき結晶の
ソース3を入れ成長温度を降下することにより基板結晶
4上へ成長するものである。
FIG. 1 is a schematic diagram of a conventional liquid phase epitaxial growth apparatus 1, in which a source 3 of the crystal to be grown is placed in a solvent 2 of Ga, In, etc. and the growth temperature is lowered to grow onto a substrate crystal 4. It is.

この場合には成長中にAsやPなどの高蒸気圧の元素5
がボート中より蒸発する。
In this case, high vapor pressure elements such as As and P during growth
evaporates from inside the boat.

第2図は本発明の成長装置の一部を示したもので2つの
蒸気圧パイプを備えた成長装置を示したものである。
FIG. 2 shows a part of the growth apparatus of the present invention, which is equipped with two steam pressure pipes.

成長炉16と別体の圧力制御炉17を2つ設け、低温側
よりそれぞれ17’、17“とする。
Two pressure-controlled furnaces 17, which are separate from the growth furnace 16, are provided, and are designated 17' and 17'' from the low temperature side, respectively.

メルト槽18中に溶媒19を入れ、その上にソース結晶
20を浮し、ソース結晶20の温度を基板結晶21の温
度より多少高めにし、ソース結晶20を溶解し、基板結
晶上に拡散させて結晶成長させるものである。
A solvent 19 is placed in the melt tank 18, a source crystal 20 is floated on top of the solvent, the temperature of the source crystal 20 is made slightly higher than the temperature of the substrate crystal 21, and the source crystal 20 is dissolved and diffused onto the substrate crystal. It grows crystals.

成長すべき混晶が2つの高蒸気圧成分を含んでいる場合
には、2つの蒸気圧をそれぞれ独立に制御することが好
ましく、従来成長炉と一体に構成されていた場合には精
密な温度制御が不可能であったので、この欠点を解消す
るために蒸気圧制御炉を別体に構成しそれぞれ独立に温
度を制御できる炉17’、17”内に、各成分元素を独
立に入れる室22’、22“を有する細い石英よりなる
圧力供給パイプの開放先端部をメルト槽の上部に挿入し
た構造を有する一層のエピタキシャル成長装置である。
If the mixed crystal to be grown contains two high vapor pressure components, it is preferable to control the two vapor pressures independently, and if the mixed crystal is conventionally configured integrally with the growth furnace, it is preferable to control the two vapor pressures independently. In order to overcome this drawback, a vapor pressure controlled furnace was constructed separately, and each component element was placed in a chamber in which each component element was placed independently in the furnaces 17' and 17'' whose temperature could be controlled independently. This is a single layer epitaxial growth apparatus having a structure in which the open end of a pressure supply pipe made of thin quartz having diameters 22' and 22'' is inserted into the upper part of a melt tank.

メルト槽の上部空間は完全に気密ではなくてもよいが、
圧力を保持できる程度に気密であることが必要である。
The upper space of the melt tank does not have to be completely airtight, but
It needs to be airtight enough to maintain pressure.

この基本構造を有した成長装置を用いた、二層エピタキ
シャル成長装置の実推例を第3図に示す。
FIG. 3 shows an actual example of a two-layer epitaxial growth apparatus using a growth apparatus having this basic structure.

第3図は本発明の一実症例として2つの元素の蒸気圧を
制御する必要のある混晶としてGaAsPの場合の成長
装置を示す。
FIG. 3 shows, as an example of the present invention, a growth apparatus in which GaAsP is used as a mixed crystal in which the vapor pressures of two elements need to be controlled.

GaASl−xPxでは、Xの値によりGaAsよりG
aPまでのそれぞれの結晶の性質を有した混晶を成長す
ることができる。
In GaASl-xPx, G is lower than GaAs depending on the value of X.
Mixed crystals having the properties of each crystal up to aP can be grown.

ポート6には二層エピタキシャル成長用にA。B2つ設
けであるメルト槽の中に溶媒のGa7゜7′を20g及
びソース結晶として成長すべきGaAs1−xPxの組
成に相当するGaAsP多結晶を2gもしくはGaAs
、GaPをそれぞれ相当量投入してソース結晶部分8,
8′と基板9との間に20℃の温度差10を付ける。
Port 6 has A for double layer epitaxial growth. 20g of Ga7゜7' as a solvent and 2g of GaAsP polycrystal corresponding to the composition of GaAs1-xPx to be grown as a source crystal or GaAs
, a considerable amount of GaP is introduced into the source crystal part 8,
A temperature difference 10 of 20° C. is provided between 8' and the substrate 9.

温度差の形成法としては、従来は成長炉中のタルト槽の
周囲にヒータを巻いてこのヒータに電流を流すことによ
り行なわれていたが、この方法ではヒータ材質から汚染
があり、より高純度の結晶が得られない欠点を有してい
たのでこの欠点を解消するために、石英管内にはヒータ
を入れずに、成長炉13の上側に形成された余分のヒー
タ31に流す電流により行なった。
Conventionally, the temperature difference was created by wrapping a heater around the tart tank in the growth furnace and passing an electric current through the heater, but this method was prone to contamination due to the material of the heater, and a higher purity In order to overcome this drawback, a heater was not placed inside the quartz tube, and an electric current was passed through an extra heater 31 formed above the growth furnace 13. .

更に図のように低温度部の混晶の成分元素投入箇所を有
する細い石英管10’、10〃(内径3mmφ)をメル
ト槽上から半密閉型になるようにメルト槽上にフタ11
’、11“を挿入する。
Furthermore, as shown in the figure, thin quartz tubes 10' and 10 (inner diameter 3 mmφ), which have a place for introducing component elements of the mixed crystal in the low temperature part, are placed over the melt tank with a lid 11 so as to be semi-closed.
Insert ', 11''.

低温度部の成分元素投入箇所には、金属砒素(As)1
1を1g、赤燐(P)12を0.5g入れ成長炉13と
は別体のAs用14、P用15の制御炉の温度を変える
ことにより成長部分のAs圧、P圧をそれぞれ独立に制
御することができる。
Metal arsenic (As) 1 is placed at the component element injection point in the low temperature section.
By putting 1 g of phosphorus (P) 1 and 0.5 g of red phosphorus (P) 12 and changing the temperature of the control furnaces 14 for As and 15 for P, which are separate from the growth furnace 13, the As pressure and P pressure in the growth part can be made independent. can be controlled.

同一元素の蒸気圧を同一に制御する場合には図のように
A、B各種に直列にパイプを挿入する構造でよいが、各
メルト槽毎に蒸気圧供給源を設けてもよいことは自明で
あろう。
When controlling the vapor pressure of the same element to be the same, a structure in which pipes are inserted in series between A and B as shown in the figure may be used, but it is obvious that a vapor pressure supply source may be provided for each melt tank. Will.

成長温度は800℃で行ない、Ga A sO,7po
、3の結晶をAs圧を10゜50 t 100 + 5
00 T o r r y P圧を10.50゜100
.500Tor rと各4種類選び(As圧、P圧):
(10,10)、(10,50)(10゜100)・・
・・・・のように16種類の組み合わせでそれぞれ二層
エピタキシャル成長を行なった。
The growth temperature was 800°C, and Ga A sO, 7po
, 3 crystals at an As pressure of 10°50 t 100 + 5
00 T o r r y P pressure 10.50°100
.. 500 Torr and 4 types each (As pressure, P pressure):
(10,10), (10,50) (10°100)...
Two-layer epitaxial growth was performed using 16 combinations such as...

二層成長は、第3図において、メルト層Bでの成長が終
了した後基板9をGa7’より、カーボンスライダー9
′を左方に移動することによって離し、基板をメルト槽
Aの直下に移動し、同様にしてメルト層Aでの成長を行
うことにより基板結晶9上にP−N接合を形成すること
ができる。
In the two-layer growth, as shown in FIG. 3, after the growth on the melt layer B is completed, the substrate 9 is deposited on the carbon slider 9 from Ga7'.
' by moving it to the left, moving the substrate directly below the melt tank A, and growing in the melt layer A in the same way, a P-N junction can be formed on the substrate crystal 9. .

スライダーの移動は炉外より手動あるいは自動で行うこ
とができる。
The slider can be moved manually or automatically from outside the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液相エピタキシャル成長装置の概略断面
図、第2図は本発明のエピタキシャル成長装置の基本構
造を示す概略断面図、第3図は本発明の1実癩例による
エピタキシャル成長装置の概略断面図である。
FIG. 1 is a schematic sectional view of a conventional liquid phase epitaxial growth apparatus, FIG. 2 is a schematic sectional view showing the basic structure of the epitaxial growth apparatus of the present invention, and FIG. 3 is a schematic sectional view of an epitaxial growth apparatus according to an example of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 化合物半導体混晶の蒸気圧制御温度差法による結晶
成長において、結晶成長炉の構造としては、溶液中に温
度差を形成するために主ヒータ以外に少なくとも上部に
余分のヒータ配置し、かつ高蒸気圧成分の蒸気圧を制御
するための蒸気圧源に連通した蒸気圧供給パイプを各溶
液槽に少なくとも2つずつ具備し蒸気圧を制御する蒸気
圧制御炉がそれぞれ別体に構成されたことを特徴とする
化合物半導体の多層エピタキシャル成長装置。
1. In the crystal growth of compound semiconductor mixed crystals by the vapor pressure controlled temperature difference method, the structure of the crystal growth furnace is such that an extra heater is placed at least above the main heater in order to form a temperature difference in the solution, and Each solution tank is equipped with at least two vapor pressure supply pipes communicating with a vapor pressure source for controlling the vapor pressure of the vapor pressure component, and the vapor pressure control furnace for controlling the vapor pressure is configured separately. A compound semiconductor multilayer epitaxial growth device characterized by:
JP55003848A 1980-01-17 1980-01-17 Double-layer epitaxial growth equipment for compound semiconductor mixed crystals Expired JPS5940800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55003848A JPS5940800B2 (en) 1980-01-17 1980-01-17 Double-layer epitaxial growth equipment for compound semiconductor mixed crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55003848A JPS5940800B2 (en) 1980-01-17 1980-01-17 Double-layer epitaxial growth equipment for compound semiconductor mixed crystals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10141776A Division JPS5326280A (en) 1976-08-24 1976-08-24 Crystal growth for mixed crystals of compund semiconductor

Publications (2)

Publication Number Publication Date
JPS55121998A JPS55121998A (en) 1980-09-19
JPS5940800B2 true JPS5940800B2 (en) 1984-10-02

Family

ID=11568596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55003848A Expired JPS5940800B2 (en) 1980-01-17 1980-01-17 Double-layer epitaxial growth equipment for compound semiconductor mixed crystals

Country Status (1)

Country Link
JP (1) JPS5940800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125587A (en) * 1984-11-13 1986-06-13 クルツプ・コツパース・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for observing inside of heating reaction chamber under pressure
JPS6138993B2 (en) * 1984-05-01 1986-09-01 Shinagawa Refractories Co

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121777A (en) * 1974-08-17 1976-02-21 Handotai Kenkyu Shinkokai HANDOTA ISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121777A (en) * 1974-08-17 1976-02-21 Handotai Kenkyu Shinkokai HANDOTA ISOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138993B2 (en) * 1984-05-01 1986-09-01 Shinagawa Refractories Co
JPS61125587A (en) * 1984-11-13 1986-06-13 クルツプ・コツパース・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for observing inside of heating reaction chamber under pressure

Also Published As

Publication number Publication date
JPS55121998A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
JPS575325A (en) Semicondoctor p-n junction device and manufacture thereof
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US3145125A (en) Method of synthesizing iii-v compound semiconductor epitaxial layers having a specified conductivity type without impurity additions
JPS6037076B2 (en) Temperature liquid phase growth method for Group 3-6 compound semiconductors
JPS5940800B2 (en) Double-layer epitaxial growth equipment for compound semiconductor mixed crystals
EP0102054B1 (en) Method for growing gaas single crystal by using floating zone
US4053334A (en) Method for independent control of volatile dopants in liquid phase epitaxy
JPS6037077B2 (en) ZnSe crystal growth method
JPS6016898A (en) Gaseous-phase growth device
US3461004A (en) Method of epitaxially growing layers of semiconducting compounds
JPH02167895A (en) Method for growing compound semiconductor
JPH0529639B2 (en)
JP2579336B2 (en) Method for manufacturing blue light emitting diode
JPS6076119A (en) Compound semiconductor crystal growing apparatus
JPH0330339A (en) Method for growing crystal of ii-vi compound semiconductor
JPH0114692B2 (en)
JPS59227798A (en) Apparatus for growing compound semiconductor in vapor phase
JPH08130187A (en) Semiconductor vapor phase growth apparatus and semiconductor vapor phase growth method
JPH0265124A (en) Crystal growth of compound semiconductor
JPS58194329A (en) Liquid phase epitaxial growth of 3-5 mixed crystal semiconductor
JPH02141498A (en) Method for growing ingap crystal
JPS6037075B2 (en) GaAsP crystal growth method
JPH01278488A (en) Growth of mixed crystal
JPS63257216A (en) Apparatus for manufacturing semiconductor crystal
JPS63232435A (en) Hgcdte single crystal formed through epitaxial growth