JPS5940732Y2 - Proportional control device for electromagnetic actuators - Google Patents

Proportional control device for electromagnetic actuators

Info

Publication number
JPS5940732Y2
JPS5940732Y2 JP8053778U JP8053778U JPS5940732Y2 JP S5940732 Y2 JPS5940732 Y2 JP S5940732Y2 JP 8053778 U JP8053778 U JP 8053778U JP 8053778 U JP8053778 U JP 8053778U JP S5940732 Y2 JPS5940732 Y2 JP S5940732Y2
Authority
JP
Japan
Prior art keywords
control signal
electromagnetic actuator
control device
amount
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8053778U
Other languages
Japanese (ja)
Other versions
JPS54181258U (en
Inventor
武重 田「淵」
誠悦 吉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP8053778U priority Critical patent/JPS5940732Y2/en
Publication of JPS54181258U publication Critical patent/JPS54181258U/ja
Application granted granted Critical
Publication of JPS5940732Y2 publication Critical patent/JPS5940732Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Feedback Control In General (AREA)

Description

【考案の詳細な説明】 本考案は連続的な機械的変位を生じる電磁作動器、例え
ば流量若しくは、開度或いは位置を、リニアに制御する
ことによって自動車用気化器の補正空気量、或いは排気
系への二次空気量を制御する比例制御電磁弁に関する。
[Detailed description of the invention] This invention is an electromagnetic actuator that generates continuous mechanical displacement, such as by linearly controlling the flow rate, opening degree, or position, to correct the amount of air in an automobile carburetor or to adjust the amount of air in an exhaust system. This invention relates to a proportional control solenoid valve that controls the amount of secondary air flowing into the air.

従来、この種の電磁作動器をリニアに制御するため、ソ
レノイドに供給する電流をリニアに変化させることは周
知である。
Conventionally, in order to linearly control this type of electromagnetic actuator, it is well known to linearly change the current supplied to the solenoid.

この従来周知の構成においては、電流を単にリニアに変
化させているだけのため、ソレノイド供給電流の増減方
向を反転させて変位の方向を逆転する場合、電磁作動器
の変位量は、ヒステリシス特性の分だけ遅れて開閉方向
が反転するので応答性の悪い点が大きな欠点となってい
た。
In this conventionally well-known configuration, the current is simply changed linearly, so when the direction of increase/decrease in the solenoid supply current is reversed to reverse the direction of displacement, the amount of displacement of the electromagnetic actuator will change due to the hysteresis characteristic. Since the opening/closing direction is reversed after a delay of 1 minute, a major drawback is poor responsiveness.

従って本考案は電磁作動器の供給電流をリニアに変化さ
せると共にその変化方向の切り替わり時点ではステップ
的に変化させることにより、電磁作動器の電流に対する
変位量のヒステリシス特性が補正され、電流の変化に対
する変位の応答性の優れた比例制御装置を提供すること
を主目的とするものである。
Therefore, the present invention changes the supply current of the electromagnetic actuator linearly and changes it stepwise when the direction of change changes, thereby correcting the hysteresis characteristic of the displacement amount with respect to the current of the electromagnetic actuator. The main purpose of this invention is to provide a proportional control device with excellent displacement responsiveness.

さらに、本考案は例えば、エンジンの排気ガス成分に従
って比例制御電磁弁の変位量すなわち開度を調節して空
燃比を帰還制御するシステムに適合するべく、入力の指
令信号に対応してリニアに増加するかリニアに減少する
かに切換えられる電気的制御信号を発生する積分回路の
ごとき制御信号発生回路を備えるとともに、この制御信
号発生回路に上記電気的制御信号をその切換わり時にス
テップ的に変化させる電気的制御手段を付設してなる電
磁作動器の比例制御装置を提供することをも目的とする
ものである。
Furthermore, the present invention is suitable for systems that feedback control the air-fuel ratio by adjusting the displacement amount, or opening degree, of a proportional control solenoid valve according to the exhaust gas components of the engine. A control signal generating circuit such as an integrator circuit that generates an electrical control signal that is switched between increasing and decreasing linearly is provided, and the control signal generating circuit causes the electrical control signal to be changed in steps at the time of switching. Another object of the present invention is to provide a proportional control device for an electromagnetic actuator, which is provided with electrical control means.

以下図に示す本考案の実施例に基いて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An explanation will be given below based on an embodiment of the present invention shown in the figures.

第1図は、電磁弁の模式図で、1はソレノイドコイル、
2はムービングコア、3はムービングコアに連結したパ
ルプ、4はスプリング、5,6は例えば空気の通路で白
抜矢印に示す方向に流れる空気量が制御され公知の空燃
比の帰還制御が行われるものとする。
Figure 1 is a schematic diagram of a solenoid valve, where 1 is a solenoid coil,
2 is a moving core, 3 is a pulp connected to the moving core, 4 is a spring, and 5 and 6 are air passages, for example, where the amount of air flowing in the direction shown by the white arrow is controlled, and the known air-fuel ratio feedback control is performed. shall be taken as a thing.

第2図は前記ソレノイドを制御する電気回路部の第1実
施例で、積分回路11゜ステップ信号発生回路10、増
幅回路12より成っており、積分回路11は演算増幅器
111、コンデンサ112、抵抗113よりなる積分器
と、抵抗114,115より構成されている。
FIG. 2 shows a first embodiment of the electric circuit section for controlling the solenoid, which is composed of an integrating circuit 11, a step signal generating circuit 10, and an amplifier circuit 12. It consists of an integrator and resistors 114 and 115.

またステップ発生回路10は、抵抗101 、102,
103゜トランジスタ104より構成され、増幅回路1
2はバッファとしての演算増幅器121. 抵抗122
゜123,124、ダーリントン接続トランジスタ12
5より公知の定電流制御回路として構成されている。
Further, the step generation circuit 10 includes resistors 101, 102,
The amplifier circuit 1 is composed of a 103° transistor 104.
2 is an operational amplifier 121.2 serving as a buffer. resistance 122
゜123, 124, Darlington connection transistor 12
5 is configured as a known constant current control circuit.

13はバルブ開度の増減を示す指令信号入力端で、”H
IGH”レベルで減少、”LOW”レベルで増加を意味
する2値信号が公知の空燃比検出装置より入力される。
13 is a command signal input terminal indicating an increase/decrease in the valve opening;
A binary signal indicating a decrease at the "IGH" level and an increase at the "LOW" level is input from a known air-fuel ratio detection device.

また十B端子には自動車搭載のバッテリの電圧が印加さ
れ、Vcc端子にはバッテリ電圧を安定化した定電圧が
印加される。
Further, the voltage of the battery mounted on the vehicle is applied to the 10B terminal, and a constant voltage obtained by stabilizing the battery voltage is applied to the Vcc terminal.

上記の構成において、バルブ開度を減少させるとき、信
号入力端13は”High” レベルにあり、積分回路
11の出力■1は積分定数に従って直線的に下降する。
In the above configuration, when the valve opening degree is decreased, the signal input terminal 13 is at the "High" level, and the output (1) of the integrating circuit 11 falls linearly in accordance with the integral constant.

一方、積分器をなす演算増幅器111の非反転入力端子
電位V2は、トランジスタ104が導通しているため、
次の式で与えられる。
On the other hand, since the transistor 104 is conductive, the non-inverting input terminal potential V2 of the operational amplifier 111 forming the integrator is
It is given by the following formula.

但し、Rnは第2図中抵抗番号nの抵抗値を示し、トラ
ンジスタ104自身の等価内部抵抗は無視しである。
However, Rn indicates the resistance value of resistance number n in FIG. 2, and the equivalent internal resistance of the transistor 104 itself is ignored.

次に、バルブ開度を増加する指令信号すなわち、信号入
力端子13が”LOW”レベルに変化すると、トランジ
スタ104が遮断するため、V2は次の式で与えられる
Next, when the command signal for increasing the valve opening, that is, the signal input terminal 13 changes to the "LOW" level, the transistor 104 is cut off, so that V2 is given by the following equation.

即ち、(2)式と(1)式の差△v2だげステップ的に
上昇する。
That is, the difference Δv2 between equations (2) and (1) increases in a stepwise manner.

このステップ変化が、積分器の動作として演算増幅器1
11の反転入力端子、コンデンサ112を介して出力■
1に伝達される。
This step change causes the operational amplifier 1 to act as an integrator operation.
11 inverting input terminal, output via capacitor 112■
1.

このため出力電圧v1はステップ的に△v2だげ上昇し
、その後積分定数に従って直線的に上昇する。
Therefore, the output voltage v1 increases stepwise by Δv2, and then increases linearly according to the integral constant.

再び、バルブ開度を減少する指令信号すなわち、信号入
力端13が”HIGH”レベルに変化すると、積分回路
11の出力電圧■1はステップ的に△V2だげ下降し、
その後積分定数に従って直線的に下降する。
When the command signal to decrease the valve opening degree, that is, the signal input terminal 13 changes to the "HIGH" level again, the output voltage 1 of the integrating circuit 11 decreases by ΔV2 in a stepwise manner.
After that, it falls linearly according to the integral constant.

以上の作動を第3図において説明すると、バルブ開度を
増加するため電流■が増加しつつあり、A点に達した所
で開度を減少する信号が入力されると、前記ステップ変
化△■2を第3図△Iに対応させておくことにより瞬時
に作動点+7A点よりB点に移行し、バルブ開度すなわ
ちムービングコアのストロークSは特性曲線に沿って下
降する。
The above operation will be explained with reference to FIG. 3. In order to increase the valve opening degree, the current ■ is increasing, and when a signal to decrease the opening degree is inputted when reaching point A, the step change △■ 2 corresponds to ΔI in FIG. 3, the operating point +7A instantaneously shifts to point B, and the valve opening, that is, the stroke S of the moving core, decreases along the characteristic curve.

すなわちバルブ開度の増加、減少を切換える際に電流を
ステップ的に変化させているために、この電流■の変化
特性と電磁弁のヒステリシス特性とは一致する。
That is, since the current is changed stepwise when switching between increasing and decreasing the valve opening, the change characteristics of this current (2) match the hysteresis characteristics of the solenoid valve.

第4図は電気回路部の第2の実施例で、第1の実施例の
ステップ信号発生回路10に替わり、積分定数増加回路
20を有しており、以下その作動を説明する。
FIG. 4 shows a second embodiment of the electric circuit section, which includes an integral constant increasing circuit 20 in place of the step signal generating circuit 10 of the first embodiment, and its operation will be explained below.

信号入力端13が定常状態にあると、抵抗204と抵抗
205との接続点の電位(V3とする)は次の式で与え
られる。
When the signal input terminal 13 is in a steady state, the potential at the connection point between the resistors 204 and 205 (assumed to be V3) is given by the following equation.

また、比較器210,211の各々の非反転入力端子電
位をV4tV5とし、V3.■4.v50大小関係を次
の様に設定しておく。
Further, the non-inverting input terminal potential of each of the comparators 210 and 211 is set to V4tV5, and V3. ■4. The v50 size relationship is set as follows.

0 <V5 <V3 <V4 <Vce 即ち、比較器210の出力は”High”レベル比較器
211の出力は”Low”レベルにあり、トランジスタ
214,217は共にオフしている。
0 <V5 <V3 <V4 <Vce In other words, the output of the comparator 210 is at a "High" level, and the output of the comparator 211 is at a "Low" level, and both transistors 214 and 217 are off.

今、信号入力端13が”High”レベルより″[、o
w ”レベルに変化したとき、即ちバルブ開度減少か
ら増加へと要求が変化したときを考えると、信号入力端
13の電位変化をコンデンサ201が微分し、V3は一
定時間(TIとする)だげV3以下となり、比較器21
1の出力はHigh”レベルとなる。
Now, the signal input terminal 13 is higher than the "High" level.
w'' level, that is, when the request changes from decreasing to increasing the valve opening, the capacitor 201 differentiates the potential change at the signal input terminal 13, and V3 is maintained over a certain period of time (TI). The output becomes V3 or less, and the comparator 21
The output of 1 becomes "High" level.

従って、トランジスタ217がオンし、積分回路11の
コンデンサ112の充電々流は、抵抗113とともに抵
抗216をも流れる。
Therefore, the transistor 217 is turned on, and the charging current of the capacitor 112 of the integrating circuit 11 flows through the resistor 216 as well as the resistor 113.

時間T1経過すると、トランジスタ217がオフしこれ
以後抵抗113をのみコンデンサ112の充電々流が流
れる。
When the time T1 has elapsed, the transistor 217 is turned off, and from then on, the charging current of the capacitor 112 flows only through the resistor 113.

即ち、バルブ開度増減信号が減少から増加へと変化する
と、一定時間T1は急勾配でソレノイド電流は上昇し、
その後通常の勾配で上昇するもので、T1を短くするこ
とにより第1の実施例と同等の作動が得られる。
That is, when the valve opening increase/decrease signal changes from decreasing to increasing, the solenoid current increases with a steep slope for a certain period of time T1,
Thereafter, it rises at a normal slope, and by shortening T1, the same operation as in the first embodiment can be obtained.

一方、信号入力端13が’LOW”レベルより“Hig
h”レベルに変化したときは、一定時間(T2とする)
比較器210の出力が”Low”レベルとなり、トラン
ジスタ214がオンしソレノイド電流は急勾配で下降す
る。
On the other hand, the signal input terminal 13 goes from the 'LOW' level to the 'HIGH' level.
h” level, for a certain period of time (T2)
The output of the comparator 210 becomes "Low" level, the transistor 214 is turned on, and the solenoid current falls at a steep slope.

そして一定時間T2の経過後は通常の勾配で下降する。Then, after a certain period of time T2 has elapsed, it descends at a normal slope.

なお、第1の実施例では、リニアに変化するソレノイド
電流にステップ的に加減算する電流量は開弁量に関係な
く一定であるが、開弁量によりヒステリシス幅が変化す
る様な電磁弁に対しては、第2の実施例において、開弁
量を入力として前記TI、T2の間コンデンサ112に
余分に流す電流を演算し出力する回路例えばムービング
コアの移動量を検出して抵抗215,216の値を変化
させる回路を備えることによりいかなる開弁位置にあっ
ても、ヒステリシスを補償することが可能である。
In the first embodiment, the amount of current that is added or subtracted in steps to the solenoid current that changes linearly is constant regardless of the valve opening amount. However, for a solenoid valve whose hysteresis width changes depending on the valve opening amount In the second embodiment, a circuit that calculates and outputs an extra current to flow through the capacitor 112 during TI and T2 using the valve opening amount as input, detects the amount of movement of the moving core, and calculates and outputs the current that is passed through the capacitor 112 during the above-mentioned TI and T2. By providing a circuit that changes the value, it is possible to compensate for hysteresis in any valve opening position.

次に電気回路部の第3の実施例を示す第5図の構成にお
いては、前記第1実施例における積分回路11の積分器
のコンデンサ112に対し積分器入力側に直列に抵抗3
00を接続したもので、この第4実施例のものでは信号
入力端13の出力が反転する毎に積分器をなす演算増幅
器111の反転入力端子の電位(一定)を基準として、
抵抗300とコンデンサ11・2との接続点の電位はス
テップ的に正負方向に変化し、積分器出力v3もステッ
プ的に一定量変化しその後直線的に上昇或いは下降する
ため、上記電磁弁のヒステリシスはこの積分出力のステ
ップ的な変化分によって相殺される。
Next, in the configuration of FIG. 5 showing the third embodiment of the electric circuit section, a resistor 3 is connected in series to the integrator input side with respect to the integrator capacitor 112 of the integrating circuit 11 in the first embodiment.
In this fourth embodiment, each time the output of the signal input terminal 13 is inverted, the potential (constant) of the inverting input terminal of the operational amplifier 111 forming the integrator is used as a reference.
The potential at the connection point between the resistor 300 and the capacitors 11 and 2 changes stepwise in the positive and negative directions, and the integrator output v3 also changes stepwise by a certain amount and then rises or falls linearly, which causes hysteresis of the solenoid valve. is canceled out by this stepwise change in the integral output.

以上述べたように本考案によれば、電磁作動器の変位量
をリニアに変化させる電気的制御信号を指令信号に応じ
て発生させるとともに、この制御信号を増加或いは減少
させるときステップ的に加算或いは減算する構成として
いるから、電磁作動器の変化方向が反転したとき、ソレ
ノイド電流がステップ的に変化し、ソレノイドバルブの
有するヒステリシス幅を瞬時に補償できるため反転時の
応答性が大幅に向上される。
As described above, according to the present invention, an electrical control signal that linearly changes the displacement amount of an electromagnetic actuator is generated in accordance with a command signal, and when increasing or decreasing this control signal, the electric control signal is added or decreased in a stepwise manner. Since it is configured to subtract, when the direction of change of the electromagnetic actuator is reversed, the solenoid current changes in a stepwise manner, and the hysteresis width of the solenoid valve can be instantly compensated for, greatly improving responsiveness when reversing. .

なお、第4図図示の第2の実施例によれば、開弁量”減
少″→”増加”時のステップ的変化量と“増加”→゛減
少時のステップ的変化量とを抵抗215と216とによ
って独立に設定することが可能であるためスプリング4
の弾性、或いは通路5,6の空気圧による電磁作動器(
電磁弁)の軸方向の機種的ヒステリシスをも補償するこ
とが可能である。
According to the second embodiment shown in FIG. 4, the stepwise change amount when the valve opening amount "decrease" → "increase" and the stepwise change amount when "increase" → "decrease" are controlled by the resistor 215. Spring 4 can be set independently by 216.
electromagnetic actuator (
It is also possible to compensate for axial mechanical hysteresis of the solenoid valve.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施に供する電磁作動器の例をなす電
磁弁の模式断面図、第2図は本考案の実施例のうち電気
回路部の第1の実施例を示す電気結線図、第3図は第1
図図示の電磁弁の作動特性図、第4図は電気回路部の第
2の実施例を示す電気結線図、第5図は電気回路部の第
3の実施例を示す電気結線図である。 1・・・・・・電磁作動器をなす電磁弁のソレノイドコ
イル 11・・・・・・制御信号発生回路をなす積分回
路、12・・・・・・増幅回路、10,20,300・
・・・・・各実施例においてそれぞれ制御手段をなすス
テップ信号発生回路、積分定数増加回路、抵抗。
FIG. 1 is a schematic cross-sectional view of a solenoid valve that is an example of an electromagnetic actuator for implementing the present invention, and FIG. 2 is an electrical wiring diagram showing a first example of an electric circuit section among the embodiments of the present invention. Figure 3 is the first
FIG. 4 is an electrical wiring diagram showing a second embodiment of the electric circuit section, and FIG. 5 is an electrical wiring diagram showing a third embodiment of the electric circuit section. 1... Solenoid coil of a solenoid valve forming an electromagnetic actuator 11... Integrating circuit forming a control signal generation circuit, 12... Amplifying circuit, 10, 20, 300.
In each embodiment, a step signal generation circuit, an integral constant increasing circuit, and a resistor serve as control means.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入力の指令信号に対応して時間とともに漸増するか漸減
するかに切換えられる電気的制御信号を発生する制御信
号発生回路と、前記電気的制御信号に応じて連続的な機
械的変位を生じ、電気的制御信号と機械的変位の間にヒ
ステリシス特性を有する電磁作動器と、前記指令信号の
切り換わりに対応して前記制御信号発生回路を制御し前
記電気的制御信号を漸増開始時にはステップ的に増加さ
せ漸減開始時にはステップ的に減少させる制御手段とを
備えてなることを特徴とする電磁作動器の比例制御装置
A control signal generation circuit that generates an electrical control signal that is switched to gradually increase or decrease over time in response to an input command signal; an electromagnetic actuator having a hysteresis characteristic between an electrical control signal and mechanical displacement; and an electromagnetic actuator that controls the control signal generation circuit in response to switching of the command signal, and increases the electrical control signal in a stepwise manner when starting to gradually increase the electrical control signal. 1. A proportional control device for an electromagnetic actuator, characterized in that the proportional control device comprises a control means for decreasing the amount in steps when the gradual decrease starts.
JP8053778U 1978-06-13 1978-06-13 Proportional control device for electromagnetic actuators Expired JPS5940732Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8053778U JPS5940732Y2 (en) 1978-06-13 1978-06-13 Proportional control device for electromagnetic actuators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8053778U JPS5940732Y2 (en) 1978-06-13 1978-06-13 Proportional control device for electromagnetic actuators

Publications (2)

Publication Number Publication Date
JPS54181258U JPS54181258U (en) 1979-12-21
JPS5940732Y2 true JPS5940732Y2 (en) 1984-11-20

Family

ID=28999529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8053778U Expired JPS5940732Y2 (en) 1978-06-13 1978-06-13 Proportional control device for electromagnetic actuators

Country Status (1)

Country Link
JP (1) JPS5940732Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533727B2 (en) * 2015-09-24 2019-06-19 リンナイ株式会社 Proportional valve drive

Also Published As

Publication number Publication date
JPS54181258U (en) 1979-12-21

Similar Documents

Publication Publication Date Title
US4804454A (en) Oxygen concentration sensing apparatus
US4019470A (en) Closed loop air-fuel ratio control system for use with internal combustion engine
US4188926A (en) Automotive internal combustion engine servo control system, particularly for automatic speed control arrangement
JP3030076B2 (en) Current control circuit
US4796587A (en) Air/fuel ratio control system for internal combustion engine
US5585748A (en) Voltage-frequency converter circuit with temperature compensation
GB2047440A (en) Exhaust gas recirculation control system
US4316155A (en) Voltage controlled oscillator having ratiometric and temperature compensation
JPS6118664B2 (en)
JPS5940732Y2 (en) Proportional control device for electromagnetic actuators
JPS5960060A (en) Exhaust gas recirculation apparatus of internal combustion engine
JPH08303285A (en) Device and method for controlling valve for automobile
JPH0150139B2 (en)
JPH036394B2 (en)
CN112445266B (en) Adjusting circuit and adjusting method for charging cut-off current
JPS58103892A (en) Controller for transistor chopper
JPH07279741A (en) Step-down voltage controller in load
JPH0129866Y2 (en)
JPS6145057B2 (en)
JPH05111266A (en) Controller for piezoelectric actuator
JPH0137589B2 (en)
JPS6036772Y2 (en) Injection amount control device
KR100207107B1 (en) Apparatus of compensating rotating of engine using change of driving force of generator
JPS6037603Y2 (en) Solenoid valve drive circuit
KR100323500B1 (en) Apparatus and method for compensating for temperature of single coil