JPS5940448A - Electrostatic acceleration lens - Google Patents

Electrostatic acceleration lens

Info

Publication number
JPS5940448A
JPS5940448A JP14922482A JP14922482A JPS5940448A JP S5940448 A JPS5940448 A JP S5940448A JP 14922482 A JP14922482 A JP 14922482A JP 14922482 A JP14922482 A JP 14922482A JP S5940448 A JPS5940448 A JP S5940448A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
lens
voltage
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14922482A
Other languages
Japanese (ja)
Inventor
Kenji Kurihara
健二 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14922482A priority Critical patent/JPS5940448A/en
Publication of JPS5940448A publication Critical patent/JPS5940448A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic

Abstract

PURPOSE:To reduce chromatic aberration by constituting lens electrodes in the order of the first - fourth electrode having the center opening, applying a charged-particle acceleration voltage across the first and fourth electrodes, the same potential to the second and fourth electrodes, and a negative or positive potential across the third and fourth electrodes. CONSTITUTION:Electrodes 6-9 are arranged in rotational symmetry with respect to a light axis to constitute lens electrodes. A beam having the energy of a volage V1 in relation to the electrode 6 is generated from a charged beam generation source. A voltage V2 is applied across the electrodes 6, 9, a voltage V3 across the electrodes 8, 9, and the same potential to the electrodes 8, 9. The polarity of the voltage V3 is selected so that a beam is accelerated between the electrodes 7, 8 and decelerated between the electrodes 8, 9. When the distance S between a light source and the electrode 9 is limited to Sm, a distance Lm between the electrodes 6, 7 or a diameter d1m of the electrode 6 is calculated, while the focal distance is kept constant and S=Sm with the distance L between the electrodes 6, 7 or the diameter d1 of the electrode serving as a parameter, than L and d1 are set to 50-100% of Lm and d1m respectively. Accordingly, chromatic aberration can be reduced.

Description

【発明の詳細な説明】 本発明は、荷電ビーム特にイオノビームを集束して微細
スポットを形成し、LSI等の微細加工を行うビーム集
束装置の光学系における、ビーム加速及び集束を行う静
電加速レンズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses on an electrostatic acceleration lens that accelerates and focuses a charged beam, particularly an ion beam, in an optical system of a beam focusing device that focuses a charged beam, particularly an ion beam, to form a fine spot and performs fine processing of LSI, etc. It is related to.

電界放出型の電子銃や電界電離あるいは電界放出型のイ
オン源より発生する荷電ビームを必要なエネルギーに加
速するために静電型の加速レンズが用いられる。また、
ビームを加速するほかにコンデンサレンズの機能を持た
せることが多い。従来、これを目的とした静電レンズと
して、第1図に示スパイポテンシャルレンズが良く用い
られている。これは、2枚電極構成である。1は、荷電
ビーム発生源で電極2との間に電圧■1 をかけてビー
ムを引き出している。■1 はビームの初速エネルギー
に対応する。電極2と電極6の間に電圧■2をかけて、
ビームを加速している。加速電圧は■1+■2となる。
An electrostatic accelerating lens is used to accelerate a charged beam generated from a field emission electron gun, field ionization, or field emission ion source to the required energy. Also,
In addition to accelerating the beam, it often functions as a condenser lens. Conventionally, a spy potential lens shown in FIG. 1 has been often used as an electrostatic lens for this purpose. This is a two-electrode configuration. Reference numeral 1 denotes a charged beam generation source which applies a voltage 1 between it and an electrode 2 to draw out the beam. ■1 corresponds to the initial velocity energy of the beam. Apply voltage ■2 between electrode 2 and electrode 6,
Accelerating the beam. The accelerating voltage becomes ■1+■2.

また、■2をかけることにより電極2、乙の間でレンズ
作用を持つ。レンズの焦点は 2/■1を変えることで
、可変となり、コンデンサレンズ(あるいは、このレン
ズのみでビームをスポットに集束することもできる)と
して使用できる。ところで、通常v1は、ビーム放出特
性により決まるので、ある一定の電圧に固定されること
が多い。vl を変えると一般にビーム電流が大きく変
化する。したがってコンデンサレンズの焦点距離を変え
るには■2を変えることになるが、しかし■2を変える
と加速電圧が同時に変わるので都合が悪い。そのために
、第1図構成は加速するだけで、コンデンサレンズとし
ての利点はあまりない。この欠点をなくすために、第2
図に示す6枚電極構成のレンズが提案されている。
Also, by multiplying by 2, a lens effect is created between electrode 2 and B. The focal point of the lens can be varied by changing the ratio 2/■1, and it can be used as a condenser lens (or this lens alone can focus the beam on a spot). By the way, since v1 is usually determined by the beam emission characteristics, it is often fixed at a certain voltage. Changing vl generally causes a large change in beam current. Therefore, to change the focal length of the condenser lens, you need to change (2), but changing (2) changes the accelerating voltage at the same time, which is inconvenient. Therefore, the configuration shown in FIG. 1 only accelerates the lens, and does not have much advantage as a condenser lens. In order to eliminate this drawback, the second
A lens with a six-electrode configuration as shown in the figure has been proposed.

このレンズは、電極2、乙の間に電極4を入れたもので
、電極4には電圧v3をかける。ここでは、■1、■2
を固定してV3を変えることにより、加速電圧を一定に
しながらコンデンサレンズの焦点距離を可変にすること
ができる。
This lens has an electrode 4 inserted between the electrodes 2 and 2, and a voltage v3 is applied to the electrode 4. Here, ■1, ■2
By fixing V3 and changing V3, it is possible to make the focal length of the condenser lens variable while keeping the accelerating voltage constant.

ところで、電界放出型の液体金属イオン源では、電子銃
に比較してビームエネルギー幅ΔVは、犬きく通常10
倍程度とされている。そのために、イオンビームを集束
する場合、色収差の影響が問題となっており、色収差の
低減化が望まれているI8第1図、第2図に示した従来
のレンズでは、電子銃を用いるときは、色収差は小さく
球面収差の方が支配的であるが、イオン源を用いると色
収差の方が球面収差よシも大きくなる。微細なイオンビ
ームのスポットを得るには、従来のレンズでは不十分で
あり、色収差の小さいレンズが必要である。
By the way, in a field emission type liquid metal ion source, compared to an electron gun, the beam energy width ΔV is usually 10 times larger.
It is said to be about double that. Therefore, when focusing the ion beam, the influence of chromatic aberration becomes a problem, and the conventional lenses shown in I8 Figures 1 and 2, in which reduction of chromatic aberration is desired, cannot be used when using an electron gun. In this case, chromatic aberration is small and spherical aberration is dominant, but when an ion source is used, chromatic aberration becomes larger than spherical aberration. Conventional lenses are insufficient to obtain a fine ion beam spot, and a lens with small chromatic aberration is required.

集束光学系の倍率が小さく、縮小系となっていれば、加
速、コンデンサレンズの収差は縮小されるので影響は小
さくなる。しかし、電界放出型のイオン源、電子銃では
光源径が非常に小さいので、倍率は大きくとられ、等程
度度から拡大倍率がよく用いられる。従って、加速、コ
ンデンサレンズの収差も大きくなるので、電界放出型イ
オン源では、特に、前述した色収差の低減化が重要であ
る。
If the magnification of the focusing optical system is small and it is a reduction system, the aberrations of the accelerating and condenser lenses will be reduced and their influence will be small. However, in field emission type ion sources and electron guns, the light source diameter is very small, so the magnification is large, and magnification from the same degree is often used. Therefore, since the aberrations of the acceleration and condenser lenses also become large, it is particularly important to reduce the above-mentioned chromatic aberration in a field emission type ion source.

ここで収差特性の比較をするために、第5図に示す結像
条件について考える。これは、物点位置zoより出たビ
ームが、平行になる結像条件である。
In order to compare the aberration characteristics, consider the imaging conditions shown in FIG. 5. This is an imaging condition in which the beams emitted from the object point position zo are parallel.

すなわち像点Z1は+■の位置であシ、倍率Mはω。That is, the image point Z1 is at a position of +■, and the magnification M is ω.

である。foは、焦点距離である。実際の光学系では、
平行になったビームを対物レンズにより集束する構成を
とるが、ここでは加速、コンデンサの部分について考え
る。収差は次のように表わされる。
It is. fo is the focal length. In an actual optical system,
The configuration is such that the parallel beam is focused by an objective lens, but here we will consider the acceleration and condenser parts. Aberration is expressed as follows.

d  −d  +d S      に こで、ds、doはそれぞれ物面側に換算した球面収差
、色収差、Cso、Ccoは物面側で定義した球面収差
係数、色収差係数、α。は物面側の開口半角である。d
2は球面収差、色収差の2乗和である。また、Δ■は前
述のエネルギー幅、■oは物面側のビームエネルギー(
電界放出型の光源ではビーム引き出し電圧に相当する)
である。
d − d + d S where ds and do are the spherical aberration and chromatic aberration respectively converted to the object side, and Cso and Cco are the spherical aberration coefficient and chromatic aberration coefficient defined on the object side, α. is the aperture half angle on the object side. d
2 is the sum of squares of spherical aberration and chromatic aberration. In addition, Δ■ is the energy width mentioned above, and ■o is the beam energy on the object side (
For field emission light sources, this corresponds to the beam extraction voltage)
It is.

本発明の目的は色収差係数C60を小さくすることがで
き、これにより全体の収差を小さくすることのできる静
電加速レンズを提供することにある5本発明の特徴は、
上記目的を達成するために、中心部にそれぞれ開口を有
する第1電極、第2電極、第6電極及び第4電極をこの
順に光軸に対して回転対称に並べてレンズ電極を構成し
、荷電粒・子は第1電極よシ入射するとして第1電極と
第4電極間に荷電粒子加速電圧を与え、第2電極と第4
電極は等電位とし、第6電極と第4電極間に負まだは正
いずれかの電圧を与える構成とするにある。
An object of the present invention is to provide an electrostatic accelerating lens that can reduce the chromatic aberration coefficient C60, thereby reducing the overall aberration.5 Features of the present invention are as follows:
In order to achieve the above object, a lens electrode is constructed by arranging a first electrode, a second electrode, a sixth electrode, and a fourth electrode, each having an opening in the center, rotationally symmetrically with respect to the optical axis in this order, and・Assuming that the particles are incident through the first electrode, a charged particle accelerating voltage is applied between the first electrode and the fourth electrode, and the charged particle acceleration voltage is applied between the second electrode and the fourth electrode.
The electrodes are of equal potential, and either a negative or positive voltage is applied between the sixth electrode and the fourth electrode.

本発明の第2においては、上記構成に加えて、さらに、
物点と第1電極の間の距離Sがある一定距離Sm以上の
範囲に制約される場合、焦点距離を一定にして第1電極
と第2電極の間隔りまたは第1電極の口径d1をパラメ
ータとしてSがSmに等しくなるときの第1電極と第2
電極の間隔Lmまたは第1電極の口径d1mを求め、L
をLmの50〜100%の範囲に、またはdlをdil
nの50〜100チの範囲に設定する構成とするにある
In the second aspect of the present invention, in addition to the above configuration, further:
When the distance S between the object point and the first electrode is restricted to a certain distance Sm or more, the distance between the first electrode and the second electrode or the aperture d1 of the first electrode is set as a parameter while keeping the focal length constant. The first electrode and the second electrode when S becomes equal to Sm
Determine the electrode spacing Lm or the first electrode diameter d1m, and calculate L
in the range of 50 to 100% of Lm, or dl to dil
The configuration is such that n is set in the range of 50 to 100 inches.

以下、図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

第4図は本発明の静電加速レンズの構成を示す図で、6
は第1の電極、7は第2の電極、8は第6の電極、9は
第4の電極であシ、第1〜第4の順に光軸に対して回転
対称に並べられてレンズ電極を構成しておυ、荷電粒子
は第1電極6側から入射される。vlは荷電ビーム発生
源(以下光源と呼ぶ)と第1電極乙の間の電圧であるが
、ここでは、Vlのエネルギーのビームが光源から出る
とし、第1電極6″i!ではドリフト空間と考える。
FIG. 4 is a diagram showing the structure of the electrostatic accelerating lens of the present invention.
is a first electrode, 7 is a second electrode, 8 is a sixth electrode, and 9 is a fourth electrode, and the lens electrodes are arranged rotationally symmetrically with respect to the optical axis in the order of 1st to 4th. , and the charged particles are incident from the first electrode 6 side. vl is the voltage between the charged beam generation source (hereinafter referred to as the light source) and the first electrode B. Here, it is assumed that a beam with energy of Vl is emitted from the light source, and the drift space and the voltage at the first electrode 6''i! think.

第1電極6と第4電極9の間に電圧V2をかけ、第3電
極8と第4電極9の間に電圧V5をかける。
A voltage V2 is applied between the first electrode 6 and the fourth electrode 9, and a voltage V5 is applied between the third electrode 8 and the fourth electrode 9.

第2電極7と第4電極9は同電位とし、ここではアース
電位にする。電圧■、の極性は、ビームが、第2電極7
と第6電極80間で加速され、第6電極8と第4電極9
0間で減速されるようにする。
The second electrode 7 and the fourth electrode 9 are at the same potential, and here they are at ground potential. The polarity of the voltage ■ is such that the beam is connected to the second electrode 7.
and the sixth electrode 80, and the sixth electrode 8 and the fourth electrode 9
The speed will be reduced between 0 and 0.

即ち、ビームが正イオンビームであるときは7口は負電
圧である。また加速電圧V、はV3== V1+■2で
あり、物面側のビームエネルギー■oは■。
That is, when the beam is a positive ion beam, the voltage at the 7th port is negative. Further, the accelerating voltage V is V3==V1+■2, and the beam energy ■o on the object side is ■.

=v1 である。=v1.

加速電圧Vaを3Q kVとし、■3を一33kVとし
たときの、第4図に示しだレンズの軸上ポテンシャル分
布を第5図に示した。第5図の領域(a)は、第1電極
6と第2電極70間に対応し、領域(b)は、第2電極
7と第4電極90間に対応するε領域(a)の部分のみ
の焦点距離f。は53mmであるが、領域(a)と(b
)を合わせると25171171の焦点距離となる。焦
点距離が短かくなった分が、領域(b)の部分のレンズ
作用に相当する。
FIG. 5 shows the axial potential distribution of the lens shown in FIG. 4 when the accelerating voltage Va is 3Q kV and 3 is -33 kV. Region (a) in FIG. 5 corresponds to between the first electrode 6 and second electrode 70, and region (b) corresponds to the part of ε region (a) between second electrode 7 and fourth electrode 90. focal length f. is 53 mm, but areas (a) and (b
), the focal length is 25171171. The shortened focal length corresponds to the lens action in region (b).

次に、領域(a)、(b)の収差に与える影響について
説明する。第1電極6と第2電極70間隔なLとしたと
き、Lが大きい方が領域(a)の部分のレンズ作用は弱
くなり、この部分の焦点距離は長くなる。(a)の部分
のレンズ作用を小さくすると収差が小さくなる傾向があ
る。焦点距離f。を固定した場合、Lが大きい方が色収
差係数は小さくなろ。ただし、この場合、foを固定す
るだめ((領域(b)のレンズ作用を強くする必要があ
り、IV31を犬きくしている。また、第1電極6の口
径を大きくしても、色収差係数が小さくなる効果がある
。これを説明するために、第6図に本発明のレンズの具
体的な寸法を規定するノヨラメータを示す。簡単のため
に、電極厚はすべて同じとし、tとする。また第2、第
6電極間隔と第6、第4電極簡隔も同じとし、lとする
。第1電極の口径なdl、第2.6.4電極口径を同じ
とし、d2とする。また、Z、は、第1電極のレンズ外
面から物点(光源)までの距離である。まず、第7図に
Vo= 5kV’、 Va−=3[] kV、  fo
=25rnm、  t =2mm、 145mm、d1
=15mm、d2=4mmとしたときの、Z5、Cco
のLに対する変化を計算した結果を示す。Lが大きくな
ると、色収差係数Ccoは小さくなることがわかる。し
かし、焦点距離f。を固定にしているのでLが大きくな
るとZ5が小さくなり、光源がレンズに近づいてくる。
Next, the influence on the aberrations in regions (a) and (b) will be explained. When L is the distance between the first electrode 6 and the second electrode 70, the larger L is, the weaker the lens action is in the area (a), and the longer the focal length of this area is. If the lens action in the part (a) is reduced, aberrations tend to be reduced. Focal length f. If L is fixed, the larger L is, the smaller the chromatic aberration coefficient will be. However, in this case, if fo is fixed, it is necessary to strengthen the lens action in region (b), and IV31 is set too high.Also, even if the aperture of the first electrode 6 is increased, the chromatic aberration coefficient In order to explain this, Fig. 6 shows a noyola meter that defines the specific dimensions of the lens of the present invention.For simplicity, all electrode thicknesses are assumed to be the same and are assumed to be t. The distance between the second and sixth electrodes and the distance between the sixth and fourth electrodes are also the same, and are assumed to be l.The aperture of the first electrode, dl, and the aperture of the 2.6.4th electrode are the same, and are assumed to be d2. Z is the distance from the outer surface of the lens of the first electrode to the object point (light source). First, in Fig. 7, Vo = 5kV', Va- = 3[] kV, fo
=25rnm, t =2mm, 145mm, d1
= 15mm, Z5, Cco when d2 = 4mm
The results of calculating the change in L with respect to L are shown. It can be seen that as L becomes larger, the chromatic aberration coefficient Cco becomes smaller. However, the focal length f. Since is fixed, as L increases, Z5 decreases and the light source approaches the lens.

光源(イオン源等)の構造上、光源をあまりレンズに近
づけられないことが実際上ある。このために作動距離S
(光源とレンズ面の距離)は、ある値Sm以上であると
いう制約がある。Slnを例えば10mmとすると第7
図の例では、L≦3QIT1nlにすればよい。Lm3
0mmのときs=1ommトiる。しかし、Lは大きい
方が色収差係数C6゜は/1・さいので、33mmに近
い方が望ましい。実際上はこの最大OLの50〜100
係の程度にあれば、後述する従来レンズよりも良い特性
が得られるので;この範囲にLを設定すればよい。次に
、第1電極の口径d1の効果を第8図に示す。これは、
ve=5 kV、Va=ろQkV、 f O=”15 
mm 、  t = 2man、7==5mm、d2=
=4mm、L=3[]mmm としたときの、Z5、C
ooのdlに対する変化を計算したものである。この結
果より、dlが大きくなると色収差係数C60は小さく
なることがわかる。し力・し。
Due to the structure of the light source (such as an ion source), it is actually not possible to bring the light source very close to the lens. For this reason, the working distance S
There is a restriction that (distance between the light source and the lens surface) is greater than or equal to a certain value Sm. For example, if Sln is 10 mm, the seventh
In the illustrated example, L≦3QIT1nl may be satisfied. Lm3
When 0mm, s=1omm. However, the larger L is, the larger the chromatic aberration coefficient C6° is, so it is desirable that it be closer to 33 mm. In reality, this maximum OL is 50 to 100.
If it is within this range, better characteristics than the conventional lens described later can be obtained; therefore, L may be set within this range. Next, FIG. 8 shows the effect of the diameter d1 of the first electrode. this is,
ve=5 kV, Va=roQkV, f O=”15
mm, t=2man, 7==5mm, d2=
= 4 mm, L = 3 [] mm, Z5, C
This is a calculation of the change in oo with respect to dl. From this result, it can be seen that as dl increases, the chromatic aberration coefficient C60 decreases. shi power shi.

Lと同様に、dlを太きくするとZ5が小さくなり作動
距離を考慮する必要がある。この場合、最l」・作動距
離を1[]mmとすると、dlと17mmと1−ればよ
い。Lを設定するときと同様に、最大のd1の50〜1
00%程度の範囲にdl を設定すればよい。ただし、
最大のdl に等しくとると、cooは最小となる。
Similarly to L, when dl becomes thicker, Z5 becomes smaller and it is necessary to consider the working distance. In this case, assuming that the maximum working distance is 1[]mm, dl and 17mm should be 1-1. Similarly to setting L, 50 to 1 of the maximum d1
It is sufficient to set dl in a range of about 00%. however,
When taken equal to the maximum dl, coo becomes the minimum.

第2.6.4電極の寸法d2、lを決める方法は、これ
を単独のレンズと考えて通常のアインツエルレンズの設
計法を利用すればよい。またl、d2はり、dlはどに
色収差特性には影響しない。
To determine the dimensions d2 and l of the 2.6.4 electrode, consider this as a single lens and use the usual Einzel lens design method. Furthermore, l, d2 beam, and dl do not affect the chromatic aberration characteristics.

第7図、第8図の例では第6電極に負電圧(正電荷ビー
ムのとき)をかけているが、正電圧をかけてもよい。し
かし、例えば、第7図の例でL−3Qmmとしたとき1
、Coo=12mmであるが、正電圧をかけたときは、
co。−16mmとなり負電圧をかけた方が色収差係数
は小さくなることがわかる。いずれの電圧でも、従来の
レンズよりは色収差の小さいレンズが得られるので、ど
ちらも効果があるといえる。
In the examples shown in FIGS. 7 and 8, a negative voltage (in the case of a positive charge beam) is applied to the sixth electrode, but a positive voltage may also be applied. However, for example, when L-3Qmm is used in the example of Fig. 7, 1
, Coo=12mm, but when a positive voltage is applied,
co. -16 mm, indicating that the chromatic aberration coefficient becomes smaller when a negative voltage is applied. At either voltage, a lens with smaller chromatic aberration than conventional lenses can be obtained, so both can be said to be effective.

本発明の静電加速レンズと従来のレンズの色収差特性の
比較を示す。ただし、Vo== 5 kV、■8=3Q
kV、fo−25m1月とする。また、倍率■の結像条
件とする。第9図に比較したレンズの寸法を示した。(
a)が2枚電極、(1))が6枚電極で(C)が本発明
の4枚電極のレンズである。(a)、(b)は、比較的
特性の良いものを選んである。第1表にこれらのレンズ
の色収差係数の計算値を示した。
A comparison of chromatic aberration characteristics between the electrostatic accelerating lens of the present invention and a conventional lens is shown. However, Vo== 5 kV, ■8=3Q
kV, fo-25m January. In addition, the imaging condition is set to a magnification of ■. Figure 9 shows the dimensions of the lenses for comparison. (
A) is a lens with two electrodes, (1)) is a lens with six electrodes, and (C) is a lens with four electrodes of the present invention. (a) and (b) are selected from those with relatively good characteristics. Table 1 shows the calculated values of the chromatic aberration coefficients of these lenses.

第1表 この結果かられかるように、本発明のレンズでは従来の
レンズに比較して色収差係数が1/3程度小さくなって
いることがわかる。また、式(1)で定義した色収差d
。をいくつかのα。に対して計算した例を第2表に示し
た。ただし、エネルギー幅ΔV単位(μm) は10e■とした。ここでに球面収差d、は、考慮し々
かったが、色収差に較べて小さい。即ち本発明のレンズ
でばα。= 5 mrad (ミリ・ラジアン)のとき
d8=0.04μmであり無視できる。第2表の例でわ
かるように、本発明のレンズでは、α。
Table 1 As can be seen from the results, the chromatic aberration coefficient of the lens of the present invention is about 1/3 smaller than that of the conventional lens. Also, the chromatic aberration d defined by equation (1)
. some α. Table 2 shows examples of calculations for However, the energy width ΔV unit (μm) was set to 10e■. Although spherical aberration d has been carefully considered here, it is smaller than chromatic aberration. That is, in the case of the lens of the present invention, α. = 5 mrad (milliradians), d8 = 0.04 μm and can be ignored. As can be seen from the example in Table 2, in the lens of the present invention, α.

= 4 mradで0.1μm以下の微細プローブが得
られ、微細加工の応用上、非常に有利な特性を実現して
いる。
= 4 mrad, a fine probe of 0.1 μm or less can be obtained, realizing extremely advantageous characteristics for microfabrication applications.

以上説明したように、本発明の静電加速レンズは従来問
題となっていた色収差を小さくすることができ、また加
速電圧を変えずに焦点調整が容易にできる利点がある。
As explained above, the electrostatic accelerating lens of the present invention has the advantage of being able to reduce chromatic aberration, which has been a problem in the past, and of being able to easily adjust the focus without changing the accelerating voltage.

したがって、エネルギー幅の大きいイオンビーム等を微
細なスポットに集束する光学系において、加速、コンデ
ンサ等の静電レンズとして用いたときに大きな効果があ
る。また、本発明のレンズと他の静電レンズを組み合わ
せた多段の光学系を構成しても、本発明のレンズの効果
は太きい。
Therefore, in an optical system that focuses an ion beam or the like having a large energy width into a fine spot, it is highly effective when used as an electrostatic lens for an accelerator or a condenser. Further, even if a multi-stage optical system is configured by combining the lens of the present invention and other electrostatic lenses, the effect of the lens of the present invention is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2枚電極レンズの構成図、第2図は従来
の6枚電極レンズの構成図、第6図は結像関係と光学パ
ラメータを表わす図、第4図は本発明の実施例構成図、
第5図は第4図構成レンズの軸上ポテンシャル分布図、
第6図は本発明レンズにおける寸法パラメータを示す図
、第7図は物点からレンズ面までの距離と色収差係数の
電極間隔依存性を示す図、第8図は同じく電極口径依存
性を示す図、第9図は従来レンズと本発明レンズの比較
を示す図である。 符号の説明 1・・荷電ビーム発生源 2、ろ、4・・・電極6・・
・第1電極     7・・・第2電極891.第6電
極     ?・・・第4電極特許出願人  日本電信
電話公社 代理人弁理士  中村純之助 矛1 図 九      ・ 装置(?、Im) 卆6図 L(笥?M) 矛8図 あ (Qn側〕 cl、(πfp1)
Fig. 1 is a block diagram of a conventional two-electrode lens, Fig. 2 is a block diagram of a conventional six-electrode lens, Fig. 6 is a diagram showing the imaging relationship and optical parameters, and Fig. 4 is a diagram showing the implementation of the present invention. Example configuration diagram,
Figure 5 is an axial potential distribution diagram of the lens configured in Figure 4.
Fig. 6 is a diagram showing the dimensional parameters of the lens of the present invention, Fig. 7 is a diagram showing the distance from the object point to the lens surface and the dependence of the chromatic aberration coefficient on the electrode spacing, and Fig. 8 is a diagram also showing the dependence on the electrode aperture diameter. , FIG. 9 is a diagram showing a comparison between a conventional lens and a lens of the present invention. Explanation of symbols 1...Charged beam source 2, ro, 4...electrode 6...
-First electrode 7...Second electrode 891. 6th electrode? ...Fourth electrode patent applicant Nippon Telegraph and Telephone Public Corporation patent attorney Junnosuke Nakamura 1 Figure 9 ・ Device (?, Im) Figure 6 L (?M) Figure 8 A (Qn side) cl, ( πfp1)

Claims (2)

【特許請求の範囲】[Claims] (1)  中心部にそれぞれ開口を有する第1電極、第
2電極、第6電極及び第4電極をこの順に光軸に対して
回転対称に並べてレンズ電極を構成し、荷電粒子は第1
電極側より入射するとして第1電極と第4電極間に荷電
粒子加速電圧を与え、第2電極と第4電極は等電位とし
、第6電極と第4電極間に負または正いずれかの電圧を
与えることを特徴とする静電加速レンズ。
(1) A first electrode, a second electrode, a sixth electrode, and a fourth electrode each having an opening in the center are arranged in this order rotationally symmetrically with respect to the optical axis to form a lens electrode, and the charged particles are placed in the first electrode.
A charged particle accelerating voltage is applied between the first and fourth electrodes assuming that the incident is from the electrode side, the second and fourth electrodes are at equal potential, and either a negative or positive voltage is applied between the sixth and fourth electrodes. An electrostatic accelerating lens characterized by giving.
(2)  中心部にそれぞれ開口を有する第1電極、第
2電極、第6電極及び第4電極をこの順に光軸に対して
回転対称に並べてレンズ電極を構成し、荷電粒子は第1
電極側よシ入射するとして第1電極と第4電極間に荷電
粒子加速電圧を与え、第2電極と第4電極は等電位とし
、第6電極と第4電を極間に負まだは正いずれかの電圧
を与え、物点と第1電極の間の距離s−7,5ある一定
距離Sm以上の範囲に制約される場合、焦点距離を一定
にして第1電極と第2電極の間隔りまだは第1電極の口
径d1をパラメータとしてSがSn1に等しくなるとき
の第1電極と第2電極の間隔L111または第1電極の
口径d1mを求め、Lをり。1の50〜100係の範囲
に、またはdlをdlmの50〜100%の範囲に設定
したことを特徴とする静電加速レンズ。
(2) A lens electrode is constructed by arranging a first electrode, a second electrode, a sixth electrode, and a fourth electrode, each having an opening in the center, in this order rotationally symmetrically with respect to the optical axis, and the charged particles are placed in the first electrode.
A charged particle accelerating voltage is applied between the first and fourth electrodes assuming that the incident is from the electrode side, the second and fourth electrodes are at equal potential, and the sixth and fourth electrodes are set at a negative or positive voltage between the electrodes. When any voltage is applied and the distance between the object point and the first electrode is limited to a range of s-7,5 or more than a certain distance Sm, the distance between the first and second electrodes is determined by keeping the focal length constant. However, using the diameter d1 of the first electrode as a parameter, calculate the distance L111 between the first and second electrodes or the diameter d1m of the first electrode when S becomes equal to Sn1, and calculate L. 1. An electrostatic accelerating lens characterized in that dl is set in a range of 50 to 100 of 1, or dl is set in a range of 50 to 100% of dlm.
JP14922482A 1982-08-30 1982-08-30 Electrostatic acceleration lens Pending JPS5940448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14922482A JPS5940448A (en) 1982-08-30 1982-08-30 Electrostatic acceleration lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14922482A JPS5940448A (en) 1982-08-30 1982-08-30 Electrostatic acceleration lens

Publications (1)

Publication Number Publication Date
JPS5940448A true JPS5940448A (en) 1984-03-06

Family

ID=15470570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14922482A Pending JPS5940448A (en) 1982-08-30 1982-08-30 Electrostatic acceleration lens

Country Status (1)

Country Link
JP (1) JPS5940448A (en)

Similar Documents

Publication Publication Date Title
Rempfer A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics
JPS6290839A (en) Ion microbeam device
EP0039688B1 (en) Sextupole system for the correction of spherical aberration
JP4074185B2 (en) Energy filter and electron microscope
JPH0447944B2 (en)
JPH06105598B2 (en) Charged beam lens
US6737647B2 (en) Array for achromatic imaging of a pulsed particle beam
JP3862344B2 (en) Electrostatic lens
JP3571523B2 (en) Omega energy filter
JPS5940448A (en) Electrostatic acceleration lens
Kuroda et al. Analysis of accelerating lens system in field‐emission scanning electron microscope
JPH05152182A (en) Duoplasmatron type ion source utilizing ion optical drawing device
JP3363718B2 (en) Omega energy filter
JPH01264149A (en) Charged particle beam applied device
JPS5925153A (en) Designing method of electrostatic lens
JPH06508719A (en) Electron gun with main lens with low voltage limiting aperture
JPH06508720A (en) Low voltage limited aperture electron gun
SU980190A1 (en) Optronic device
JPH065240A (en) Electrostatic lens
JP2000011936A (en) Electron beam optical system
JPH05128985A (en) Microbeam generating device
Ahmad et al. Computational Design of a Magnetic Mirror
Juma et al. COMPUTATIONS ON THE OPTICAL PROPERTIES OF THE ELECTROSTATIC SYMMETRIC QUADRUPOLE TRIPLET LENS
JP2822283B2 (en) Electron beam reduction transfer device
KR20240020702A (en) Simple Spherical Aberration Corrector for SEM