JPS5940215B2 - High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method - Google Patents

High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method

Info

Publication number
JPS5940215B2
JPS5940215B2 JP4184480A JP4184480A JPS5940215B2 JP S5940215 B2 JPS5940215 B2 JP S5940215B2 JP 4184480 A JP4184480 A JP 4184480A JP 4184480 A JP4184480 A JP 4184480A JP S5940215 B2 JPS5940215 B2 JP S5940215B2
Authority
JP
Japan
Prior art keywords
steel
rolling
steel sheet
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4184480A
Other languages
Japanese (ja)
Other versions
JPS56139654A (en
Inventor
敏夫 入江
進 佐藤
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4184480A priority Critical patent/JPS5940215B2/en
Priority to EP81900756A priority patent/EP0048761B1/en
Priority to DE8181900756T priority patent/DE3164521D1/en
Priority to AU69251/81A priority patent/AU531754B2/en
Priority to US06/328,578 priority patent/US4473414A/en
Priority to PCT/JP1981/000068 priority patent/WO1981002900A1/en
Publication of JPS56139654A publication Critical patent/JPS56139654A/en
Priority to US06/627,839 priority patent/US4544419A/en
Publication of JPS5940215B2 publication Critical patent/JPS5940215B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は成形性の優れた高張力冷延鋼板およびその製造
方法に関し、特に本発明は引張強さ35〜45 kg/
yns?を級の非時効性を有する成形性の優れた高張力
冷延鋼板およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength cold-rolled steel sheet with excellent formability and a method for manufacturing the same.
yns? The present invention relates to a high-strength cold-rolled steel sheet with excellent formability and non-aging properties of the same grade, and a method for producing the same.

自動車の燃費向上を目的として車体を軽量化するため高
張力鋼板の需要が増大している。
Demand for high-tensile steel sheets is increasing to reduce the weight of automobile bodies in order to improve fuel efficiency.

このような鋼板は下記の諸要求を満足する必要がある。Such steel plates must satisfy the following requirements.

■、非時効性であること、2下値が高いこと、3伸びが
大きいこと、4.降伏比が低いこと、5.介在物が少な
く表面疵がないこと、6.製品コストが高くないこと。
■It is non-aging, 2 it has a high lower value, 3 it has a large elongation, 4. 5. The yield ratio is low. 6. Few inclusions and no surface flaws. Product cost is not high.

このような要求に応える鋼としてマルテンサイト・フエ
ライトニ相合金組織からなるデュアル・フェーズ鋼や、
アルミキルド鋼にP、Mn、S i等を添加含有させた
リフオス鋼が開発されて来たが、成形性が不足するため
自動車のフェンダ−等の深絞りが行なわれる部位には使
用できない。
Dual phase steel, which has a martensitic and ferrite dual phase alloy structure, is a steel that meets these demands.
Lifous steel, which is made by adding P, Mn, Si, etc. to aluminum killed steel, has been developed, but because of its insufficient formability, it cannot be used in areas where deep drawing is performed, such as automobile fenders.

一方鋼中のCおよびNと結合力の強いTiまたはNbを
、CまたはC+N量に対して化学量論的に当量以上配合
してCおよびNを固定し、さらに固溶強化元素としてM
nまたはSiを配合してT値と引張強さの高い鋼板を得
る方法が提案されている。
On the other hand, Ti or Nb, which has a strong bonding force with C and N in steel, is added in an amount stoichiometrically equivalent or more to the amount of C or C+N to fix C and N, and furthermore, as a solid solution strengthening element, M
A method of obtaining a steel plate with a high T value and tensile strength by blending n or Si has been proposed.

例えば鉄と鋼1979年石11頁838に0.01%C
以下の極低炭素鋼にTi0.25%、Mn1.5%およ
びSi0.22%を含有させた鋼を連続焼鈍することに
より、引張強さく以下TSと略記する) 43 kg/
m7j、、降伏点(以下YPと略記する) 22〜25
kg/mi、 r値1.8、伸び39%の良加工性の
鋼が得られることが報告されている。
For example, 0.01% C in Tetsu to Hagane 1979 Stone 11 page 838
By continuously annealing the following ultra-low carbon steel containing 0.25% Ti, 1.5% Mn and 0.22% Si, the tensile strength (hereinafter abbreviated as TS) is 43 kg/
m7j, yield point (hereinafter abbreviated as YP) 22-25
It has been reported that a steel with good workability can be obtained with kg/mi, r value of 1.8, and elongation of 39%.

しかしこの鋼はTiが鋼中のC,Nと結合するほかにS
、0とも結合しているため多量の介在物を生成し、表面
疵が発生し易いという欠点がある。
However, in this steel, in addition to Ti combining with C and N in the steel, S
, 0, it produces a large amount of inclusions and has the disadvantage of being prone to surface flaws.

またMn、Si、Tiの添力ロ量が多いことおよび多量
の合金を添力0してかつ溶鋼中のCを0.01%以下に
脱炭精練する必要があることから、合金コストならびに
脱炭コストが高いという欠点を有している。
In addition, the amount of Mn, Si, and Ti added is large, and it is necessary to reduce the addition of a large amount of alloy to 0 and decarburize the molten steel to 0.01% or less, which reduces alloy cost and decarburization. It has the disadvantage of high charcoal cost.

また特開昭54−100920号公報にはCO,004
%、Si1.01%、Mn0.22%、AlO,025
%、NbO,049%からなる鋼に連続焼鈍後400°
C13分間過時効処理を施すことによりT S 4 ’
2〜46kg/ma1YP 28〜30kg/ma。
Also, in Japanese Patent Application Laid-Open No. 54-100920, CO,004
%, Si1.01%, Mn0.22%, AlO,025
%, NbO, 400° after continuous annealing to steel consisting of 049%
T S 4' by performing overaging treatment for C13 minutes
2-46kg/ma1YP 28-30kg/ma.

下値1.6〜1.8、伸び32〜35%の高張力鋼が得
られることが提案されているが、下値および伸びが低い
ために力ロエ性が不充分であるという欠点がある。
It has been proposed that a high tensile strength steel with a lower value of 1.6 to 1.8 and an elongation of 32 to 35% can be obtained, but it has the disadvantage that the lower value and elongation are low and the strength is insufficient.

本発明は、従来の高張力鋼板ならびにその製造方法の有
する前記諸欠点を除去、改善した成形性の優れた高張力
冷延鋼板およびその製造方法を提供することを目的とし
、特許請求の範囲記載の鋼板とその製造方法を提供する
ことによって前記目的を達成することができる。
The object of the present invention is to provide a high-strength cold-rolled steel sheet with excellent formability that eliminates and improves the above-mentioned drawbacks of conventional high-strength steel sheets and methods of manufacturing the same, and a method of manufacturing the same, and the scope of the claims is as follows: The above object can be achieved by providing a steel plate and a method for manufacturing the same.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者等は極低炭素鋼の時効性および深絞り性に及ぼ
す素材成分と熱間圧延条件の影響および高張力化するた
めに添力目するP、Si、Mn量と仕上焼鈍条件の深絞
り性と2次力ロエ脆性に及ぼす影響を詳細に研究した結
果、 (1)Nに対するAlをA[’N当量の2倍以上でかつ
0.02%以上を含む鋼を熱間圧延における圧“延率が
90%以上、圧延速度40ψin以上、巻取温度600
〜750°Cで処理する場合にはCに対するNb添カロ
量がNbCとしての当量のは性を示す。
The present inventors have investigated the influence of material composition and hot rolling conditions on the aging properties and deep drawability of ultra-low carbon steel, the amount of P, Si, and Mn used as additives to increase the tensile strength, and the depth of finish annealing conditions. As a result of detailed research on the effects on drawability and secondary force Loe embrittlement, we found that (1) steel containing Al with N equivalent of A [' “Elongation rate is 90% or more, rolling speed is 40ψin or more, coiling temperature is 600%
When processing at ~750°C, the amount of Nb added to C indicates the equivalent amount of NbC.

(2)Cに対し未結合の固溶Nbが0.020%未満の
方が多量のNbを含む場合より伸びが大きく下値は同程
度である。
(2) When the amount of unbonded solid solution Nb is less than 0.020% with respect to C, the elongation is greater than when a large amount of Nb is included, and the lower value is about the same.

が0.020%以下の鋼にP、Si、Mnをそれぞれ単
独に添カロした時下値の低下はMnが最も著しく、次い
で、Siであり、Pは最も影響が小さい。
When P, Si, and Mn are individually added to a steel having 0.020% or less, the decrease in the lower value is most significant for Mn, followed by Si, and P has the smallest effect.

(4)Pを0.05%以上添加した極低炭素鋼をバッチ
焼鈍するとプレス加工後の2次加工脆性を起すが、1°
C/sec以上の冷却速度で連続焼鈍すると0.10%
以下のPを含有しても2次加工脆性が起らない。
(4) Batch annealing of ultra-low carbon steel containing 0.05% or more of P causes secondary work brittleness after press working, but 1°
0.10% when continuously annealed at a cooling rate of C/sec or higher
Even if the following P is contained, secondary work embrittlement does not occur.

(5)Pを0.03%以上含有する場合にMnに又はS
iを0.8%以下、もしくはMnとSiの和で1.2%
以下含有するとr値の劣化が少なく高強度が得られる。
(5) When containing 0.03% or more of P, Mn or S
i is 0.8% or less, or the sum of Mn and Si is 1.2%
If it is contained below, the r value will be less deteriorated and high strength will be obtained.

以上(1)〜(5)の新規な知見を得て本発明を完成し
た。
The present invention was completed by obtaining the above novel findings (1) to (5).

次に本発明を実1験データについて成分組成の限定理由
と共に説明する。
Next, the present invention will be explained with reference to experimental data and the reasons for limiting the component composition.

第1表に示す組成の鋼を1250℃に力ロ熱後圧 。Steel having the composition shown in Table 1 was heated to 1250°C under pressure.

工率90%、圧延速度4 Q m/min、仕上温度8
70℃、捲取温度680℃の条件下で熱間圧延後圧下率
80%で冷間圧延して得た最終板厚の冷延板に対し、連
続焼鈍によって830℃に於て40 secの焼鈍を施
した際の製品の特性値(AI値、El値。
Work rate 90%, rolling speed 4 Q m/min, finishing temperature 8
A cold-rolled plate of final thickness obtained by hot rolling at a rolling reduction rate of 80% under conditions of 70°C and a winding temperature of 680°C was annealed for 40 seconds at 830°C by continuous annealing. Product characteristic values (AI value, El value) when subjected to

7値)におよぼすパラメーターα三NFa/C及びパラ
メーターβヨNb(至)−80(至)の関係を第1〜3
図に示す。
The relationship between parameter α3NFa/C and parameter βyoNb (to) - 80 (to) on
As shown in the figure.

第1図〜3図からパラメータαが3以上においてAI値
、即ち時効指数が1 kg/my?tを下廻り下値が1
.9を上廻り実質的に非時効で下値の高い鋼板が得られ
ること及びEl値、伸びがパラメーターβに従って変化
し、βが0.02%以下の場合において十分高い値が得
られることが判る。
From Figures 1 to 3, when the parameter α is 3 or more, the AI value, that is, the aging index is 1 kg/my? Below t, the lower value is 1
.. It can be seen that a substantially non-aging steel plate with a high lower value can be obtained above 9, and that the El value and elongation change according to the parameter β, and that a sufficiently high value can be obtained when β is 0.02% or less.

かかる実験の繰返しにより、Nbは0%1.・こ対して
3倍以上必要であるがβ三Nb(イ)−8C値即ちCと
未結合のNb%は、0.02以下であることが必要であ
る。
By repeating this experiment, Nb was reduced to 0%1. - Although the β3Nb(a)-8C value, that is, the % of Nb not bonded to C, is required to be 0.02 or less, although it is required to be three times or more.

なお上記範囲内でNbの含有量が0.03〜0.06%
の範囲内にあり、かつ6XC〜8XC%十0.010%
の範囲内にあることはより好適である。
Note that within the above range, the Nb content is 0.03 to 0.06%.
and within the range of 6XC to 8XC% 0.010%
It is more preferable that the value be within the range of .

CはPが共存する場合粒界脆性を防止するのに効果のあ
る元素であり、0.002%より少ないと前記効果がな
く、一方0.015%より多いと下値、伸びの低下が著
しくなるので、Cは0.002〜0.015%の範囲内
にする必要がある。
C is an element that is effective in preventing grain boundary embrittlement when P coexists, and if it is less than 0.002%, there is no effect, while if it is more than 0.015%, the lower value and elongation will be significantly lowered. Therefore, C needs to be within the range of 0.002 to 0.015%.

AlはNをA7N、!=して固定するために0,02%
以上かつNFaの4倍以上添カ目することが必要である
Al is N for A7N,! = 0,02% to fix
It is necessary to add more than 4 times as much as NFa.

さもないと鋼中Nが鋼中Nbと結合するために鋼中にN
bによって固定されないCが多量に残り、AI値を十分
低減できない結果を招く。
Otherwise, N in the steel will combine with Nb in the steel.
A large amount of C that is not fixed by b remains, resulting in an inability to reduce the AI value sufficiently.

しかし0.1%以上のAlの添加は鋼中にアルミナクラ
スクーに起因する介在物を増力口させ、表面疵の原因と
なるので避けるべきである。
However, the addition of Al in an amount of 0.1% or more should be avoided, as it will increase the strength of inclusions caused by alumina cracks in the steel and cause surface flaws.

≧Nはその含有量が多いとAlの含有量を
高める必要があり、Nは0.01%より多いとアルミナ
クラスターに起因する介在物の増加により表面疵が多く
なるのでNは0.01%以下にする必要がある。
≧ If the N content is high, it is necessary to increase the Al content, and if the N content is more than 0.01%, surface defects will increase due to an increase in inclusions caused by alumina clusters, so the N content is 0.01%. It is necessary to do the following.

Pは主たる強化元素として使用される。P is used as the main reinforcing element.

Pは引張強さを高めるわりには下値を低下させる影響が
他の強化元素Si、Mnに較べて少なく、かつPを0.
05%程度含有させた鋼にあっては同一レベルのMnあ
るいはSiを合金させた場合にPの低い鋼よりも下値が
高いことを実1験ンこより知見した。
Although P increases tensile strength, it has less effect on lowering the tensile strength than other reinforcing elements Si and Mn, and when P is reduced to 0.
It has been found through experiments that steel containing about 0.5% P has a higher lower value than steel with low P when alloyed with the same level of Mn or Si.

すなわちpo、oi%、Si、Mnをそれぞれ0.1%
当りのYP、TS、El、r及びAIの変化の実験結果
は第2表に示すとおりである。
That is, po, oi%, Si, and Mn are each 0.1%.
The experimental results of changes in YP, TS, El, r and AI per unit are shown in Table 2.

第2表をもとにTSの上昇量に対する下の減少量を計算
してみれば、同表の最右欄に示すようにPにおける場合
が最も小さいことが判る。
If we calculate the amount of decrease below with respect to the amount of increase in TS based on Table 2, we will find that it is the smallest in the case of P, as shown in the rightmost column of the table.

次にP約0.05%を含有する鋼にさらにSi。Next, Si is added to the steel containing about 0.05% of P.

Mnを含有させたときのSi、Mnの0.1%当りの諸
特性に及ぼす影響を調査した結果を第3表に示す。
Table 3 shows the results of investigating the influence of Mn on various properties per 0.1% of Si and Mn.

仝表ならびに第2表によれば、Si1またはMnがPの
低い鋼に添加された場合に較らべてTSの上昇率に対す
る下値の低下率か小さいことが判る。
According to Table 1 and Table 2, it can be seen that the rate of decrease in the lower value relative to the rate of increase in TS is smaller than when Si1 or Mn is added to steel with low P content.

実際上所望の強度レベルたる引張強さ35kg/wai
t以上を得るためにはPを0.03%以上とすることが
必要である。
Tensile strength 35 kg/wai, which is actually the desired strength level
In order to obtain t or more, it is necessary to make P 0.03% or more.

しかし0.1%より多くなると2次力ロ工脆性が生ずる
ので0.1%以下にする必要があり、強度レベルにもよ
るが一般的に0.04〜007%の範囲内がより好適で
ある。
However, if it exceeds 0.1%, secondary stress embrittlement will occur, so it must be kept below 0.1%, and generally a range of 0.04 to 0.07% is more preferable, although it depends on the strength level. be.

Siは強化元素として0.2%以下、またMnは鋼中S
の固定と鋼の強化のため0.04〜0.8%用いられる
が、先にも述べた様にPに比べ下値、伸びを低下させる
傾向が著しいのでむしろ副次的に用いられる。
Si is 0.2% or less as a reinforcing element, and Mn is S in steel.
It is used in an amount of 0.04 to 0.8% to fix P and to strengthen the steel, but as mentioned earlier, it tends to significantly lower the lower value and elongation compared to P, so it is rather used secondarily.

P、Si、Mn含有量が引張強さくTS)、下値、伸び
(El)に及ぼす影響を標準的に示すと第4表の如くで
ある。
Table 4 shows the standard effects of P, Si, and Mn contents on tensile strength (TS), lower value, and elongation (El).

本発明の鋼板において、その成分組成中C2Nb、Al
、N、P、Si、Mnの含有量が上記範囲内にあれば、
その他の元素については一般的冷延鋼板に要求される程
度の条件を満していれば良く、すなわちSは0.02%
以下、0はo、oos%以下程度であれば良い。
In the steel sheet of the present invention, C2Nb, Al
, N, P, Si, and Mn within the above range,
Regarding other elements, it is sufficient that they meet the conditions required for general cold-rolled steel sheets, that is, S is 0.02%.
Hereinafter, 0 may be approximately o, oos% or less.

またその他に脱酸元素Jとして微量の希土類元素あるい
はCaの含有ならびに使用は差支えがなく、またMo
、 Cu 、 N i。
In addition, there is no problem in containing or using trace amounts of rare earth elements or Ca as deoxidizing element J, and Mo
, Cu, Ni.

Crの少量の含有も差支えない。There is no problem in containing a small amount of Cr.

次に本発明の製造方法を説明する。Next, the manufacturing method of the present invention will be explained.

本発明の鋼板を溶製に当っては常用されている何れかの
方法を単独あるいは組合せて用いることができる。
In melting the steel plate of the present invention, any commonly used method can be used alone or in combination.

しかしCは溶鋼の段階で予め脱炭しておくことが必要で
あり、そのための手段としてRf−(法、DH法などに
よる真空脱炭処理を施すことは有利である。
However, it is necessary to decarburize C in advance at the stage of molten steel, and it is advantageous to perform vacuum decarburization treatment by the Rf-(method), DH method, etc. as a means for this purpose.

また純酸素底吹転炉法(Q−BOP法)を用いて直接極
低炭素鋼を溶製することも有利である。
It is also advantageous to directly produce ultra-low carbon steel using the pure oxygen bottom-blown converter method (Q-BOP method).

さらに従来の造塊法あるいは連続鋳造法の何れをも用い
ることができる。
Furthermore, either the conventional ingot forming method or the continuous casting method can be used.

連続鋳造によって得られるスラブ、あるいは従来の造塊
法によって製造される鋼塊を分塊して得られるスラブは
連続熱間圧延に供せられる。
A slab obtained by continuous casting or a slab obtained by blooming a steel ingot produced by a conventional ingot-forming method is subjected to continuous hot rolling.

その際スラブの力目熱温度としてはNbCを鋼中に固溶
させるに必要な1150℃以上が確保されればよく、一
般的な1150〜1300°Cの温度範囲で十分である
In this case, the rough thermal temperature of the slab should be 1150° C. or higher, which is necessary for solid solution of NbC in the steel, and a general temperature range of 1150 to 1300° C. is sufficient.

本発明によれば、連続熱間圧延の際の圧下率と圧下速度
を限定する必要がある。
According to the present invention, it is necessary to limit the rolling reduction rate and rolling speed during continuous hot rolling.

すなわち圧下率はスラブが粗圧延を経て仕上圧延スタン
ド群を出るまでの全圧下率が90%以上となるようにす
る必要がある。
That is, the rolling reduction ratio must be such that the total rolling reduction ratio from when the slab undergoes rough rolling until it leaves the finishing rolling stand group is 90% or more.

また仕上スタンド群の圧延速度は最低4 Q 771
/minとする必要がある。
Also, the rolling speed of finishing stand group is minimum 4Q771
/min.

上記川下率と圧延速度との条件が満足された場合には、
圧延過程において微細な、例えば1000λ以下のNb
(C,N)、AlN、MnSからなるとみられる複合析
出物が非常に密に存在し、これら析出物の周囲に鋼中の
Cが安定して存在することとなり、実質的に非時効性鋼
板が得られるに至る。
If the above conditions of downstream rate and rolling speed are satisfied,
During the rolling process, fine Nb of, for example, 1000λ or less
Composite precipitates that appear to be composed of (C, N), AlN, and MnS exist very densely, and C in the steel stably exists around these precipitates, making the steel sheet virtually non-aging. is obtained.

一方圧下率が90%より低く、あるいは圧下速度が4
Q m/minより遅い場合には上記の如き現象は生ぜ
ず、非時効性を有する鋼板を得ることができない。
On the other hand, the reduction rate is lower than 90% or the reduction rate is 4
When the speed is slower than Q m/min, the above phenomenon does not occur, and a steel plate having non-aging properties cannot be obtained.

本発明によれば、熱延仕上温度は850℃以上とする必
要がある。
According to the present invention, the hot rolling finishing temperature needs to be 850°C or higher.

この温度より低い仕上温度を採用した場合には〒値、伸
び時効特注が劣化する。
If a finishing temperature lower than this temperature is used, the value and elongation aging of the special order will deteriorate.

本発明によれは、巻取温度は600’C以上とする必要
がある。
According to the present invention, the winding temperature must be 600'C or higher.

この温度より低い温度で巻取るとNbによるCの固定が
、またAlによるNの固定が不充分となり非時効性の鋼
板を、得ることができない。
If the steel sheet is wound at a temperature lower than this temperature, the fixation of C by Nb and the fixation of N by Al will be insufficient, making it impossible to obtain a non-aging steel plate.

AI値、下値、E7値の点からみて、高温の巻取温度、
すなイっち640〜750°Cの範囲が有利であり、こ
の温度範囲内の巻取温度とするためには仕上圧延後の水
冷を弱めるとか、もしくは水冷を全く省略するなどの手
段をとることができる。
From the point of view of AI value, lower value, and E7 value, high winding temperature,
A range of 640 to 750°C is advantageous, and in order to achieve a coiling temperature within this temperature range, measures such as weakening the water cooling after finish rolling or omitting water cooling altogether are taken. be able to.

このようにして得られた熱延コイルは、その後常法に従
って酸化スケールを酸洗してから冷延するか、または冷
延後酸洗または研削によりスケールを除去する。
The hot-rolled coil thus obtained is then subjected to pickling to remove oxide scale according to a conventional method and then cold-rolled, or after cold-rolling, the scale is removed by pickling or grinding.

冷延の際の冷延率が60%より少ないと所期の下値が得
られず、一方90%を超えると下値は高くなるが、異方
性が大きくなるので、本発明によれば冷延率は70〜8
5%の範囲内が特に好適である。
If the cold rolling rate during cold rolling is less than 60%, the desired lower value cannot be obtained, while if it exceeds 90%, the lower value will be high, but the anisotropy will increase, so according to the present invention, the cold rolling The rate is 70-8
A range of 5% is particularly preferred.

本発明によれば、上記の如くして得られた冷延鋼帯には
さらに連続焼鈍が施される。
According to the present invention, the cold rolled steel strip obtained as described above is further subjected to continuous annealing.

焼鈍温度および時間は700〜900℃、10秒〜3分
間の範囲内であれば目標とする材質に合わせて適当に選
ぶことができる。
The annealing temperature and time can be appropriately selected in the range of 700 to 900° C. and 10 seconds to 3 minutes depending on the target material.

700〜900℃の間では高温の方が強度は低くなるが
、下値および伸びは大きくなる。
Between 700 and 900°C, the higher the temperature, the lower the strength, but the lower value and elongation become larger.

750〜850°C130〜90秒間の均熱が特に好適
である。
Soaking at 750-850°C for 130-90 seconds is particularly suitable.

上記均熱・再結晶後、銅帯は室温まで冷却され*る。After the above soaking and recrystallization, the copper strip is cooled to room temperature*.

その際の冷却速度は高くとも500℃までを60℃/分
以上としなければPの粒界偏析のために2次加工脆性が
起る。
If the cooling rate at this time is at most 60°C/min up to 500°C, secondary work embrittlement will occur due to grain boundary segregation of P.

しかし冷却速度が水冷等により100°C/S e c
を超えると耐時効性が劣化し、すなわちAI値が高くな
るが、別途300〜500℃で過時効処理を行なえばよ
い。
However, the cooling rate is 100°C/Sec due to water cooling etc.
If the temperature exceeds 100°C, the aging resistance will deteriorate, that is, the AI value will increase, but overaging treatment may be performed separately at 300 to 500°C.

結局冷却速度は60℃/分以下、好ましくは5〜b 本発明の鋼板は、連続焼鈍を施した状態において非時効
性であり、降伏伸びを生ずることはないが、表面粗度調
整のため2%以下、好ましくは1%以下のスキンパス圧
延をかけることは一同に差支えない。
After all, the cooling rate is 60°C/min or less, preferably 5~b. The steel sheet of the present invention is non-aging when continuously annealed and does not produce yield elongation. % or less, preferably 1% or less, is acceptable.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 第5表に成分組成を示す鋼1.II、IIの3種の鋼を
下記製造工程1’l) ? (2) j (3)を経て
製造した。
Example Steel 1 whose composition is shown in Table 5. The three types of steel II and II are manufactured using the following manufacturing process 1'l)? (2) j Manufactured via (3).

(1)製鋼、造塊 鋼I、Iは純酸素上吹転炉(LD転炉)で100元、鋼
■は純酸素底吹転炉(Q−BOP)で230tOrL溶
製した。
(1) Steel production, ingot steel I, I was made in a pure oxygen top-blown converter (LD converter) at 100 tOrL, and steel (I) was made in a pure oxygen bottom-blown converter (Q-BOP) at 230 tOrL.

その後いずれもRH脱ガス処理により脱炭、脱酸を行な
った。
Thereafter, decarburization and deoxidation were performed in both cases by RH degassing treatment.

処理時間は鋼1.IIIでは25分間、鋼■では35分
間であった。
Processing time is 1. It was 25 minutes for III and 35 minutes for Steel ■.

P、Mn添加は脱ガス処理開始直前、Si、Al、Nb
添加は脱ガス処理直前に行なった。
P and Mn are added immediately before the start of degassing treatment, and Si, Al, Nb
The addition was made immediately before degassing.

鋼1.IIは連続鋳造法によって鋼■は造塊−分塊圧延
法によっていずれも220mm厚のスラブとした。
Steel 1. Steel II was made into a slab with a thickness of 220 mm by a continuous casting method, and steel (I) was made into a slab with a thickness of 220 mm by an ingot-blowing rolling method.

(2)熱間圧延 前記3スラブは表面手入れを施した後、加熱炉で128
0℃(表面温度)、35分の均熱保持を行なった。
(2) Hot rolling The above three slabs were subjected to surface treatment and then heated to 128 ml in a heating furnace.
Soaking was carried out at 0°C (surface temperature) for 35 minutes.

ひきつづき4列の粗圧延機、7タンデム式の仕上圧延機
にて連続圧延した。
Continuous rolling was then carried out using a 4-row roughing mill and a 7-tandem finishing mill.

粗圧延機ではスラブを最終的に40mm、”9−のシー
トバーとし、さらに仕上圧延機により3.2 mm厚の
熱延鋼帯とした。
In the rough rolling mill, the slab was finally made into a 40 mm, 9-inch sheet bar, and further into a 3.2 mm thick hot rolled steel strip in the finishing mill.

このときシートバーから熱延鋼帯とするまで全圧下率は
92%であった。
At this time, the total rolling reduction from the sheet bar to the hot rolled steel strip was 92%.

また仕上圧延機における圧延速度(クンデムロール出側
の通抜速度にほぼ対応)は第1スタンド98、第7スタ
ンド660m/分に設定した。
Further, the rolling speed in the finishing mill (approximately corresponding to the passing speed on the Kundem roll exit side) was set to 98 m/min in the first stand and 660 m/min in the seventh stand.

仕上圧延機入側のシートカバーの温度は 1030〜1050℃、仕上温度は880〜910°C
とした。
The temperature of the sheet cover on the entry side of the finishing rolling machine is 1030-1050°C, and the finishing temperature is 880-910°C.
And so.

その後熱延銅帯を巻取温度鋼Iでは760℃で、鋼■で
は660℃で、鋼■では700°Cで巻取った。
Thereafter, the hot rolled copper strip was wound at a winding temperature of 760°C for Steel I, 660°C for Steel ■, and 700°C for Steel ■.

(3)冷間圧延 熱延鋼帯を酸洗および冷間圧延することにより0.7m
m厚の冷延コイルとしたこのときの圧下率は78%であ
った。
(3) 0.7m by pickling and cold rolling cold rolled hot rolled steel strip
The rolling reduction ratio at this time was 78% to form a cold-rolled coil with a thickness of m.

(4)再結晶焼鈍 冷延コイルはクリーニング後連続焼鈍ラインにて再結晶
焼鈍した。
(4) Recrystallization annealing After cleaning, the cold rolled coil was recrystallized and annealed in a continuous annealing line.

均熱条件は鋼l800〜830℃、3.0 sec、鋼
■820〜860℃、405ec1鋼■800〜830
0C125secであった。
Soaking conditions are steel 800-830℃, 3.0 sec, steel 820-860℃, 405ec1 steel 800-830
It was 0C125sec.

均熱後の冷却速度はいずれも15〜20°C/secの
範囲内であった。
The cooling rate after soaking was in the range of 15 to 20°C/sec in all cases.

上記工程を経た焼鈍コイルは0.6%スキンパスを施し
製品とした。
The annealed coil that underwent the above steps was subjected to a 0.6% skin pass to produce a product.

製品の機械的性質を第6表に示す。The mechanical properties of the product are shown in Table 6.

鋼I、II、IIIよりそれぞれTS35kg/m7j
、級、40kg/my?を級、45kg/my?を級の
成形性に優れた非時効性高張力冷延鋼板が得られている
TS35kg/m7j each from Steel I, II, and III
, class, 40kg/my? Class, 45kg/my? A non-aging, high-strength cold-rolled steel sheet with excellent formability of grade A has been obtained.

なおいずれの鋼板も表面検査の結果、一般Alキルド鋼
板並みで製品としての使用に問題がなかった。
As a result of surface inspection, both steel plates were found to be comparable to general Al-killed steel plates, and there were no problems in using them as products.

本発明によれば、上述のように強化元素としてPを利用
できるのでSiおよびMnの添加量が少なく、また溶鋼
の脱燐コストが低くて良いので素材の全コストが低く、
しかもDDQクラスの絞り性鋼板であるいも拘らず連続
焼鈍後の過時効処理を必要としないために焼鈍コストも
低いという利点を有している。
According to the present invention, since P can be used as a reinforcing element as described above, the amount of Si and Mn added is small, and the cost of dephosphorizing molten steel is low, so the total cost of the material is low.
Furthermore, although it is a DDQ class drawable steel sheet, it does not require overaging treatment after continuous annealing, so it has the advantage of low annealing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板のNb%/C%とA I kg/ my?
tとの関係を示す図、第2図は鋼板の(Nb%−8C%
)とEA%との関係を示す図、第3図はNb%/C%と
下値との関係を示す図である。
Figure 1 shows the Nb%/C% and A I kg/my? of the steel plate.
Figure 2 shows the relationship between (Nb%-8C%) of the steel plate.
) and EA%, and FIG. 3 is a diagram showing the relationship between Nb%/C% and the lower value.

Claims (1)

【特許請求の範囲】 I C0,002〜0.0’15%、Si1.2%以
下、Mn 0.04〜0.8%、P O,03〜0.1
0%、Alは0.02%以上でかつN%×4以上、Nb
はC%×3〜(0%X8+0.020%)、残部実質的
にFeよりなる成形性の優れた高張力冷延鋼板。 2 C0,002〜0.015%、Si1.2%以下
、Mn 0.04〜0.8%、P O,03〜0.10
%、Alは0.02%以上でかつN%×4以上NbはC
%×3〜(0%X8+0.020%)、残部実質的にF
eよりなる鋼スラブを熱間圧延し、その際全圧下率を9
0%以上にかつ仕上圧延の圧延速度を4 Q 771
/min以上にとり、600℃以上の温度で捲取って熱
延コイルを得、前記熱延コイルに対し常法によって冷間
圧延を行なって最終厚さの冷延鋼帯を得、前記冷延鋼帯
に対し700〜900℃において10 sec〜5m1
nの連続焼鈍を施したのち少くとも500℃までを60
℃/min以上の速度で冷却することを特徴とする成形
性の優れた高張力冷延鋼板の製造方法。
[Claims] I C0,002~0.0'15%, Si1.2% or less, Mn 0.04~0.8%, PO,03~0.1
0%, Al is 0.02% or more and N% x 4 or more, Nb
is a high-strength cold-rolled steel sheet with excellent formability, consisting of C% x 3 to (0% x 8 + 0.020%), and the remainder substantially consisting of Fe. 2 C0,002-0.015%, Si 1.2% or less, Mn 0.04-0.8%, PO,03-0.10
%, Al is 0.02% or more and Nb is C
% x 3 ~ (0% x 8 + 0.020%), the remainder is substantially F
A steel slab made of
0% or more and the rolling speed of finish rolling is 4 Q 771
/min or higher and coiled at a temperature of 600°C or higher to obtain a hot-rolled coil, and cold-rolled the hot-rolled coil by a conventional method to obtain a cold-rolled steel strip with a final thickness. 10 sec to 5 m1 at 700 to 900°C to the belt
After continuous annealing at 500°C for 60°C
A method for producing a high-strength cold-rolled steel sheet with excellent formability, characterized by cooling at a rate of ℃/min or more.
JP4184480A 1980-03-31 1980-03-31 High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method Expired JPS5940215B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4184480A JPS5940215B2 (en) 1980-03-31 1980-03-31 High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method
EP81900756A EP0048761B1 (en) 1980-03-31 1981-03-30 High-tensile, cold-rolled steel plate with excellent formability and process for its production, as well as high-tensile, galvanized steel plate with excellent formability, and process for its production
DE8181900756T DE3164521D1 (en) 1980-03-31 1981-03-30 High-tensile, cold-rolled steel plate with excellent formability and process for its production, as well as high-tensile, galvanized steel plate with excellent formability, and process for its production
AU69251/81A AU531754B2 (en) 1980-03-31 1981-03-30 High-tensile,cold-rolled steel plate and high tensile, galvanized steel plate both with excellent formability, and process for its production
US06/328,578 US4473414A (en) 1980-03-31 1981-03-30 High tensile strength cold rolled steel sheets and high tensile strength hot-dip galvanized steel sheets
PCT/JP1981/000068 WO1981002900A1 (en) 1980-03-31 1981-03-30 High-tensile,cold-rolled steel plate with excellent formability and process for its production,as well as high-tensile,galvanized steel plate with excellent formability,and process for its produciton
US06/627,839 US4544419A (en) 1980-03-31 1984-07-05 Method for producing high tensile strength cold rolled steel sheets having excellent formability and high tensile strength hot-dip galvanized steel sheets having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4184480A JPS5940215B2 (en) 1980-03-31 1980-03-31 High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS56139654A JPS56139654A (en) 1981-10-31
JPS5940215B2 true JPS5940215B2 (en) 1984-09-28

Family

ID=12619557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4184480A Expired JPS5940215B2 (en) 1980-03-31 1980-03-31 High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5940215B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691415B2 (en) * 1991-03-15 2005-08-24 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
JP3039842B2 (en) * 1994-12-26 2000-05-08 川崎製鉄株式会社 Hot-rolled and cold-rolled steel sheets for automobiles having excellent impact resistance and methods for producing them
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP4635525B2 (en) 2003-09-26 2011-02-23 Jfeスチール株式会社 High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4998757B2 (en) 2010-03-26 2012-08-15 Jfeスチール株式会社 Manufacturing method of high strength steel sheet with excellent deep drawability
JP5532088B2 (en) 2011-08-26 2014-06-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5310919B2 (en) 2011-12-08 2013-10-09 Jfeスチール株式会社 Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
CN105195510B (en) * 2015-09-17 2017-09-29 武汉钢铁江北集团精密带钢有限公司 A kind of 8B cold rolled precisions steel band and its manufacture method
CN106119495B (en) * 2016-08-19 2019-02-01 武汉钢铁有限公司 A kind of manufacturing method of cold rolling medium high carbon structural steel
EP4134464A4 (en) 2020-04-07 2023-08-23 Nippon Steel Corporation Steel plate

Also Published As

Publication number Publication date
JPS56139654A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
EP0048761B1 (en) High-tensile, cold-rolled steel plate with excellent formability and process for its production, as well as high-tensile, galvanized steel plate with excellent formability, and process for its production
US5853503A (en) Hot rolled steel sheets and method of producing the same
JPS5940215B2 (en) High tensile strength cold rolled steel sheet with excellent formability and its manufacturing method
JP2011214063A (en) Ferritic stainless steel sheet and method for manufacturing the same
JPH0125378B2 (en)
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP2011246813A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2011246814A (en) Ferritic stainless steel sheet and method of manufacturing the same
JPS5943976B2 (en) Method for manufacturing non-aging cold rolled steel sheet with extremely excellent formability
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP3026540B2 (en) Manufacturing method of stainless steel sheet
JP4179486B2 (en) Steel sheet having fine grain structure and method for producing the same
JPH0137455B2 (en)
JPH0557332B2 (en)
JP2001207234A (en) High tensile strength steel sheet having high ductility and high hole expansibility, and its producing method
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPH08225854A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JPS6013052A (en) Cold rolled steel sheet for extremely deep drawing
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPS5881952A (en) Non-aging cold rolled steel plate extremely excellent in formability