JPS593973B2 - Ethanol manufacturing method - Google Patents

Ethanol manufacturing method

Info

Publication number
JPS593973B2
JPS593973B2 JP55156648A JP15664880A JPS593973B2 JP S593973 B2 JPS593973 B2 JP S593973B2 JP 55156648 A JP55156648 A JP 55156648A JP 15664880 A JP15664880 A JP 15664880A JP S593973 B2 JPS593973 B2 JP S593973B2
Authority
JP
Japan
Prior art keywords
cobalt
present
ethanol
methanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55156648A
Other languages
Japanese (ja)
Other versions
JPS5780334A (en
Inventor
宣雄 磯貝
隆 大川
元征 細川
奈都子 「湧」井
利康 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP55156648A priority Critical patent/JPS593973B2/en
Publication of JPS5780334A publication Critical patent/JPS5780334A/en
Publication of JPS593973B2 publication Critical patent/JPS593973B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はメタノールと一酸化炭素および水素とからエタ
ノールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ethanol from methanol, carbon monoxide and hydrogen.

従来、メタノールと一酸化炭素および水素とからエタノ
ールを製造する方法としては、例えば種種の有機酸塩な
どの水溶性のコバルト塩、又はルテニウムやオスミウム
化合物を主触媒とし、これにヨウ素、臭素又はそれらの
化合物、さらにはリン化合物を組合せた触媒系の使用が
知られている。
Conventionally, the method for producing ethanol from methanol, carbon monoxide, and hydrogen has been to use water-soluble cobalt salts such as various organic acid salts, or ruthenium or osmium compounds as the main catalyst, and to add iodine, bromine, or The use of catalyst systems in combination with compounds of phosphorus, and even phosphorus compounds is known.

しかし、これら公知の触媒系を使用して反応を行なつた
場合には、目的物のエタノール以外に、アセトアルデヒ
ド、ジメトキシエタン、酢酸、酢酸メチル、酢酸エチル
およびその他Cs以上の化合物など多数の副生物が生成
し、遊離のエタノール収率を高めるには不満足な結果し
か得られなかつた。また従来公知のコバルトおよびルテ
ニウム又はオスミウム化合物の単独使用では、触媒活性
が極端に低く、かつエタノールヘの選択率も低いので、
触媒として機能させるにはヨウ素又は臭素の併用が必須
要件であつた。しかしながら、ヨウ素又は臭素の使用は
装置に耐食性の高価な材質が要求されるだけでなく、反
応においても上記副生物の生成を助長する方向にも働き
、工業的には決して満足な方法とは言い難いものであつ
た。本発明者らは、上述の種々の不都合を回避すべく鋭
意研究を重ねた結果、触媒として硫化コバルトと、銅又
はアルミニウムと、さらにアミド類およびアルキルホス
フィンとの組合せ系を使用すれば、ヨウ素および臭素類
を併用せずに、高選択率をもつてエタノールを合成し得
ることを発見し、本発明を完成させるに至つた。すなわ
ち本発明は、メタノールと一酸化炭素および水素とから
エタノールを製造するにあたり、触媒として(−fi硫
化コバルトと(口)銅又はアルミニウムと、さらに(ノ
0アミド類およびアルキルホスフィンとを組合わせた系
を使用することを特徴とするエタノールの製造方法であ
る。
However, when the reaction is carried out using these known catalyst systems, in addition to the target ethanol, there are many by-products such as acetaldehyde, dimethoxyethane, acetic acid, methyl acetate, ethyl acetate, and other compounds of Cs or higher. was produced, giving unsatisfactory results in increasing the free ethanol yield. Furthermore, when conventionally known cobalt and ruthenium or osmium compounds are used alone, the catalyst activity is extremely low and the selectivity to ethanol is also low.
In order to function as a catalyst, the combined use of iodine or bromine was an essential requirement. However, the use of iodine or bromine not only requires expensive corrosion-resistant materials for the equipment, but also promotes the formation of the above-mentioned by-products during the reaction, so it is by no means a satisfactory method from an industrial perspective. It was difficult. As a result of intensive research to avoid the various disadvantages mentioned above, the present inventors have found that if a combination system of cobalt sulfide, copper or aluminum, and amides and alkyl phosphines is used as a catalyst, iodine and The inventors discovered that ethanol can be synthesized with high selectivity without using bromine in combination, leading to the completion of the present invention. That is, the present invention provides a method for producing ethanol from methanol, carbon monoxide, and hydrogen, using a combination of cobalt sulfide and copper or aluminum as a catalyst, and furthermore, an amide and an alkyl phosphine. This is a method for producing ethanol characterized by using a system.

本発明における硫化コバルトは、八九硫化コバルト、硫
化第1コバルト、七二硫化コバルト、四三硫化コバルト
、三二硫化コバルトおよび二硫化コバルトであり、硫黄
を含んだ形態のものであればよい。
The cobalt sulfide in the present invention is cobalt octa9 sulfide, cobalt monosulfide, cobalt heptad sulfide, cobalt tetratris sulfide, cobalt trisulfide, and cobalt disulfide, and any form containing sulfur may be used.

なお実用上、入手し易いことから硫化第1コバルトが好
ましい。硫化コバルトは、従来使用されている水溶性コ
バルト化合物とは異なり、不溶性であるため、粉末とし
て反応系内に分散させた状態で使用される。
Incidentally, from a practical standpoint, cobaltous sulfide is preferred because it is easily available. Cobalt sulfide is different from conventionally used water-soluble cobalt compounds and is insoluble, so it is used in the form of a powder dispersed within the reaction system.

硫化コバルトと同時に使用する銅又はアルミニウムは、
化合物として使用する場合にも効果はあるが、通常は金
属粉末として硫化コバルトと混合した状態で使用される
。また、例えば活性炭、シリカ、アルミナ、ケイソウ土
、ゼオライト等に両成分を混合担持させた状態でも使用
される。本発明において、触媒成分としてさらにアミド
類およびアルキルホスフィンを併用することにより、触
媒の活性をさらに高めることができる。例えば、N−N
−ジメチルアセトアミド、α−ピロリドン、N−メチル
ピロリドン、α−ピペリドンなどのアミド類、アルキル
ホスフィンが使用できる。本発明に使用される硫化コバ
ルトの量は、メタノール1モル当り金属コバルトとして
0.1〜200ミリ原子、好ましくは1〜100ミリグ
ラム原子を含む量である。
Copper or aluminum used at the same time as cobalt sulfide is
Although it is effective when used as a compound, it is usually used as a metal powder mixed with cobalt sulfide. It is also used in a state in which both components are mixed and supported on, for example, activated carbon, silica, alumina, diatomaceous earth, zeolite, or the like. In the present invention, the activity of the catalyst can be further increased by further using an amide and an alkyl phosphine as catalyst components. For example, N-N
Amides such as -dimethylacetamide, α-pyrrolidone, N-methylpyrrolidone, α-piperidone, and alkyl phosphines can be used. The amount of cobalt sulfide used in the present invention is such that it contains from 0.1 to 200 milliatoms, preferably from 1 to 100 milligram atoms, of cobalt metal per mole of methanol.

これより少なくとも反応は進むが速度が遅くなる。この
範囲以上でも反応には悪影響はないが、実用的には上記
範囲で充分である。本発明において硫化コバルトと共に
使用される銅又はアルミニウムの量は、メタノール1モ
ル当り金属として0.1〜200ミリ原子、好ましくは
1〜100ミリ原子を含む量であり、この範囲外でも効
果はあるが、実用的にはこの範囲で充分である。
At least the reaction will proceed faster than this, but at a slower rate. Although the reaction is not adversely affected by the amount exceeding this range, the above range is sufficient for practical use. The amount of copper or aluminum used with cobalt sulfide in the present invention is such that it contains 0.1 to 200 milliatoms, preferably 1 to 100 milliatoms, as metal per mole of methanol, although it is effective even outside this range. However, this range is practically sufficient.

本発明において使用されるアミド類の量は、メタノール
1モルに対して0.01〜5モル、好ましくは0.1〜
1モルであり、この範囲外でも効果はあるが、実用的に
は上記範囲で充分である。
The amount of amides used in the present invention is 0.01 to 5 mol, preferably 0.1 to 5 mol, per 1 mol of methanol.
The amount is 1 mole, and although it is effective even outside this range, the above range is practically sufficient.

本発明において使用されるアルキルホスフィンの量は、
メタノール1モル当り0.1〜200ミリモル、好まし
くは2〜50ミリモルである。この範囲外でも効果はあ
るが、実用的には上記範囲が決められる。本発明に使用
する一酸化炭素および水素のモル比は4:1から1:4
、好ましくは1:2から2:1の範囲である。
The amount of alkyl phosphine used in the present invention is
The amount is 0.1 to 200 mmol, preferably 2 to 50 mmol per mole of methanol. Although it is effective even outside this range, the above range is determined for practical purposes. The molar ratio of carbon monoxide and hydrogen used in the present invention is from 4:1 to 1:4.
, preferably in the range of 1:2 to 2:1.

反応は加圧下で行なわれるが、反応圧力は50k9/C
d以上であることが好ましく、実用的には500kg/
i以下で充分である。
The reaction is carried out under pressure, and the reaction pressure is 50k9/C.
d or more, and practically 500 kg/
i or less is sufficient.

特に好ましくは100〜450kg/Cr!iの範囲で
ある。反応に使用する一酸化炭素および水素には不活性
ガス、例えばアルゴン、窒素、炭酸ガス、メタン、エタ
ンなどが混入していてもよいが、この場合には一酸化炭
素および水素の分圧の和を上記した圧力範囲に対応させ
る必要がある。本発明における反応は、使用する触媒系
および他の反応条件により変るが、一般に150〜35
0℃、好ましくは180〜280℃の範囲で行なわれる
Particularly preferably 100 to 450 kg/Cr! i range. The carbon monoxide and hydrogen used in the reaction may be mixed with an inert gas such as argon, nitrogen, carbon dioxide, methane, or ethane, but in this case, the sum of the partial pressures of carbon monoxide and hydrogen It is necessary to correspond to the above pressure range. The reaction in the present invention varies depending on the catalyst system used and other reaction conditions, but generally 150 to 35
It is carried out at 0°C, preferably in the range of 180 to 280°C.

これより低温でも反応は進行するが速度が遅く、また高
温では副反応が起こり易く好ましくない。これらの条件
を満して本発明の方法を実施した場合には、副生物の量
を少なくし、遊離のエタノールを高選択率で得ることが
でき、工業的に新規かつ有用なエタノール製造法となる
Although the reaction proceeds at lower temperatures, the rate is slow, and at higher temperatures side reactions tend to occur, which is undesirable. When the method of the present invention is carried out while satisfying these conditions, the amount of by-products can be reduced and free ethanol can be obtained with high selectivity, making it an industrially novel and useful ethanol production method. Become.

本発明の方法は、回分式および連続式のいずれの態様に
よつても実施することができる。
The method of the present invention can be carried out either batchwise or continuously.

本発明の方法について以下に記す実施例をもつてさらに
具体的に説明する。
The method of the present invention will be explained in more detail with reference to the following examples.

実施例1 ステンレス製、内容100WLIの振とう式オートクレ
ーブにメタノール10f1触媒として硫化第1コバルト
粉末27、銅粉末1f7、トリブチルホスフィン27、
N−メチルピロリドン5yを加え、水素と一酸化炭素と
の混合ガス(H2/CO=1)200kg/Crlを圧
入し、250℃にて3時間反応させた。
Example 1 In a shaking autoclave made of stainless steel and having a content of 100 WLI, methanol 10f1 was used as a catalyst, cobalt sulfide powder 27, copper powder 1f7, tributylphosphine 27,
5y of N-methylpyrrolidone was added, 200 kg/Crl of a mixed gas of hydrogen and carbon monoxide (H2/CO=1) was introduced under pressure, and the mixture was reacted at 250°C for 3 hours.

メタノール反応率21.6モル%となり、エタノールへ
の選択率96.2%であつた。
The methanol conversion rate was 21.6 mol%, and the selectivity to ethanol was 96.2%.

実施例2 メタノール107、触媒として硫化第1コバルト27、
アルミニウム粉末17を加えた他は実施例1と同様に反
応させた。
Example 2 Methanol 107, cobaltous sulfide 27 as a catalyst,
The reaction was carried out in the same manner as in Example 1 except that aluminum powder 17 was added.

メタノール反応率25.2モル%、エタノールへの選択
率95.4%であつた。
The methanol conversion rate was 25.2 mol%, and the selectivity to ethanol was 95.4%.

Claims (1)

【特許請求の範囲】[Claims] 1 メタノールと一酸化炭素および水素とからエタノー
ルを製造するにあたり、触媒として(イ)硫化コバルト
と(ロ)銅又はアルミニウムと(ハ)アミド類および(
ニ)アルキルホスフィンとを組合せた系を使用すること
を特徴とするエタノールの製造方法。
1. In producing ethanol from methanol, carbon monoxide and hydrogen, (a) cobalt sulfide, (b) copper or aluminum, (c) amides and (
d) A method for producing ethanol, characterized by using a system in combination with an alkyl phosphine.
JP55156648A 1980-11-07 1980-11-07 Ethanol manufacturing method Expired JPS593973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55156648A JPS593973B2 (en) 1980-11-07 1980-11-07 Ethanol manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55156648A JPS593973B2 (en) 1980-11-07 1980-11-07 Ethanol manufacturing method

Publications (2)

Publication Number Publication Date
JPS5780334A JPS5780334A (en) 1982-05-19
JPS593973B2 true JPS593973B2 (en) 1984-01-27

Family

ID=15632244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55156648A Expired JPS593973B2 (en) 1980-11-07 1980-11-07 Ethanol manufacturing method

Country Status (1)

Country Link
JP (1) JPS593973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311334Y2 (en) * 1984-04-18 1991-03-19

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088616A1 (en) * 2010-01-21 2011-07-28 Zhu Zhenhui Preparation method for acetonitrile and/or ethanol by dehydrogenating methanol and ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0311334Y2 (en) * 1984-04-18 1991-03-19

Also Published As

Publication number Publication date
JPS5780334A (en) 1982-05-19

Similar Documents

Publication Publication Date Title
US4304946A (en) Process for producing ethanol
US5189203A (en) Process for preparing acetic acid, methyl acetate, acetic anhydride or mixtures thereof
US4306091A (en) Process for the preparation of acetaldehyde
JPS6043767B2 (en) Catalyst for alcohol carbonylation
JPS5851936B2 (en) Ethanol manufacturing method
JPS593973B2 (en) Ethanol manufacturing method
JPS60246344A (en) Manufacture of aryl ester
EP0566371A2 (en) Process for converting dimethyl ether to ethylidene diacetate
US4094905A (en) Process for producing dimethyl formamide
JPS5925770B2 (en) Production method of methyl isobutyl ketone
US4668816A (en) High yield carbonylation of halo-hydrocarbons
US4379942A (en) Process for manufacturing methyl ketones by oxidation of terminal olefins
US4408080A (en) Process for producing acetaldehyde
GB2046262A (en) Process for the production of an acetal
EP0186349B1 (en) Process for the preparation of cinnamate ester
JP2650100B2 (en) Method for producing ethylidene diacetate
JPH01294643A (en) Production of oxygen-containing compound
JPS6033413B2 (en) Ethanol manufacturing method
CA1234147A (en) Process for the preparation of ethanol and/or ethyl acetate
JP3027162B2 (en) Method for producing biphenylcarboxylic acid
JPS599528B2 (en) Ethanol manufacturing method
KR960003797B1 (en) Process for preparing aceticacid by methanol carbonylation
US4218398A (en) Process for producing dimethylformamide
JPS6158457B2 (en)
US4283582A (en) Pre-pressuring methanol-cobalt with carbon monoxide in homologation of methanol