JPS5939404A - Temper rolling method with control for roughness of plate surface - Google Patents

Temper rolling method with control for roughness of plate surface

Info

Publication number
JPS5939404A
JPS5939404A JP57150269A JP15026982A JPS5939404A JP S5939404 A JPS5939404 A JP S5939404A JP 57150269 A JP57150269 A JP 57150269A JP 15026982 A JP15026982 A JP 15026982A JP S5939404 A JPS5939404 A JP S5939404A
Authority
JP
Japan
Prior art keywords
rolling
speed
force
roughness
plate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57150269A
Other languages
Japanese (ja)
Other versions
JPS6121723B2 (en
Inventor
Yoshio Nakazato
中里 嘉夫
Akiya Yagishima
柳島 章也
Toko Teshiba
手柴 東光
Shunji Fujiwara
藤原 俊二
Akira Kishida
朗 岸田
Yukio Ida
幸夫 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57150269A priority Critical patent/JPS5939404A/en
Publication of JPS5939404A publication Critical patent/JPS5939404A/en
Publication of JPS6121723B2 publication Critical patent/JPS6121723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/14Roughness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To obtain a uniform surface roughness over the entire region in the rolling direction of a temper rolled plate by adjusting adequately rolling force according to rolling speeds. CONSTITUTION:The rolling speed signal of a strip 1 detected with a speed detector 3 connected to the work roll 2a' of the No.2 stand is converted by a signal converter 4. The converted signal thereof and the blank material conditions of the strip 1 as well as the rolling force signal fed from a rolling down force detector 8 with a converter 9 for rolling force signal are added and the rolling down force satisfying the relation P=f(V) (P; rolling down force, V; rolling speed) is calculated with an arithmetic device 5. The output thereof is amplified with an amplifier 6 and is delivered to a control mechanism 7 for rolling down force so that the strip is rolled under the prescribed rolling down force.

Description

【発明の詳細な説明】 本発明は、板面粗度制御調質圧延法に関するものであり
、とくに圧延方向の全域にわたって均一な表面粗度を有
する調圧板を得るのに有利に実施される方法についての
提案である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temper rolling method for controlling plate surface roughness, and in particular, a method that is advantageously carried out to obtain a pressure regulating plate having uniform surface roughness over the entire rolling direction. This is a proposal about.

冷延鋼板の板面粗度は、プレス時の耐型かじり性、塗装
性や製鑵時の半田上昇性等の点から品質管理が虞要であ
り、従来は調圧ロールあらさによってコントロールして
いる。
The surface roughness of cold-rolled steel sheets requires quality control in terms of die galling resistance during pressing, paintability, and solder rise during iron making, and has traditionally been controlled by the roughness of pressure regulating rolls. There is.

一般に、調質圧延後の製品′f観祭してみると、ストリ
ップの長手方向(圧延方向)における両端部と中間部と
では粗度が異なることが知られていまた。そこで、従来
は、品質保証の立場から、両端部と中間部の両方の粗に
+チェックし、それらのいずれもが目標となる粗度の許
容範囲内にあることを確認したうえで、出荷筐たけめっ
き工程に流す体制をとっていた。
Generally, when observing a product after temper rolling, it is known that the roughness differs between the ends and the middle part in the longitudinal direction (rolling direction) of the strip. Therefore, from a quality assurance standpoint, conventionally, both ends and the middle part were roughly checked, and after confirming that both of them were within the target roughness tolerance range, the shipping case was shipped. A system was in place to send it to the bamboo plating process.

ところが、このような体制を実施するためには、調質I
IE延または次工程のりコイリングラインにおいてサン
プル板を採取し、粗度測定を行うことが必要で、結果が
判明するまで調買圧処作楽の停止」・を余儀なくさせら
れていた。ところが、この伴出を行つと圧延ロールのヒ
ートクラウンの変化による形状不良の発生が起る等の欠
点が生じていた。
However, in order to implement such a system, it is necessary to
It was necessary to take sample plates at the IE rolling or the next process glue coiling line and measure the roughness, which forced the suspension of purchasing and pressure processing until the results were known. However, when this entrainment is carried out, there are drawbacks such as the occurrence of shape defects due to changes in the heat crown of the rolling rolls.

しかも、この停止のより大きい問題点とされていること
は、粗度判定が出た時点で圧延ロールを父換するか、圧
延条件f:斐更するか、あるいはそのまま続行するかを
判断し、その後にやつと作業が再開可能となるのである
から、著しい能率阻害が起ることである。
Moreover, the bigger problem with this stoppage is that when the roughness judgment comes out, it is decided whether to replace the rolling roll, change the rolling condition f: or continue as it is. After that, the work can be resumed, resulting in a significant loss of efficiency.

本発明の目的は、上述した従来技術の欠点なら−ひに問
題点を克服できる調質圧延法の提案にありき圧延速度に
応する適度の圧下力調整を行うことにより、調圧板の圧
延方向の全域にわたって均一な表面粗度が得られるよう
にした点に特色を有する技術にかかるものである。以下
に本発明の構成の・詳細を好適実bm例を挙げて説明す
る。
The purpose of the present invention is to propose a temper rolling method that can overcome all the shortcomings of the prior art described above. This technology is characterized in that a uniform surface roughness can be obtained over the entire area. The details of the configuration of the present invention will be explained below using preferred practical examples.

本発明は、調質圧延速度と板面粗度との間には一定の関
係(川下刃Pが圧延速度の開WiP−f(V)で表わさ
れる)が認められるという知見にもとづく新規な調質圧
延方法である。
The present invention is based on the knowledge that there is a certain relationship between the temper rolling speed and the plate surface roughness (the downstream edge P is expressed by the width of the rolling speed WiP-f(V)). This is a quality rolling method.

調質圧延時の板面粗度は、使用するワークロールの表面
仕上げによって大略決定されるが、A質圧延の速度によ
つでも大きな影14 Th受けることが調査により明ら
かとなった。たとえHlぶりき原板のA質圧延において
は、プライト仕上の2スタ1ンド調質圧延で、速度差1
500 mpmで0,088m(Ra )の差が出るこ
とがわかった。 (高速時のほうが粗度が粗くなる) これは、圧延速度によってひずみ速度が変わり、その結
果変形抵抗が変動するために圧下量の変動、。
Although the plate surface roughness during temper rolling is roughly determined by the surface finish of the work rolls used, research has revealed that it is greatly influenced by the speed of A quality rolling. For example, in A-quality rolling of Hl tinplate original plate, the speed difference is 1 in 2 stand one-hand temper rolling with prite finish.
It was found that there is a difference of 0,088 m (Ra) at 500 mpm. (The roughness becomes rougher when the rolling speed is high.) This is because the strain rate changes depending on the rolling speed, and as a result, the deformation resistance fluctuates, resulting in fluctuations in the rolling reduction amount.

が生じ、ワークロール表面粗度が板面に転写する・度合
い、いわゆる転写率の変動が起ることにより起こる現象
であると推察された。そこで、調質圧延時の圧延速度に
応じて、圧−トカを調整する制御を行えば、従来見られ
たストリップ長手方向の不均一粗度を解消することがで
きることが判った。
It was assumed that this phenomenon was caused by fluctuations in the degree to which the work roll surface roughness was transferred to the plate surface, the so-called transfer rate. Therefore, it has been found that the non-uniform roughness in the longitudinal direction of the strip, which has conventionally been observed, can be resolved by controlling the rolling force in accordance with the rolling speed during temper rolling.

次に、調質圧延時にどのようにし−C板面租度を制御す
るかを述べる。
Next, a description will be given of how to control the -C plate surface roughness during temper rolling.

第1図は、フライト仕上げのぶりき原板を、2スタンド
調賀比延機によって製造したときの圧延・速度の違いに
よる粗度差についてc−74べた結果である。口の図か
ら判るように、辿゛吊の高速圧延速度と極低速(速度→
o mpm )にしたときとの両者の粗度差ΔHa(μ
m)と、該調質圧延速度v ’(tnpm )との間に
は、強い相関があり、ぞ71は路次式で示すことができ
る。即ち、 ΔRa=(2X l 0−6)V  ・・・・・・・・
・・・・曲・・(1)第2図には、速度150 (+ 
(mpm)時の1陥当り圧下刃P(/、□〕と粗度減少
値Rλ〔μm〕との関泳を示・したが、同じく強い相関
関係が認められ、両者の′関係は大路次式で示すことが
できる。
FIG. 1 shows the results of C-74 testing of roughness differences due to differences in rolling speed when flight-finished tin blanks were manufactured using a two-stand Chokahi rolling mill. As you can see from the figure above, there is a high rolling speed and an extremely low rolling speed (speed→
The roughness difference ΔHa(μ
There is a strong correlation between m) and the temper rolling speed v' (tnpm), and 71 can be expressed by a path equation. That is, ΔRa=(2X l 0-6)V...
... Song ... (1) Figure 2 shows the speed 150 (+
(mpm), the reduction edge per depression P (/, □) and the roughness reduction value Rλ [μm] were shown to have a close relationship, and a strong correlation was also observed, and the relationship between the two was It can be shown by the formula.

(0,5≦P≦1.5) ΔRa−−0.08(P−1,5)  +0.08−・
−・・−(2))ここで、ΔRa−ΔRa−0が近似的
に成立するものとすれば、上記(1) 、 (2)式は
次のように整理することができる。
(0,5≦P≦1.5) ΔRa--0.08 (P-1,5) +0.08-・
-...-(2)) Here, assuming that ΔRa-ΔRa-0 approximately holds true, the above equations (1) and (2) can be rearranged as follows.

2X1(l  V+0.08(P−1,5)−0,0&
=0  ・(8)この(3)式を川下刃Pについて解い
たのが(句式である0 P−1,5吾−86×lロー4v(4)要するに、この
(4)式は、上記のΔRa−ΔRa−0という条件全満
足するという仮定のもとで:即ち圧延方向(ストリップ
長手方向)の全域にわたって一定した板面粗度を得るた
めの圧下、力と調質圧延速度との関詠について示すもの
ということができる。第3図はその両者の(4)式に示
す開山を図示し、。
2X1(l V+0.08(P-1,5)-0,0&
= 0 ・(8) This equation (3) is solved for the downstream blade P as follows: Under the assumption that the above condition ΔRa - ΔRa - 0 is fully satisfied: In other words, the reduction, force and temper rolling speed to obtain a constant plate surface roughness over the entire rolling direction (longitudinal direction of the strip) are It can be said that it shows the relationship between the two. Figure 3 shows the opening of both of them as shown in equation (4).

たものである。It is something that

次に、上述した均一な板面粗度を得るFA質圧延の方法
を、上記の(4)式に示す速度と圧力下との関係を維持
する制御によって実施した例を、第4図にもとづいて説
明する。。
Next, an example is shown in Fig. 4 in which the above-mentioned FA quality rolling method to obtain a uniform plate surface roughness is carried out by controlling to maintain the relationship between speed and pressure shown in equation (4) above. I will explain. .

図中lは被調圧材であるストリップ′: 2は2スタン
ドタンデム調質圧延機で、2a、2’aはそのワークロ
ール、そしてこの圧延機には速度検出器8と川下力検出
器8とが設けである。さて、ストリップlの粗度を全域
にわたって均一にする調質圧延のための圧下刃の調擬は
、A2スタンドワークロール2接続の速度検出器3によ
り検出された速度信号を信号変換器4で変換する。そし
て、この速度に関する信号と、ストリップlの素材条件
および圧下力検出器8よりの圧下刃16号変換器9を経
て送られる圧下刃fi号とを加味して演算装置5で、−
h記(4)式なうひに第3図の関床によって適切な圧下
刃の演算を行い、その出力を増幅装置6で増幅して圧下
力制御機構7に出力して所定の圧下刃にして圧延する。
In the figure, 1 is a strip' which is the pressure material to be controlled; 2 is a two-stand tandem temper rolling mill; 2a and 2'a are its work rolls; and this rolling mill is equipped with a speed detector 8 and a downstream force detector 8. This is the provision. Now, to adjust the rolling blade for skin pass rolling to make the roughness of the strip l uniform over the entire area, the signal converter 4 converts the speed signal detected by the speed detector 3 connected to the A2 stand work roll 2. do. Then, by taking into account the signal regarding this speed, the material conditions of the strip l, and the rolling blade number fi sent from the rolling force detector 8 through the rolling blade number 16 converter 9, the arithmetic unit 5 calculates -
Using formula (4) in section h, calculate the appropriate rolling blade using the checkerboard shown in Figure 3, and amplify the output with the amplifying device 6 and output it to the rolling force control mechanism 7 to adjust the rolling blade to a predetermined rolling blade. Roll it.

この装W+使用し粗度制御を行った結果を、従来技術の
方法と比較したのが第5図である。この結果をみると、
本発明方法による高速と低速での粗度差は、0.02μ
以内に収まっており、目標許容値から外れるケースが格
段に減少していることが明らかであり、本発明の所期の
効果が期待どおりに験証された。
FIG. 5 shows a comparison of the results of roughness control using this device W+ with the conventional method. Looking at this result,
The roughness difference between high speed and low speed according to the method of the present invention is 0.02μ
It is clear that the number of cases outside the target tolerance value has been significantly reduced, and the intended effect of the present invention has been verified as expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、板面粗度に与える速度による影響を明らかに
するグラフ、 第2図は、板面粗度に与える圧下刃による影響を明らか
にするグラフ、 第8図は、板面粗度2一定に保つための圧下力設定曲線
図、 第4図は、板面粗度制御の実施装置の路線図、第5図は
、従来法と本発明との板面粗度に与える影#を比較して
示すグラフである。 l・・・ストリップ    2・・・調質圧延機2a、
2a’・・・ワークロール 3・・・速度検出器4・・
・信号変換器    6・・・演算装置6・・・増幅装
置     7・・・圧下力制御機構8・・・圧下力検
出器   9・・・川下方fN号変換器。 特許出願人 川崎製鉄株式会社 第1図 ′2 ′E!Rf圧迫速度VC叶鉛 第2図 幅当ソ摩イ立圧゛FhP(tC54ヤフ第8図 Osoo    tooo    tso。 訓質灰通達度Cmprn) ;;)4図
Figure 1 is a graph illustrating the influence of speed on plate surface roughness. Figure 2 is a graph illustrating the influence of rolling blades on plate surface roughness. Figure 8 is a graph illustrating the effect of rolling blade on plate surface roughness. 2. Drawing force setting curve diagram for keeping the rolling force constant; Figure 4 is a route diagram of the device for controlling plate surface roughness; Figure 5 shows the influence of the conventional method and the present invention on plate surface roughness. This is a graph for comparison. l... Strip 2... Temper rolling mill 2a,
2a'...Work roll 3...Speed detector 4...
- Signal converter 6... Arithmetic device 6... Amplifying device 7... Rolling force control mechanism 8... Rolling force detector 9... Downstream fN converter. Patent applicant: Kawasaki Steel Corporation Figure 1'2'E! Rf compression speed VC leaf lead 2 Width somah vertical pressure ゛FhP (tC54 Yahoo Figure 8 Osoo tooo tso. Training ash communication degree Cmprn) ;;) Figure 4

Claims (1)

【特許請求の範囲】[Claims] L 調質圧延時板面粗度を、圧延速度Vならびに圧下刃
PがP −f (V)なる圧延速度との関数・で表わさ
れる関係を満足するように通板することにより制御し、
圧延方向に均一な板面粗度が得られるようにすることか
らなる板面粗度制御調圧延法。
L The plate surface roughness during skin pass rolling is controlled by passing the plate so that the rolling speed V and the rolling blade P satisfy the relationship expressed by P - f (V), a function of the rolling speed,
A rolling method for controlling plate surface roughness, which consists of obtaining uniform plate surface roughness in the rolling direction.
JP57150269A 1982-08-30 1982-08-30 Temper rolling method with control for roughness of plate surface Granted JPS5939404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150269A JPS5939404A (en) 1982-08-30 1982-08-30 Temper rolling method with control for roughness of plate surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150269A JPS5939404A (en) 1982-08-30 1982-08-30 Temper rolling method with control for roughness of plate surface

Publications (2)

Publication Number Publication Date
JPS5939404A true JPS5939404A (en) 1984-03-03
JPS6121723B2 JPS6121723B2 (en) 1986-05-28

Family

ID=15493246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150269A Granted JPS5939404A (en) 1982-08-30 1982-08-30 Temper rolling method with control for roughness of plate surface

Country Status (1)

Country Link
JP (1) JPS5939404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238616A (en) * 1991-01-08 1992-08-26 Kawasaki Steel Corp Method for controlling reducing force on temper rolling of steel strip
CN106955897A (en) * 2016-01-11 2017-07-18 上海梅山钢铁股份有限公司 Suitable for the last rack outlet belt steel surface roughness forecasting procedure of hot tandem

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238616A (en) * 1991-01-08 1992-08-26 Kawasaki Steel Corp Method for controlling reducing force on temper rolling of steel strip
CN106955897A (en) * 2016-01-11 2017-07-18 上海梅山钢铁股份有限公司 Suitable for the last rack outlet belt steel surface roughness forecasting procedure of hot tandem
CN106955897B (en) * 2016-01-11 2019-05-24 上海梅山钢铁股份有限公司 Suitable for hot tandem end rack outlet belt steel surface roughness forecasting procedure

Also Published As

Publication number Publication date
JPS6121723B2 (en) 1986-05-28

Similar Documents

Publication Publication Date Title
CN109570241B (en) Wedge-shaped control method with deviation protection
CN102451838A (en) Method for overcoming camber defect in hot rolling process of steel plate
US5054302A (en) Hardness compensated thickness control method for wet skin-pass rolled sheet
JPS5939404A (en) Temper rolling method with control for roughness of plate surface
US6142000A (en) Method of operating a rolling mill for hot-rolling and cold-rolling of flat products
US3404550A (en) Workpiece shape and thickness control
JP2659056B2 (en) Rolling force control method in temper rolling of steel strip
JPS6195711A (en) Method for controlling sheet camber in thick plate rolling
CN105903771A (en) Device for automatically measuring and controlling deviation of hot mill and measuring and controlling method thereof
JPS6032522B2 (en) Plate crown reduction method
JPS595362B2 (en) Plate thickness control method in plate rolling
JPS61154709A (en) Device for controlling thickness profile of sheet stock
JP2513866B2 (en) Shape control method
JPH11188415A (en) Camber control method and equipment for rolled stock
JPS62179804A (en) Cold rolling method for steel sheet including control means for amount of edge drop
JPH04238616A (en) Method for controlling reducing force on temper rolling of steel strip
JPS58138508A (en) Device for controlling thickness and shape of rolling mill
JPH09206871A (en) Anvil for width press of hot slab
JPS6363513A (en) Width control method for cold rolling
JPS6036331B2 (en) Shape control device in rolling
JPS61129210A (en) Prevention of nip bending in thick plate rolling
JPH081220A (en) Method for controlling width of hot rolled plate
JPH10225701A (en) Method for automatically controlling dimension in universal rolling of shape
KR20200075967A (en) Feed-forward control method for cold rolling process
CN118595180A (en) Method and system for controlling width of hot rolled strip steel